legged robotics16311/current/schedule/ppp/...outline examples motivation design modeling for more...

53
Hartmut Geyer, Howie Choset, Hannah Lyness [email protected] Legged Robotics

Upload: others

Post on 16-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Hartmut Geyer, Howie Choset, Hannah [email protected]

Legged Robotics

Page 2: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Outline

Examples

Motivation

Design

Modeling

For more information: 16-868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air, Land, and Sea

Page 3: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

What are some examples of legs used in robotics?

Page 4: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Humanoids

Boston Dynamics, Atlas

Page 5: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Legged robots

ANYmal from the DARPA SubTChallenge

EPFL’s six legged robot

Page 6: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Prosthetic devices

iWalk BiOM

Vanderbilt Bionic Leg

[2010]

Page 7: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Exoskeletons

Elastic Band withForce Sensitive Resistor[Yamamoto et al. 2002]

EMG Signal Pickup[HAL, Cyberdyne]

Vukobratovic[1970s]

ReWalk 2012

Page 8: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

State of knowledge about legged dynamics and control probably compares to 1900s in aerodynamics

1800 1850 1900 1950

(Cayley)

(Penaud)

(Wright)

(DC-3)

(F-86)

(X-1)

2015

(Wostok)

Page 9: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

What are the benefits of legged robots?

Page 10: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Legged vehicles can overcome drastic obstacles

Boston Dynamics Atlas

Page 11: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Legged vehicles more seamlessly integrate into environments built for people

DARPA Robotics ChallengeBoston Dynamics Cheetah

Page 12: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Legged systems more closely resemble biological systems

Robugtix T8X

HULC Exoskeleton

Page 13: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Legged robot design considerations

Page 14: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Actuators used in Legged Mobility

pneumatic:

naturally complianthard to control

hydraulic:

very strongleakageoil pump

noise

electric:

quietrechargeable

batteries

Page 15: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Effect of Reflected Inertia in Geared Motors

Page 16: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Series Elastic Actuation

Belt DriveLinkageMotorBatteryLoad cell

zoom into knee actuator with laser-cut, custom torsional series springs

working principle

Page 17: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Series Elastic Actuation

HEBI X-Series actuator

Baxter robot

Page 18: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Legged Robot Modeling

Page 19: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing

Page 20: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing

y

x

m

ll

lf

Page 21: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing

y

x

mg

Page 22: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing

y

x

mg

Fn=mg

Page 23: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing

y

x

mg

mg

Page 24: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing

y

x

mg

θ

Page 25: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing – ankle strategy

y

x

mg

Fn

Page 26: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing – ankle strategy

y

x

mg

Fn

COP

Page 27: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing – ankle strategy

y

x

mg

Fn

τ ankle

Page 28: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing – ankle strategy

y

x

mg

Fn

τ ankleFl

Page 29: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing – ankle strategy

y

x

mg

Fn

τ ankleFl

Fl

Page 30: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Standing?

y

x

mg

θ

Page 31: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

For the ankle strategy, COP must be further from the ankle than projected COG, and COP is limited by foot length (polygon of support)

y

x

mg

θ

Fn

COPCOG’

Page 32: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Hip strategy or step strategy

https://www.researchgate.net/figure/The-fixed-support-strategies-the-ankle-and-hip-strategies-and-the-changeof-support-or_fig17_305223986

Page 33: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking

Page 34: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – Inverted Pendulum Model (IPM)

y

x

m

ll

Page 35: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – How far should I step so that I stop when I am at the apex of the step?

y

x

yf = llyi

vi

vf=0

xf=?

Page 36: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – Conservation of energy

y

x

yf = llyi

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇

vi

vf=0

xf

Page 37: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – Conservation of energy

y

x

yf = llyi

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒊𝒊 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒍𝒍𝒍𝒍

vi

vf=0

xf

Page 38: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – Divide by mg

y

x

yf = llyi

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒊𝒊 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒍𝒍𝒍𝒍

vi

vf=0

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒍𝒍𝒍𝒍

xf

Page 39: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – Substitute for l using Pythagorean

y

x

yf = llyi

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒊𝒊 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒍𝒍𝒍𝒍

vi

vf=0

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒍𝒍𝒍𝒍

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒙𝒙𝒇𝒇𝟐𝟐 + 𝒚𝒚𝒊𝒊𝟐𝟐

xf

Page 40: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – Simplify

y

x

yf = llyi

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒊𝒊 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒍𝒍𝒍𝒍

vi

vf=0

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒍𝒍𝒍𝒍

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒙𝒙𝒇𝒇𝟐𝟐 + 𝒚𝒚𝒊𝒊𝟐𝟐

xf

𝟏𝟏𝟒𝟒𝒎𝒎𝟐𝟐

𝒗𝒗𝒊𝒊𝟒𝟒 +𝟏𝟏𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐𝒚𝒚𝒊𝒊 + 𝒚𝒚𝒊𝒊𝟐𝟐 = 𝒙𝒙𝒇𝒇𝟐𝟐 + 𝒚𝒚𝒊𝒊𝟐𝟐

𝒙𝒙𝒇𝒇 = 𝒗𝒗𝒊𝒊𝟏𝟏𝟒𝟒𝒎𝒎𝟐𝟐

𝒗𝒗𝒊𝒊𝟐𝟐 +𝟏𝟏𝒎𝒎𝒚𝒚𝒊𝒊

Page 41: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – IPM – Simplify

y

x

yf = llyi

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒊𝒊 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒍𝒍𝒍𝒍

vi

vf=0

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒍𝒍𝒍𝒍

𝟏𝟏𝟐𝟐𝒎𝒎

𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒚𝒚𝒊𝒊 = 𝒙𝒙𝒇𝒇𝟐𝟐 + 𝒚𝒚𝒊𝒊𝟐𝟐

xf

𝟏𝟏𝟒𝟒𝒎𝒎𝟐𝟐

𝒗𝒗𝒊𝒊𝟒𝟒 +𝟏𝟏𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐𝒚𝒚𝒊𝒊 + 𝒚𝒚𝒊𝒊𝟐𝟐 = 𝒙𝒙𝒇𝒇𝟐𝟐 + 𝒚𝒚𝒊𝒊𝟐𝟐

𝒙𝒙𝒇𝒇 = 𝒗𝒗𝒊𝒊𝟏𝟏𝟒𝟒𝒎𝒎𝟐𝟐

𝒗𝒗𝒊𝒊𝟐𝟐 +𝟏𝟏𝒎𝒎𝒚𝒚𝒊𝒊

Capture point

Page 42: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – Linear Inverted Pendulum Model (LIPM) for a single leg

y

x

ll (variable)

y0 (constant)

Page 43: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – Linear Inverted Pendulum Model (LIPM) for a single leg

y

x

ll (variable)

y0 (constant)

Fy=mg

Fx = Fy/tanθ=Fy*x/y0

Fy

Fx

Fl θ

mg

Page 44: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – LIPM – Capture Point – Conservation of energy

y

x

y0

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇 + 𝑾𝑾

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 + �

−𝒙𝒙𝒇𝒇

𝟎𝟎𝑭𝑭𝒙𝒙𝒅𝒅𝒙𝒙

vi vf=0

xf

Page 45: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – LIPM – Capture Point – Integrate Fx

y

x

y0

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇 + 𝑾𝑾

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 + �

−𝒙𝒙𝒇𝒇

𝟎𝟎𝑭𝑭𝒙𝒙𝒅𝒅𝒙𝒙

vi vf=0

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 =

𝒎𝒎𝒎𝒎𝒙𝒙𝒇𝒇𝟐𝟐

𝟐𝟐𝒚𝒚𝟎𝟎

xf

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 = �

−𝒙𝒙𝒇𝒇

𝟎𝟎 𝒎𝒎𝒎𝒎𝒙𝒙𝒚𝒚𝟎𝟎

𝒅𝒅𝒙𝒙

Page 46: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – LIPM – Capture Point – Simplify

y

x

y0

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇 + 𝑾𝑾

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 =

𝟏𝟏𝟐𝟐𝒎𝒎 ∗ 𝟎𝟎 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 + �

−𝒙𝒙𝒇𝒇

𝟎𝟎𝑭𝑭𝒙𝒙𝒅𝒅𝒙𝒙

vi vf=0

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 =

𝒎𝒎𝒎𝒎𝒙𝒙𝒇𝒇𝟐𝟐

𝟐𝟐𝒚𝒚𝟎𝟎

xf

𝒙𝒙𝒇𝒇 = 𝒗𝒗𝒊𝒊𝒚𝒚𝒐𝒐𝒎𝒎

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 = �

−𝒙𝒙𝒇𝒇

𝟎𝟎 𝒎𝒎𝒎𝒎𝒙𝒙𝒚𝒚𝟎𝟎

𝒅𝒅𝒙𝒙

Page 47: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Walking – LIPM – Arbitrary velocity (must be less than initial velocity)

y

x

y0

𝑲𝑲𝑲𝑲𝒊𝒊 + 𝑷𝑷𝑲𝑲𝒊𝒊 = 𝑲𝑲𝑲𝑲𝒇𝒇 + 𝑷𝑷𝑲𝑲𝒇𝒇 + 𝑾𝑾

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 =

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒇𝒇𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒚𝒚𝒐𝒐 + �

−𝒙𝒙𝒇𝒇

𝟎𝟎𝑭𝑭𝒙𝒙𝒅𝒅𝒙𝒙

vi vf

𝟏𝟏𝟐𝟐𝒎𝒎(𝒗𝒗𝒊𝒊𝟐𝟐−𝒗𝒗𝒇𝒇𝟐𝟐) =

𝒎𝒎𝒎𝒎𝒙𝒙𝒇𝒇𝟐𝟐

𝟐𝟐𝒚𝒚𝟎𝟎

xf

𝒙𝒙𝒇𝒇 =𝒚𝒚𝒐𝒐𝒎𝒎

(𝒗𝒗𝒊𝒊𝟐𝟐−𝒗𝒗𝒇𝒇𝟐𝟐)

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒊𝒊𝟐𝟐 −

𝟏𝟏𝟐𝟐𝒎𝒎𝒗𝒗𝒇𝒇𝟐𝟐 = �

−𝒙𝒙𝒇𝒇

𝟎𝟎 𝒎𝒎𝒎𝒎𝒙𝒙𝒚𝒚𝟎𝟎

𝒅𝒅𝒙𝒙

Page 48: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Speed changes and push recovery using (bipedal) linear inverted pendulum model

implemented on walking robot model

BLIPM speed control and push recovery

Page 49: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Running

Page 50: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Compliant legs can explain running dynamics,stiff legs cannot truly describe walking dynamics

Page 51: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

A bipedal spring-mass model reveals that compliant leg behavior is fundamental to both run and walk

(right and left leg GRF)

Page 52: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

Compliant legs integrate walking and running into large family of solutions to legged locomotion

(right and left leg GRF)

Page 53: Legged Robotics16311/current/schedule/ppp/...Outline Examples Motivation Design Modeling For more information: 16- 868: Biomechanics and Motor Control, 16-665 Robot Mobility on Air,

3.1 Classical ApproachesReference Trajectory Control SchemeZero Moment Point as Stability MeasureInfluence of Robot Motion on ZMPReference Tracking with ZMP StabilityWalking Pattern Generation

3.2 Optimization ApproachesCoM Dynamics Control by MPCInstantaneous QP Tracking desired CoM

3.3 Synthesizing Functional SubunitsRaibert Planar HopperControl SubunitsExtension to 3D BipedVirtual Model Control

Control – not covered in this class