lectures 1

27
CH 1 X-ray tube An X-ray tube is a vacuum tube that produces X-rays . They are used in X-ray machines . X-rays are part of the electromagnetic spectrum , an ionizing radiation with wavelengths shorter than ultraviolet light. X- ray tubes evolved from experimental Crookes tubes with which X-rays were first discovered in the late 1800s, and the availability of this controllable source of X-rays created the field of radiography , the imaging of opaque objects with penetrating radiation . X-ray tubes are also used in CAT scanners , airport luggage scanners, X-ray crystallography , and for industrial inspection. Coolidge X-ray tube, from around 1917. The heated cathode is on the left, and the anode is right. The X-rays are emitted downwards.

Upload: harish-sarkar

Post on 09-Sep-2015

243 views

Category:

Documents


3 download

DESCRIPTION

demo

TRANSCRIPT

CH1X-ray tube

An X-ray tube is a vacuum tube that produces X-rays. They are used in X-ray machines. X-rays are part of the electromagnetic spectrum, an ionizing radiation with wavelengths shorter than ultraviolet light. X-ray tubes evolved from experimental Crookes tubes with which X-rays were first discovered in the late 1800s, and the availability of this controllable source of X-rays created the field of radiography, the imaging of opaque objects with penetrating radiation. X-ray tubes are also used in CAT scanners, airport luggage scanners, X-ray crystallography, and for industrial inspection.

Coolidge X-ray tube, from around 1917. The heated cathode is on the left, and the anode is right. The X-rays are emitted downwards.

As with any vacuum tube, there is a cathode, which emits electrons into the vacuum and an anode to collect the electrons, thus establishing a flow of electrical current, known as the beam, through the tube. A high voltage power source, for example 30 to 150 kilovolts (kV), is connected across cathode and anode to accelerate the electrons. The X-ray spectrum depends on the anode material and the accelerating voltage [1].

In many applications, the current flow (typically in the range 1mA to 1A) is able to be pulsed on for between about 1ms to 1s. This enables consistent doses of x-rays, and taking snapshots of motion. Until the late 1980s, X-ray generators were merely high-voltage, AC to DC variable power supplies. In the late 1980s a different method of control was emerging, called high speed switching. This followed the electronics technology of switching power supplies (aka switch mode power supply), and allowed for more accurate control of the X-ray unit, higher quality results, and reduced X-ray exposures.

Electrons from the cathode collide with the anode material, usually tungsten, molybdenum or copper, and accelerate other electrons, ions and nuclei within the anode material. About 1% of the energy generated is emitted/radiated, usually perpendicular to the path of the electron beam, as X-rays. The rest of the energy is released as heat. Over time, tungsten will be deposited from the target onto the interior surface of the tube, including the glass surface. This will slowly darken the tube and was thought to degrade the quality of the X-ray beam, but research has suggested there is no effect .

Eventually, the tungsten deposit may become sufficiently conductive that at high enough voltages, arcing occurs. The arc will jump from the cathode to the tungsten deposit, and then to the anode. This arcing causes an effect called "crazing" on the interior glass of the X-ray window. As time goes on, the tube becomes unstable even at lower voltages, and must be replaced. At this point, the tube assembly (also called the "tube head") is removed from the X-ray system, and replaced with a new tube assembly. The old tube assembly is shipped to a company that reloads it with a new X-ray tube.

The X-Ray photon-generating effect is generally called the Bremsstrahlung effect, a contraction of the German brems for braking, and strahlung for radiation.

The range of photonic energies emitted by the system can be adjusted by changing the applied voltage, and installing aluminum filters of varying thicknesses. Aluminum filters are installed in the path of the X-ray beam to remove "soft" (non-penetrating) radiation. The number of emitted X-ray photons, or dose, are adjusted by controlling the current flow and exposure time.

Simply put, the high voltage controls X-ray penetration, and thus the contrast of the image. The tube current and exposure time affect the dose and therefore the darkness of the image.

Crookes tube:-

Crookes X-ray tube from early 1900s. The cathode is on the right, the anode is in the center with attached heat sink at left. The electrode at the 10 o'clock position is the anticathode. The device at top is a 'softener' used to regulate the gas pressure.

Historically, x-rays were discovered radiating from experimental discharge tubes called Crookes tubes invented by British physicist William Crookes and others. As the medical and other uses of x-rays became apparent, workshops began to manufacture specialized Crookes tubes to produce x-rays. These were the first x-ray tubes. These first generation cold cathode or Crookes x-ray tubes were used until the 1920s.

Crookes tubes generated the electrons needed to create x-rays by ionization of the residual air in the tube, instead of a heated filament, so they were partially but not completely evacuated. They consisted of a glass bulb with around 10-6 to 510-8 atmospheric pressure of air (0.1 to 0.005 Pa). An aluminum cathode plate at one end of the tube created a beam of electrons, which struck a platinum anode target at the center generating x-rays. The anode surface was angled so that the x-rays would radiate through the side of the tube. The cathode was concave so that the electrons were focused on a small (~1 mm) spot on the anode, approximating a point source of x-rays, which resulted in sharper images. The tube had a third electrode, an anticathode connected to the anode. It improved the X-ray output, but the method by which it achieved this is not understood. A more common arrangement used a cupped plate anticathode (similar in constriction to the cathode) in line with the anode such that the anode was between the cathode anf the anticathode.

To operate, a DC voltage of a few kilovolts to as much as 100 kV was applied between the anodes and the cathode, usually generated by an induction coil, or for larger tubes, an electrostatic machine. This created and then accelerated a small number of ions from the low pressure gas in the tube. These struck further gas atoms, knocking electrons off them, creating more positive ions in a chain reaction. All the positive ions were attracted to the cathode. When they struck it, they knocked electrons out of the metal, which were accelerated along with the electrons knocked from the gas atoms toward the anode target. When these high speed electrons struck the atoms of the anode, they created x-rays by one of two processes, either Bremsstrahlung or x-ray fluorescence.

Crookes tubes were unreliable. As time passed, the residual air would be absorbed by the walls of the tube, reducing the pressure. This increased the voltage across the tube, generating 'harder' x-rays, until eventually the tube stopped working. To prevent this, 'softener' devices were used (see picture). A small tube attached to the side of the main tube contained a mica sleeve or chemical that released a small amount of gas when heated, restoring the correct pressure.

The glass envelope of the tube would blacken is use due to the X-rays affecting its structure.

Coolidge tube

Coolidge side-window tube (scheme) (1)K: filament

(2)A: anode

(3)Win and Wout: water inlet and outlet of the cooling device (C)

The Crookes tube was improved by William Coolidge in 1913. The Coolidge tube, also called hot cathode tube, is the most widely used. It works with a very good quality vacuum (about 10-4 Pa, or 10-6 Torr).

In the Coolidge tube, the electrons are produced by thermionic effect from a tungsten filament heated by an electric current. The filament is the cathode of the tube. The high voltage potential is between the cathode and the anode, the electrons are thus accelerated, and then hit the anode.

There are two designs: end-window tubes and side-window tubes.

In the end-window tubes, the filament is around the anode, the electrons have a curved path.

What is special about side-window tubes is:

An Electrostatic Lens to focus the beam onto a very small spot on the anode

The anode is specially designed to dissipate the heat and wear resulting from this intense focused barrage of electrons:

Mechanically spun to increase the area heated by the beam.

Cooled by circulating coolant.

The anode is precisely angled at 1-20 degrees off perpendicular to the electron current so as to allow escape of some of the X-ray photons which are emitted essentially perpendicular to the direction of the electron current.

The anode is usually made out of tungsten or molybdenum.

The tube has a window designed for escape of the generated X-ray photons.

The power of a Coolidge tube usually ranges from 1 to 4 kW.

Rotating anode tube

Simplified rotating anode tube schematic

A: Anode

C: cathode

T: Anode target

W: X-ray window

Modern rotating anode X-ray tube

The rotating anode tube is an improvement of the Coolidge tube. X-ray production using this method is very inefficient (99% of incident energy is converted to heat) the dissipation of heat at the focal spot is one of the main limitations on the power which can be applied. By sweeping the anode past the focal spot the heat load can be spread over a larger area, greatly increasing the power rating. With the exception of dental X-ray tubes, almost all medical X-ray tubes are of this type.

The anode consists of a disc with an annular target close to the edge. The anode disc is supported on a long stem which is supported by bearings within the tube. The anode can then be rotated by electromagnetic induction from a series of stator windings outside the evacuated tube.

Because the entire anode assembly has to be contained within the evacuated tube, heat removal is a serious problem, further exacerbated by the higher power rating available. Direct cooling by conduction or convection, as in the Coolidge tube, is difficult. In most tubes, the anode is suspended on ball bearings with silver powder lubrication which provide almost negligible cooling by conduction.

A recent development has been liquid gallium lubricated fluid dynamic bearings which can withstand very high temperatures without contaminating the tube vacuum. The large bearing contact surface and metal lubricant provide an effective method for conduction of heat from the anode .

The anode must be constructed of high temperature materials. The focal spot temperature can reach 2500C during an exposure, and the anode assembly can reach 1000C following a series of large exposures. Typical materials are a tungsten-rhenium target on a molybdenum core, backed with graphite. The rhenium makes the tungsten more ductile and resistant to wear from impact of the electron beams. The molybdenum conducts heat from the target. The graphite provides thermal storage for the anode, and minimizes the rotating mass of the anode.

Increasing demand for high-performance CT scanning and angiography systems has driven development of very high performance medical X-ray tubes. Contemporary CT tubes have power ratings of up to 100 kW and anode heat capacity of 6 MJ, yet retain an effective focal spot area of less than 1 mm2.

Hazards of x-ray production from vacuum tubes

2 High Voltage rectifier tubes capable of producing X-rays.

Any vacuum tube operating at several thousand volts or more can produce x-rays as an unwanted byproduct, raising safety issues. The higher the voltage, the more penetrating the resulting radiation and the more the hazard. Color televisions and computer CRT displays operate at 30-40 kilovolts, making them the main concern among household appliances. Historically, concern has focused less on the cathode ray tube, since its thick glass envelope is impregnated with several pounds of lead for shielding, than on high voltage (HV) rectifier and voltage regulator tubes inside. In the 1970s it was found that a failure in the HV supply circuit of some GE TVs could leave excessive voltages on the regulator tube, causing it to emit X-rays. The models were recalled and the ensuing scandal caused the US agency responsible for regulating this hazard, the Center for Devices and Radiological Health of the Food and Drug Administration (FDA), to require that all TVs include circuits to prevent excessive voltages in the event of failure. This hazard was eliminated with the advent of all solid state TVs, which have no tubes beside the CRT. Since 1969 the FDA has limited TV X-ray emission to 0.5 mR (milliroentgen) per hour. The tubes in the image to the right have a brown discoloration or "sunburn". This is caused by the condensation of vaporised anode material on the glass enclosure.

More recently, concern has been expressed about the magnetron tubes in microwave ovens, although with operating voltages of only 4-5 kilovolts it is doubtful whether any x-rays produced could penetrate the tube envelope, typically constructed of ceramic and metal. No verified reports of oven magnetrons producing measurable X-rays appear to have been published.

Description

A vacuum tube consists of electrodes in a vacuum in an insulating heat-resistant envelope which is usually tubular. Many tubes have glass envelopes, though some types such as power tubes may have ceramic or metal envelopes. The electrodes are attached to leads which pass through the envelope via an airtight seal. On most tubes, the leads are designed to plug into a tube socket for easy replacement.

The simplest vacuum tubes resemble incandescent light bulbs in that they have a filament sealed in a glass envelope which has been evacuated of all air. When hot, the filament releases electrons into the vacuum: a process called thermionic emission. The resulting negatively charged cloud of electrons is called a space charge. These electrons will be drawn to a metal plate inside the envelope, if the plate (also called the anode) is positively charged relative to the filament (or cathode). The result is a flow of electrons from filament to plate. This cannot work in the reverse direction because the plate is not heated and does not emit electrons. This very simple example described can thus be seen to operate as a diode: a device that conducts current only in one direction. The vacuum tube diode conducts conventional current from plate (anode) to the filament (cathode); this is the opposite direction to the flow of electrons (called electron current).

Vacuum tubes require a large temperature difference between the hot cathode and the cold anode. Because of this, vacuum tubes are inherently power-inefficient; enclosing the tube within a heat-retaining envelope of insulation would allow the entire tube to reach the same temperature, resulting in electron emission from the anode that would counter the normal one-way current. Because the tube requires a vacuum to operate, convection cooling of the anode is typically not possible. Instead anode cooling occurs primarily through black-body radiation and conduction of heat to the outer glass envelope via the anode mounting frame. Cold cathode tubes do not rely on thermionic emission at the cathode and usually have some form of gas discharge as the operating principle; such tubes are used for lighting (neon lamps) or as voltage regulators.

The vacuum tube is a voltage-controlled device, with the relationship between the input and output circuits determined by a transconductance function. The voltage between the control grid and the cathode controls the amount of current in the tube that goes from cathode to anode. Control grid current is practically negligible in most circuits. The solid-state device most closely analogous to the vacuum tube is the JFET, although the vacuum tube typically operates at far higher voltage (and power) levels than the JFET.

Bremsstrahlung produced by a high-energy electron deflected in the electric field of an atomic nucleus

Bremsstrahlung cross section for the emission of a photon with energy 30 keV by an electron impacting on a proton.

Bremsstrahlung (German pronunciation: (listen HYPERLINK "http://en.wikipedia.org/wiki/Media:De-bremsstrahlung.ogg" \o "Media:De-bremsstrahlung.ogg"

), from bremsen "to brake" and Strahlung "radiation", i.e. "braking radiation" or "deceleration radiation"), is electromagnetic radiation produced by the acceleration of a charged particle, such as an electron, when deflected by another charged particle, such as an atomic nucleus. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum. The phenomenon was discovered by Nikola Tesla[citation needed] during high frequency research he conducted between 1888 and 1897.

Bremsstrahlung may also be referred to as free-free radiation. This refers to the radiation that arises as a result of a charged particle that is free both before and after the deflection (acceleration) that causes the emission. Strictly speaking, bremsstrahlung refers to any radiation due to the acceleration of a charged particle, which includes synchrotron radiation; however, it is frequently used (even when not speaking German) in the more narrow sense of radiation from electrons stopping in matter.

The word Bremsstrahlung is retained from the original German to describe the radiation which is emitted when electrons are decelerated or "braked" when they are fired at a metal target. Accelerated charges give off electromagnetic radiation, and when the energy of the bombarding electrons is high enough, that radiation is in the X-ray region of the electromagnetic spectrum. It is characterized by a continuous distribution of radiation which becomes more intense and shifts toward higher frequencies when the energy of the bombarding electrons is increased.

Outer Bremsstrahlung

"Outer bremsstrahlung" is the term applied in cases where the energy loss by radiation greatly exceeds that by ionization as a stopping mechanism in matter. This is seen clearly for electrons with energies above 50 keV.

Inner Bremsstrahlung"Inner bremsstrahlung" is the term applied to the less frequent case of radiation emission during beta decay, resulting in the emission of a photon of energy less than or equal to the maximum energy available in the nuclear transition. Inner bremsstrahlung is caused by the abrupt change in the electric field in the region of the nucleus of the atom undergoing decay, in a manner similar to that which causes outer bremsstrahlung. In electron and positron emission the photon's energy comes from the electron/nucleon pair, with the spectrum of the bremsstrahlung decreasing continuously with increasing energy of the beta particle. In electron capture the energy comes at the expense of the neutrino, and the spectrum is greatest at about one third of the normal neutrino energy, reaching zero at zero energy and at normal neutrino energy.

Beta particle-emitting substances sometimes exhibit a weak radiation with continuous spectrum that is due to both outer and inner bremsstrahlung, or to one of them alone.

Secondary radiationBremsstrahlung is a type of "secondary radiation", in that it is produced as a result of stopping (or slowing) the primary radiation (beta particles). In some cases, e.g. 32P, the Bremsstrahlung produced by shielding this radiation with the normally used dense materials (e.g. lead) is itself dangerous; in such cases, shielding must be accomplished with low density materials, e.g. Plexiglass (lucite), plastic, wood, or water; because the rate of deceleration of the electron is slower, the radiation given off has a longer wavelength and is therefore less penetrating.

CH2albedoThe albedo of an object is a measure of how strongly it reflects light from light sources such as the Sun. It is therefore a more specific form of the term reflectivity. Albedo is defined as : the ratio of total-reflected to incident electromagnetic radiation. It is a unitless measure indicative of a surface's or body's diffuse reflectivity. The word is derived from Latin albedo "whiteness", in turn from albus "white", and was introduced into optics by Johann Heinrich Lambert in his 1760 work Photometria. The range of possible values is from 0 (dark) to 1 (bright). general, the albedo depends on the direction and directional distribution of incoming radiation. Exceptions are Lambertian surfaces, which scatter radiation in all directions in a cosine function, so their albedo does not depend on the incoming distribution. In realistic cases, a bidirectional reflectance distribution function (BRDF) is required to characterize the scattering properties of a surface accurately, although albedos are a very useful first approximation.Albedos of typical materials in visible light range from up to 0.9 for fresh snow, to about 0.04 for charcoal, one of the darkest substances. Deeply shadowed cavities can achieve an effective albedo approaching the zero of a blackbody. When seen from a distance, the ocean surface has a low albedo, as do most forests, while desert areas have some of the highest albedos among landforms. Most land areas are in an albedo range of 0.1 to 0.4.[6] The average albedo of the Earth is about 0.3.[7] This is far higher than for the ocean primarily because of the contribution of clouds.

Human activities have changed the albedo (via forest clearance and farming, for example) of various areas around the globe. However, quantification of this effect on the global scale is difficult.

The classic example of albedo effect is the snow-temperature feedback. If a snow-covered area warms and the snow melts, the albedo decreases, more sunlight is absorbed, and the temperature tends to increase. The converse is true: if snow forms, a cooling cycle happens. The intensity of the albedo effect depends on the size of the change in albedo and the amount of insolation; for this reason it can be potentially very large in the tropics.

The Earth's surface albedo is regularly estimated via Earth observation satellite sensors such as NASA's MODIS instruments onboard the Terra and Aqua satellites. As the total amount of reflected radiation cannot be directly measured by satellite, a mathematical model of the BRDF is used to translate a sample set of satellite reflectance measurements into estimates of directional-hemispherical reflectance and bi-hemispherical reflectance.

The Earth's average surface temperature due to its albedo and the greenhouse effect is currently about 15C. For the frozen (more reflective) planet the average temperature is below -40C (If only all continents being completely covered by glaciers - the mean temperature is about 0C). The simulation for (more absorptive) aquaplanet shows the average temperature close to 27C.

Albedo works on a smaller scale, too. People who wear dark clothes in the summertime put themselves at a greater risk of heatstroke than those who wear lighter color clothes.

What is the definition of albedo?

The albedo is the relative reflectivity of light from a surface, which for solar radiation indicates the percentage of solar energy that is not absorbed. White-sky and black-sky albedoIt has been shown that for many applications involving terrestrial albedo, the albedo at a particular solar zenith angle i can reasonably be approximated by the proportionate sum of two terms: the directional-hemispherical reflectance at that solar zenith angle, , and the bi-hemispherical reflectance, the proportion concerned being defined as the proportion of diffuse illumination D.

Albedo can then be given as:

Directional-hemispherical reflectance is sometimes referred to as black-sky albedo and bi-hemispherical reflectance as white sky albedo. These terms are important because they allow the albedo to be calculated for any given illumination conditions from a knowledge of the intrinsic properties of the surface.

Astronomical albedoThe albedos of planets, satellites and asteroids can be used to infer much about their properties. The study of albedos, their dependence on wavelength, lighting angle ("phase angle"), and variation in time comprises a major part of the astronomical field of photometry. For small and far objects that cannot be resolved by telescopes, much of what we know comes from the study of their albedos. For example, the absolute albedo can indicate the surface ice content of outer solar system objects, the variation of albedo with phase angle gives information about regolith properties, while unusually high radar albedo is indicative of high metallic content in asteroids.

Enceladus, a moon of Saturn, has one of the highest known albedos of any body in the Solar system, with 99% of EM radiation reflected. Another notable high albedo body is Eris, with an albedo of 0.86. Many small objects in the outer solar system[12] and asteroid belt have low albedos down to about 0.05.[13] A typical comet nucleus has an albedo of 0.04.[14] Such a dark surface is thought to be indicative of a primitive and heavily space weathered surface containing some organic compounds.

The overall albedo of the Moon is around 0.072, but it is strongly directional and non-Lambertian, displaying also a strong opposition effect.[15] While such reflectance properties are different from those of any terrestrial terrains, they are typical of the regolith surfaces of airless solar system bodies.

Two common albedos that are used in astronomy are the (V-band) geometric albedo (measuring brightness when illumination comes from directly behind the observer) and the Bond albedo (measuring total proportion of electromagnetic energy reflected). Their values can differ significantly, which is a common source of confusion.

In detailed studies, the directional reflectance properties of astronomical bodies are often expressed in terms of the five Hapke parameters which semi-empirically describe the variation of albedo with phase angle, including a characterization of the opposition effect of regolith surfaces.

The correlation between astronomical (geometric) albedo, absolute magnitude and diameter is:[16] ,

where A is the astronomical albedo, D is the diameter in kilometres, and H is the absolute magnitude.

Other types of albedoSingle scattering albedo is used to define scattering of electromagnetic waves on small particles. It depends on properties of the material (refractive index); the size of the particle or particles; and the wavelength of the incoming radiation.

Albedo also refers to the white, spongy inner lining of a citrus fruit rind.[17] According to Dr. Renee M. Goodrich, associate professor of food science and human nutrition at the University of Florida, the albedo is rich in the soluble fiber pectin and contains vitamin C.

Some examples of terrestrial albedo effectslighter color clothes.

TreesBecause trees tend to have a low albedo, removing forests would tend to increase albedo and thereby could produce localized climate cooling. Cloud feedbacks further complicate the issue. In seasonally snow-covered zones, winter albedos of treeless areas are 10% to 50% higher than nearby forested areas because snow does not cover the trees as readily. Deciduous trees have an albedo value of about 0.15 to 0.18 while coniferous trees have a value of about 0.09 to 0.15.[3] The difference between deciduous and coniferous is because coniferous trees are darker in general and have cone-shaped crowns. The shape of these crowns trap radiant energy more effectively than deciduous trees.

Studies by the Hadley Centre have investigated the relative (generally warming) effect of albedo change and (cooling) effect of carbon sequestration on planting forests. They found that new forests in tropical and midlatitude areas tended to cool; new forests in high latitudes (e.g. Siberia) were neutral or perhaps warming.[21][edit] SnowSnow albedos can be as high as 0.9; this, however, is for the ideal example: fresh deep snow over a featureless landscape. Over Antarctica they average a little more than 0.8. If a marginally snow-covered area warms, snow tends to melt, lowering the albedo, and hence leading to more snowmelt (the ice-albedo positive feedback).

WaterWater reflects light very differently from typical terrestrial materials. The reflectivity of a water surface is calculated using the Fresnel equations (see graph).

Reflectivity of smooth water at 20 C (refractive index=1.333)

At the scale of the wavelength of light even wavy water is always smooth so the light is reflected in a locally specular manner (not diffusely). The glint of light off water is a commonplace effect of this. At small angles of incident light, waviness results in reduced reflectivity because of the steepness of the reflectivity-vs.-incident-angle curve and a locally increased average incident angle.[22]Although the reflectivity of water is very low at low and medium angles of incident light, it increases tremendously at high angles of incident light such as occur on the illuminated side of the Earth near the terminator (early morning, late afternoon and near the poles). However, as mentioned above, waviness causes an appreciable reduction. Since the light specularly reflected from water does not usually reach the viewer, water is usually considered to have a very low albedo in spite of its high reflectivity at high angles of incident light.

Note that white caps on waves look white (and have high albedo) because the water is foamed up (not smooth at the scale of the wavelength of light) so the Fresnel equations do not apply. Fresh black ice exhibits Fresnel reflection.

CloudsClouds are another source of albedo that play into the global warming equation. Different types of clouds have different albedo values, theoretically ranging from a minimum of near 0 to a maximum approaching 0.8. "On any given day, about half of Earth is covered by clouds, which reflect more sunlight than land and water. Clouds keep Earth cool by reflecting sunlight, but they can also serve as blankets to trap warmth."[23]Albedo and climate in some areas are already affected by artificial clouds, such as those created by the contrails of heavy commercial airliner traffic. A study following the burning of the Kuwaiti oil fields by Saddam Hussein showed that temperatures under the burning oil fires were as much as 10oC colder than temperatures several miles away under clear skies.

Aerosol effectsAerosol (very fine particles/droplets in the atmosphere) has two effects, direct and indirect. The direct (albedo) effect is generally to cool the planet; the indirect effect (the particles act as CCNs and thereby change cloud properties) is less certain.

Aerosols can modify the Earths radiative balance through the aerosol direct and indirect effects.

direct effect. Aerosols directly scatter and absorb radiation. The scattering of radiation causes atmospheric cooling, whereas absorption can cause atmospheric warming.

Aerosol indirect effect Aerosols modify the properties of clouds through a subset of the aerosol population called cloud condensation nuclei (CCN). Increased CCN concentrations lead to increased cloud droplet number concentrations (CDNC). A greater number of cloud droplets leads to increased cloud albedo, increased light scattering and radiative cooling (first indirect effect). Increased CDNC also leads to reduced precipitation efficiency and increased lifetime of the cloud (second indirect effect).