lhc limits on the higgs-portal wimps

29
Yoshitaro Takaesu U. of Tokyo LHC limits on the Higgsportal WIMPs arXiv: 1407.6882 in collabora5on with M. Endo (U.Tokyo)

Upload: yoshitaro-takaesu

Post on 12-Jan-2017

88 views

Category:

Science


0 download

TRANSCRIPT

Yoshitaro Takaesu U. of Tokyo

LHC limits on the Higgs-­‐portal WIMPs

arXiv: 1407.6882 in collabora5on with M. Endo (U.Tokyo)

Portal models to Hidden Sector

2

Consider another world where par5cles are SM singlets (Hidden Sector).

The par5cles interact to our SM world through Gravity.

Also, they may interact through…

DM ?

HL

FYµXµ

1fS

FµFµS

|H|2S2

Neutrino Portal

Vector Portal

Axion Portal

Higgs Portal

Sterile neutrino

Dark Photon

Axino-­‐like par5cle

Higgs invisible decay

SM Hidden G

In this talk, we discuss the Higgs-­‐portal possibility.

Constraints on Higgs-­‐portal models

3

•  Relic abundance •  Direct detec5on •  Collider search

Tight constraints on Higgs-­‐portal “DM”. S5ll important to know to what extent LHC can explore the heavier Higgs-­‐portal models.

Heavy Higgs-­‐portal WIMP search

[Simone, Giudice, Strumia: 1402.6287]

Need not to be the DM

Higgs-­‐portal models to be studied

4

Scalar

Vector

AnI-­‐sym. Tensor

S, Vµ, Bµ are SM singlets.

parity is assumed for , and to ensure their stability.

LV = 14V µVµ +

12M2

V V µVµ + cV |H|2V µVµ V (V µVµ)2

LB =14BµBµ

12µBµB

14M2

BBµBµ cB |H|2BµBµ

BBµBBBµ

LS =12µSµS 1

2M2

SS2 cS |H|2S2 SS4

Z2 S Vµ

Fermionic hidden par5cle is not considered here for simplicity. Bµ

[A. Djouadi et al.1205.3169, S.Kanemura et al.1005.5651 ]

[O.Cata, A. Ibarra: 1404.0432]

m2B = M2

B + 4cBv2m2V = M2

V + 2cV v2m2S = M2

S + 2cSv2 acer EWSB

14VµV µ +

12M2

BVµV µ +cB

M2B

|H|2FµFµ + · · ·

LHC search for Heavy Higgs-­‐portal WIMP

5

Higgs invisible decay at the LHC

6

Vector Boson Fusion (VBF)

BR_inv < 0.65 [CMS: 8TeV 19.5 i^-­‐1: 1404.1344]

Z associated producIon (ZH)

BR_inv < 0.75 [ATLAS: 8TeV 20.3 i^-­‐1: 1402.3244]

BR_inv < 0.81 [CMS: 8TeV 19.5 i^-­‐1: 1404.1344]

•  Good S/B (Z-­‐mass constraint, 2-­‐lepton +missing) •  Cross sec5on is small (Useful at high luminosity)

•  2nd largest Higgs produc5on process •  Good S/B (large rapidity gap of 2 energe5c forwarding jets)

Mono-­‐X searches

7

Mono-­‐X searches (X +missing pT) are also sensi5ve to Higgs-­‐portal models.

Mono-­‐jet

•  Large Cross sec5on •  Main mono-­‐X mode so far •  S/B is not good •  Gluon-­‐fusion Higgs produc5on

Mono-­‐Z

•  Same topology as ZH for Higgs-­‐portal model

Mono-­‐lepton Mono-­‐photon Mono-­‐top Mono-­‐Higgs etc …

Analysis Details

8

•  VBF Higgs invisible decay •  Mono-­‐jet •  Mono-­‐Z

* ZH, mono-­‐lepton results (profile-­‐based) will not be used since they rely on the on-­‐shell Higgs produc5on topology.

Cross secIon of WIMP-­‐pair producIon

9

We can express the WIMP pair produc5on cross sec5on as

This is the basic formulae for our analysis.

s

S(

s,mS ; cS) =c2S

8

v2

s

1 4m2

S

s

V (

s,mV ; cV ) =c2V

32

v2

s

s2

m4V

1 4m2

V

s+

12m4V

s2

1 4m2

V

s

B(

s,mB ; cB) =c2B

4

v2

s

s2

m4B

1 4m2

B

s+

6m4B

s2

1 4m2

B

s

VBF analysis (CMS , 1404.1344)

10

We calculate under the following cuts (w/ HAWK v2): H(pp jj H;mH)

19.5 fb1

pp H jj jj

Compare to the upper bound on the signal events.

N lims = 210 0.65 137

95% CL upper bound c2(m) <

N lims

(m, c = 1)L

(m, c)L < N lims

95% limits on BR_inv Data

Mono-­‐Z analysis (ATLAS , 1404.0051)

11

We calculate under the following cuts (w/ HAWK-­‐2.0): H(pp ZH;mH)

20.3 fb1

pµT > 20 GeV, |µ| < 2.5

peT > 20 GeV, |e| < 2.47

76 GeV < mll < 106 GeV|ll| < 2.5

pT > 150 GeV giving the most stringent limit

Data 95%CL Limits on cross secIon

c2(m) <

lim

(m, c = 1)

Mono-­‐jet analysis

12

pp Hj j

Since this is QCD process, we want to evaluate it at least NLO QCD order. However, NLO cross sec5on is known only in limit. mt

We approximate the NLO cross sec5on as [L.Altenkamp et al. 1211.5015]

We want to calculate (pp Hj;mH)Since mH can be much heavier than 2*mt, finite top mass effect significant.

LO

K-­‐factor in infinite top mass limit

K-­‐factor Good approx. up to (1/mt^4) order. But we don’t know beyond that.

It is urgent to make NLO pp > H+j with finite top mass available.

pTH pTj1

Mono-­‐jet analysis (CMS-­‐PAS-­‐EXO-­‐12-­‐048 )

14

pp Hj j

We calculate with the approxima5on under the following cuts (w/ MCFM-­‐6.8):

NLOH (pp jH;mH)

pTj1 > 110 GeV, |j1 | < 2.4

giving the most stringent limit

19.5 fb1

(* 2nd jet with pT > 30 GeV (from NLO real emission) is not vetoed, due to technical reason. )

Data & 95%CL limits on signal excess

pTH > 450GeV

8 TeV LHC constraints

15

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Limits for the Heavy Higgs-­‐portal WIMPs

16

Vector

Data : BG VBF 390 : 332(58) Mono-­‐jet 1772 : 1931(131) Mono-­‐Z 45 : 52(18)

8TeV LHC limits

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Limits for the Heavy Higgs-­‐portal WIMPs

17

Vector

Thermal freeze out Relic abundance

Relic abundance is Very small in this param. Region. > SubSub component DM

Limits for the Heavy Higgs-­‐portal WIMPs

18

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Vector

Thermal freeze out Relic abundance

Direct search (shaded) Assump5on:

LUX 95% (2013)

haloWIMP

haloDM

=relicWIMP

relicDM

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Limits for the Heavy Higgs-­‐portal WIMPs

19

Vector

However, this direct search Limit is very sensi5ve to the halo WIMP density…

haloWIMP

haloDM

= 10relicWIMP

relicDM

LUX 95% (2013)

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Limits for the Heavy Higgs-­‐portal WIMPs

20

Vector

However, this direct search Limit is very sensi5ve to the halo WIMP density…

haloWIMP

haloDM

= 0.1relicWIMP

relicDM

LUX 95% (2013)

Limits for the Heavy Higgs-­‐portal WIMPs

21

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Vector

However, this direct search Limit is very sensi5ve to the halo WIMP density…

It seems to difficult to put exclusion limit from direct search, But have discovery poten5al where LHC cannot search.

LUX 95% (2013)

LHC can put stringent Constraint regardless WIMP’s existence In the Universe.

Limits for the Heavy Higgs-­‐portal WIMPs

22

S =c2Sv2

8mH

1 4m2S

m2H

B =c2Bv2

4mH

m4H 4m2

Hm2B + 6m4

B

m4B

1 4m2B

m2H

V =c2V v2

32mH

m4H 4m2

Hm2V + 12m4

V

m4V

1 4m2V

m2H

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.010.001

10-4

10-5

10-610-7

Tensor

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Vector

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Scalar

LUX

LUX

LUX

14 TeV LHC prospects

23

How to perform (rough) projecIon

24

We need to know and to es5mate the 14 TeV constraints on .

N limsig

c

c2(m) <

N limsig

(m, c = 1)L

is roughly es5mated with the following assump5ons: N limsig

95% CL (simple Gaussian)

Rela5ve does not improve

Rela5ve reduces as . 1/

NBG

NBG increases due to PDF (luminosity ra5o) and integrated luminosity L

is es5mated by theore5cal calcula5ons with experimental cuts.

sys

stat

stat

NBG

14TeV

=

N8TeV

BGN14TeV

BG

stat

NBG

8TeV

N limsig 2tot

tot =

2sys + 2

stat

sys

NBG

14TeV

=

sys

NBG

8TeV

VBF channels

25

[5] ATLAS, 1402.3244 [6] CMS, 1404.1344 [16] D.Gosh et al., 1211.7015 [17] ATL-­‐PHYS-­‐PUB-­‐2013-­‐014 [18] Snowmass, 1309.7925

95% Upper bounds on the Higgs inv. decay ra5o at mH = 125 GeV

The VBF bound will be improved by a factor of 4 at mH = 125 GeV.

The Upper bound on improves a factor of 2. c

=

4m2

ds

2H(s)(s)

2

s

(sm2H)2 + 2

Hm2H

If this level of improvement holds for any mH, the Upper bound on improves by a factor of 4.

Profile-­‐based Cut-­‐based

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.010.001

10-4

10-5

10-610-7

26

14TeV LHC SensiIvity (Tensor) 8TeV

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBF

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Mono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.010.001

10-4

10-5

10-610-714TeV

100 b^-­‐1

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBF

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Mono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.010.001

10-4

10-5

10-610-714TeV

100 b^-­‐1

XENON1T 90%CL (2017)

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.010.001

10-4

10-5

10-610-7

LUX 95%CL (2013)

8TeV

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

27

14TeV LHC SensiIvity (Vector)

8TeV

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBF

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Mono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

14TeV 100 b^-­‐1

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBF

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Mono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-814TeV 100 b^-­‐1

XENON1T

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

LUX

8TeV

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

28

14TeV LHC SensiIvity (Scalar)

8TeV

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBF

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Mono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

14TeV 100 b^-­‐1

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBF

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Mono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8 14TeV

100 b^-­‐1

XENON1T

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

VBFMono-jetMono-Z

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

0.1

0.2

0.5

1

2

5

10

50 100 150 200 250 300 350

c χ

mχ [GeV]

Ωh2 = 0.01

0.001

10-4

10-5

10-6

10-710-8

Scalar

LUX

8TeV

Summary

29

LHC constraints on the Heavy Higgs-­‐portal WIMP have been Studied.

8 TeV LHC results can access the Higgs-­‐portal couplings below 1 for the vector and tensor case. Scalar coupling limit is very weak.

14 TeV LHC can reach at O(0.1) couplings for vector and tensor case. The scalar coupling below O(1) will be remained unexplored.

VBF channel already shows good performance in 8 TeV LHC, replacing the mono-­‐jet channel. ZH, Mono-­‐Z channel will also be a important channel in 14 TeV LHC.

LHC and Direct search may be compliment with each other.