lindenberg meteorological observatory – richard aßmann observatory cosmo gm moscow september 2010...

27
Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010 Local validation of numerical experiments with the COSMO-EU G. Vogel and J. Helmert

Upload: merilyn-robbins

Post on 18-Dec-2015

237 views

Category:

Documents


0 download

TRANSCRIPT

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Local validation of numerical experiments with the COSMO-EU

G. Vogel and J. Helmert

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Model experiments with COSMO-EU

EXP CE 6795 exponential depletion of root density with depth groundwater coupling

bare soil evaporation (Noilhan & Planton, 1989) run without soil moisture analysis (SMA)

EXP CE 7224 modified aerosol loading + SEAWIFS-based plcv and LAI

areal pattern of minimum stomatal resistance (crsmin) groundwater coupling + modified rooting density profile + SMA

EXP CE 7533 modified aerosol loading + SEAWIFS-based plcv and LAI areal pattern of halved minimum stomatal resistance (crsmin)

groundwater coupling + modified rooting density profile + SMA

Local validation of results at Falkenberg, Payerne and Toulouse

(March - May 2009)

(June 2009)

(June 2009)

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

All meteorological conditions

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Impact of plant cover and rooting depth on temporal variation of soil moisture

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

standard parameterisation modification

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Impact of plant cover and rooting depth on temporal variation of soil moisture

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Falkenberg 2009

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Impact of plant cover and rooting depth on soil moisture development during spring 2009

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Richard equation for water transfer

)()1()( nnn DwA

Variants of the lower boundary conditions (rigid lid, standard drainage and complete groundwater coupling) should be considered in the D-Term

z

F

t

ww

2/1

)(

2/1

)1/(1

)1/()(

2/1

)(

2/1

)1/()1/(1)()()1(

)(k

nw

k

nnk

nnkn

w

k

nw

k

nnk

nnkn

wnk

nk K

dzms

wwDK

dzms

wwD

kdzhs

tww

)()()1( nnn DAw1

Transfer functions according to Rijtema (1969)

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

)(1

)1()(1

nnn DwA

)(2

)1()(2

nnn DwA

)(1)( nnn DwA

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

0cm - 9cm

sand

9cm –

27cm

loam

no vegetation

standard drainage

Forcing data taken from Falkenberg 2003

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Conclusions

The TERRA module simulates the soil moisture decrease during spring reasonably well if the local vegetation properties are realistically prescri-bed.

Crucial vegetation parameters are the rooting density and depth as well as the minimum stomatal resistance.

If satellite-based values are used, the rooting depth should also be made consistent to them in the annual cycle.

The TERRA module is likewise able to simulate the water transfer under inhomogeneous soil conditions after some modifications of the transfer scheme.

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Thank you for your attention

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

D:\IDL\Moscow\sm_FKB_MAM2009.jpg

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Falkenberg 2009

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Falkenberg 2009

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

*0.58 *2.00

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Accumulated evapotranspiration

Bowen-ratio (9-15 UTC)

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

rootdp_min = 0.12m (or e.g. half of maximum value)

rootdp_max= 0.60 m (see look-up table)

plcovSEAWIFS current plant cover value from SEAWIFS

plcv_minSEAWIFS minimum plant cover from SEAWIFS in the annual cycle

Plcv_avgSEAWIFS averaged maximum plant cover from SEAWIFS values (June – August)

min_max_min__

min_min_ rootdprootdp

plcvavgplcv

plcvplcvrootdprootdp

SEAWIFSSEAWIFS

SEAWIFSSEAWIFSSEAWIFS

Adaption of rooting depth to SEAWIFS-based plant cover in the annual cycle

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

10 fac

minmaxmin covcovcovcov plplfacplpl

minmaxmin lailaifaclailai

2max 58.012.0,min facrootdprootdp

281.9090.5expsin12.1 hsurfEdv

bvjdfac

bv

dv

ev

rv

quadratic interpolation

quadratic interpolation

Maximum values (plcov, lai, rootdp)

Minimum values (plcov, lai, rootdp)

Minimum values (plcov, lai, rootdp)annual cycle

Parametrisierung des Jahresgangs

jd: Julian day hsurf: height above sea level

bv: start of season (2009: 85) dv: vegetation developed (2009: 115)

rv: veg. begins to „redevelop“ (2009: 215) ev: end of season (2009: 238)

bv,dv = functions of latitude

jd=1,365

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

Toulouse Payerne Falkenberg

22.8 M% clay

32.0 M% sand 26 M% clay, 74 M% sand

40 M% clay, 60 M% sand

0 - 0.30m

0.30 - 0.60m

0.60 - 1.20m

0 - 0.30m

0.30 - 0.80m

Sl3

Slu

field capacity 26 V%

pore volume 37 V%

field capacity 28 V%

pore volume 36 V%

field capacity 24 V%

pore volume 34 V%

wilting point 11 V%

0 – 1.00m

preliminary

Lindenberg Meteorological Observatory – Richard Aßmann Observatory COSMO GM Moscow September 2010

0cm - 9cm

sand

9cm –

27cm

loam

no vegetation

standard drainage

Forcing data taken from Falkenberg 2003