linear digital ics

Upload: prasit

Post on 04-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Linear Digital ICs

    1/22

    EE2603-10 1

    10. Linear Digital ICs(17.1 17.4)

    ! Comparator IC! DAC , ADC

    ! 555 timer IC

  • 7/29/2019 Linear Digital ICs

    2/22

    EE2603-10 2

    Comparator IC Comparator IC = Two inputs of the IC are compared to each other as below:

    WhenV+ismorepositivethanV-OutputVowillgohighto +VCC( = V-ismorenegativethanV+)

    WhenV-ismorepositivethanV+OutputVowillgolowtoVCC( = V+ismorenegativethanV-)

    +VCC

    VO

    -VCC

    V-

    V+

    +10

    VO=+10V

    -10

    0

    +0.1

    +10

    VO=-10V

    -10

    0

    +0.1 +10

    VO=+10V

    -10

    +0.1

    +0.5

    Output is digital either +10 or -10

  • 7/29/2019 Linear Digital ICs

    3/22

    EE2603-10 3

    WhenV+ismorepositivethan0OutputVowillgohighto +VCCWhen

    V+

    is

    more

    negative

    than

    0Output

    Vowill

    go

    low

    to

    VCC

    WhenV-ismorepositivethan0OutputVowillgolowto-VCCWhenV-ismorenegativethan0 OutputVowillgohighto+VCC

    +10

    VO

    -10

    +1

    -1

    +10

    -10

    When Reference is 0V(Zero-crossing Comparator)Reference

    Input

    +10

    VO

    -10

    +10

    -10

    +1

    -1

    Reference

    InputOutput is digital either +10 or -10

    Output is digital either +10 or -10

  • 7/29/2019 Linear Digital ICs

    4/22

    EE2603-10 4

    +10

    VO

    -10

    +5

    -5

    -4

    R1

    R2

    WhenV-ismorepositivethanVref-4OutputVowillgolowto-VCCWhenV-ismorenegativethanVref-4OutputVowillgohighto+VCC

    When Reference is Non-0V

    (Reference-crossing Comparator)

    +10-5

    -4

    0

    +5

    -10

    Output isdigital

  • 7/29/2019 Linear Digital ICs

    5/22

    EE2603-10 5

    Comparator IC

    Some improvements such as faster switching of output levels, preventingoscillation while crossing reference, and its output capable of driving a

    variety of loads are incorporated in IC Comparators such as 311-ICWhen Strobed (pin 6= high) theoutput will follow the input

    When Pause (pin 6=low) the outputwill always be high regardless of the

    input

    Open-Collector Outputtofacilitate any output voltage

    level when the output is high

    Outputwillgolowtoref= -VCC or 0according to connection of pin 1

    Outputvoltage polarity is the

    reverse of input voltage polarity

    Outputvoltage polarity is the

    same as input voltage polarity

    + VCC

    - VCC

    output refere

    nce 1

    311 - IC

    4

    2 non-inv input

    8

    3 inv input

    7output

    5 Balance

    6 Balance/strobe

  • 7/29/2019 Linear Digital ICs

    6/22

    EE2603-10 6

    1

    311 - IC

    4

    2

    8

    3

    7

    6 strobe

    +10

    -10

    When Strobed (pin 6= high)the output will follow the input

    Outputvoltage polarity is thesame as input voltage polarity

    Reference

    Input+1-1

    +10

    0

    Outputwillgolowtoref = 0

    output voltage level is +10when the output is high

    Example: Sketch the output waveform for the following 311 ICComparator Circuit

  • 7/29/2019 Linear Digital ICs

    7/22

    EE2603-10 7

    1

    311 - IC

    4

    2

    8

    37

    +10

    -10-10

    Low=0

    High=Strobe

    6

    When Strobed (pin 6= high)the output will follow the input

    Outputvoltage polarity is thesame as input voltage polarity

    Reference

    Input+1-1

    Outputwillgolowtoref = -10

    output voltage level is +10when the output is high

    Example: Sketch the output waveform for the following 311 ICComparator Circuit

    +10

    -10

    Output

  • 7/29/2019 Linear Digital ICs

    8/22

    EE2603-10 8

    339 IC

    Four units of 311-IC wit common V+ (pin 3) and V- (pin 12) (output low ispin 12 voltage) Pull-up resistor needed at the output pins (1,2,13.14) to

    obtain output high.

    12

    13

    14

    1

    2

    3

    5

    4

    7

    6

    9

    8

    11

    10

    12

    13

    14

    1

    2

    3

    5

    4

    7

    6

    9

    8

    11

    10

    +10

    +1

    -1

    +1

    -1

    +10

    0

    +10

    0

    output2

    output1input1

    input2

    ref1

    ref2

  • 7/29/2019 Linear Digital ICs

    9/22

    EE2603-10 9

    Window Detector (Comparator with threshold inputs)

    12

    13

    14

    1

    2

    3

    5

    4

    7

    6

    9

    8

    11

    10

    +10

    +1

    +10

    +5

    +10 +1

    +5

    0

    +10

    5.1kW

    0

    +9+1

    +5

    0

    input Comp.1 Comp.2 OutputVin > +5V high low low

    +5 > Vin > +1V high high highVin < +1V low high low

    Vin

    Output

    Output high

    Output low

    Output low+1V+5V

    Comp.1

    Comp.2

  • 7/29/2019 Linear Digital ICs

    10/22

    EE2603-10 10

    Digital to Analog Converters

    D / A Converter

    LSDigitLogic1 (5V)Logic1 (5V)

    Logic1 (5V)

    Logic0 (0V) MSDigitAnalogDecimal (7V)

    NumberMost

    Significant

    Digit (MSD)Intermediate Digit

    Least

    Significant

    Digit (LSD)Expressed

    NumberDecimal Weight 23 = 8 22 = 4 21 = 2 20 = 1 8+4+2+1=15Binary Number 0 1 1 1 0111Decimal Number 0 4 2 1 0+4+2+1=7

    0 1 1 1

  • 7/29/2019 Linear Digital ICs

    11/22

    EE2603-10 11

    R-2R Ladder D/A Converter (DAC)R R R

    2R 2R 2R 2R

    D0LSD

    D1 D2 D3MSD

    Analog voltage(decimal) output

    Digital voltage

    (binary) input

    2R

    refN

    1N1N

    33

    22

    11

    00

    o V2

    2D2D2D2D2DV

    ++++

    =

    D0 to D3 = 1 or 0N= N-bit binary word

    Vref = analog voltage of digit 1

    ) ) ) )V1875.2V5

    16

    20212121V

    3210

    o =+++

    =

    D0=1 , D1=1 , D2 = 1 , D3=024 = 16 (4-bit binary word)

    Vref = 5V

    R R R

    2R 2R 2R 2R

    D0=5V

    LSD MSD

    Analog voltage(decimal) output

    Digital voltage(binary) input

    2R

    D1=5V D2=5V D3=0V

    Vo=2.1875V

    0 1 1 1V3125.0

    2

    5

    2

    VresolutionvoltageahasDACbitN

    4Nref

    ===

  • 7/29/2019 Linear Digital ICs

    12/22

    EE2603-10 12

    R R R

    2R 2R 2R 2RVref

    D3

    MSD

    D2 D1 D0LSD

    Digital switch(binary) input

    I0I1I2I3

    Vo

    Vo=-(SIn)xRf

    Rf

    SIn

    0 1 1 110 0 0

    2R

    DAC using R-2R Ladder Switched Network

    R 2R Ladder

    Reference CurrentVref

    Current Switches

    D3

    , D2

    , D1

    , D0

    Digital InputsIo

    nN

    efrn

    2

    1

    R

    VI

    =

    I0 to In = valuesN = N-bit binary word

    Vref = reference voltage of DACn = binary digit

    ( )V9375.3k1mA9375.3RIV

    mA9375.3025.2125.15625.0II

    mA0IandmA25.24

    mA9

    2

    1

    k1

    9I

    mA125.18

    mA9

    2

    1

    k1

    9Iand

    mA5625.016

    mA9

    2

    1

    k1

    9

    I

    foutout

    out

    3242

    141

    040

    =

    =

    =

    =+++==

    ===

    =

    ==

    =

    ==

    =

    1kW

    9V

    0

    MSD

    1 1 1

    LSDDigital switch(binary) input

    I0I1I2I3

    Vo

    Vo=-(SIn)xRf

    Rf=1kWSIn0 1 1 1

    1kW 1kW

    2kW 2kW 2kW 2kW2kW

    0 1 1 1

  • 7/29/2019 Linear Digital ICs

    13/22

    EE2603-10 13

    Analog to Digital Converters

    Integrator

    Vref

    Comparator

    ControlLogic

    Clock

    DigitalCounter

    Count

    Reset

    Digital Outputs

    Count Over

    AnalogInput

    A / D Converter

    LSDigitLogic1 (5V)Logic1 (5V)

    Logic1 (5V)

    Logic0 (0V)MSDigitAnalogDecimal (7V)

  • 7/29/2019 Linear Digital ICs

    14/22

    EE2603-10 14

    Fixed time

    Analog amplitude recordedduring fixed time

    Recorded amplitudedecreases at fixed rate

    Digital count increase withlarger decrease time

    Dual-slope A/D Converter (ADC)

    Integrator Vref

    Comparator

    ControlLogic

    Clock

    DigitalCounter

    Count

    Reset

    Digital Outputs

    Count Over

    Analog

    Input

    00110111

    1110

    1110

  • 7/29/2019 Linear Digital ICs

    15/22

    EE2603-10 15

    Ladder-network A/D Converter (ADC)

    Comparator ControlLogic

    Clock

    DigitalCounter

    Count

    Reset

    Digital Outputs

    AnalogInput

    Ladder

    Network

    StopCount

    stopcount

    startcount

    Ladder (stair-case)

    analog outputvoltageAnalogvoltage

    1. When analog voltage > Ladder DAC output voltage, comparator opens theControl Logic to let the clock count the Digital Counter. Digital bits will increaseat the output of Digital Counter.2. When analog voltage = Ladder DAC output voltage, comparator closes theControl Logic to stop the clock of the Digital Counter. Digital bits will stopincreasing at the output of Digital Counter.3. If the clock is 1MHz, every step 1 will last 1s/Ladder step. For 12-bit LadderDAC, there will be 212=4096 steps. Then one full count will last 4096s. Or during1sec, there will be (1sec/4096x10-6sec) full counts = 244 full counts/sec

  • 7/29/2019 Linear Digital ICs

    16/22

    EE2603-10 16

    555 timer IC

    76

    23

    1

    8

    output

    vcc

    5k

    5k

    5k

    R

    S

    2/3VCC

    1/3VCC

    Q

    4Reset

    DischargeThreshold

    Trigger

    Q5Modulate

    RS-Flip-flopReset(R) or Set(S) with

    logic high inputComparators

    More positive applied to the positiveterminal (or more negative applied tothe negative terminal will make output

    high

    If pin 4 (Reset pin) is less than VCC,PNP BJT conducts and (R) becomeshigh to reset the Flip-flop

    Output is zero if Reset

    and high (VCC) if Set

    Discharge pin 7 is zero ifReset and floats if Set

    555 Timer

  • 7/29/2019 Linear Digital ICs

    17/22

    EE2603-10 17

    76

    23

    1

    8

    output

    vcc

    5k

    5k

    5k

    R

    S

    2/3VCC

    1/3VCC

    Q

    4Reset

    DischargeThreshold

    Trigger

    Q5

    Modulate

    1. If Threshold pin 6 is morethan 2/3 of VCC, R will be

    high and output Q is Set tozero2. If Threshold pin 6 is lessthan 2/3 of VCC, there is nochange at output Q

    3. If Trigger pin 2 is less than1/3 of VCC, S will be high and

    output Q is Set to VCC4. If Trigger pin 2 is morethan 1/3 of VCC, there is nochange at output Q

    5. If Modulate pin 5 is connectedto a dc source or to externalresistor, pin 2 and pin 6 levels willbe no longer 1/3 or 2/3 of VCC but

    will be changed to any otherlevels.

  • 7/29/2019 Linear Digital ICs

    18/22

    EE2603-10 18

    7

    6

    2

    3

    1

    8

    output

    vcc

    RA

    C

    RBThreshold

    Trigger

    Discharge

    Astable Multivibrator (pulse generator)VCC

    0

    VCt

    tc tdT

    (2/3)VCC

    (1/3)VCC

    #2. But VC is never charged to VCC because when VC=just above (2/3)VCCpin 6 takes care and the output pin 3 will reset.#3. When pin 3 is reset(=low). Pin 7 will be zero. Then C is discharged to 0through RB=RDISCHA#4. But VC is never discharged to 0 because when VC= just below (1/3)VCC

    pin 2 takes care and the output pin 3 will set. It repeats step #1 again.

    #1. Let pin 3 is set (=high). Pin 7 will float. Then C is charged to VCCthrough RA+RB=RCHA

  • 7/29/2019 Linear Digital ICs

    19/22

    EE2603-10 19

    VCC

    0

    VC

    t

    tc tdT

    (2/3)VCC

    (1/3)VCC

    2lnCRt2ln2

    1lnCR

    te3

    21

    3

    2eV

    3

    2VV

    3

    2

    e)VV3

    1(VV

    3

    2e)VV(VVCharing

    CCC

    cCR/tCR/tCCCCCC

    CR/tCCCCCCCC

    CR/tfinalinitialfinalC

    CcCc

    CcCc

    ===

    +=

    +=

    +=+=

    2lnCRt2ln2

    1lnCR

    te2

    1eV

    3

    2V

    3

    1

    e)0V3

    2(0V3

    1e)VV(VVDischaring

    ddC

    cCR/tCR/t

    CCCC

    CR/tCCCC

    CR/tfinalinitialfinalC

    Ccdd

    dddd

    ===

    =

    =

    +=+=

    Pulse frequency

    C)RR2(

    44.1

    C)RR(

    44.1

    2lnC)RR(

    1

    T

    1f

    f

    1ttT

    ABdCdCdc

    +

    =

    +

    =

    +

    ===+=

  • 7/29/2019 Linear Digital ICs

    20/22

    EE2603-10 20

    Example:Find the pulse frequency of the 555 Timer IC Pulse Generator shown below

    7

    6

    2

    3

    1

    8

    output

    vcc

    RA=7.5kW

    C=0.1mF

    RB=7.5kW

    .Hz635101.0)105.7105.72(

    44.1

    C)RR2(

    44.1

    C)RR(

    44.1

    2lnC)RR(

    1

    T

    1f

    633

    ABdC

    dC

    =

    +

    =

    +

    =

    +

    =

    +

    ==

  • 7/29/2019 Linear Digital ICs

    21/22

    EE2603-10 21

    7

    6

    2

    3

    1

    8

    output

    vccR

    CThreshold

    Trigger

    Discharge

    Output

    Monostable Multivibrator (timer)VCC

    0

    VC

    ttc

    (2/3)VCC

    tc=Pulse width

    #3. Now C is charged to VCC through R. Output pin 3 is then high#4. But VC is never charged to VCC because when VC= just above (2/3)VCCpin 6 takes care and the output pin 3 will reset. And it stays stable at

    reset all the time until another external trigger.

    #1. Let pin 2 is high and pin 3 is low. Pin 7 will zero. Output is also zero.Then C is also discharged to 0 through pin 7 #2. When pin 2 is triggered to zero for a short time, Pin 3 will be high.Then pin 7 is floating.

  • 7/29/2019 Linear Digital ICs

    22/22

    EE2603-10 22

    7

    6

    2

    3

    1

    8

    output

    vcc

    R

    C

    Thigh

    Thigh

    Example: Find the pulse width of the 555 Timer IC Monostable circuit,if R = 7.5k and C = 0.1F.

    ( ) 3lnCRt3ln3

    1lnCR

    te13

    2eVVV

    3

    2

    e)V0(VV3

    2e)VV(VVCharing

    CcCR/tCR/t

    CCCCCC

    CR/tCCCCCC

    CR/tfinalinitialfinalC

    cc

    cc

    ===

    =+=

    +=+=

    VCC

    0

    VC

    t

    tc

    (2/3)VCC

    Thigh = tc=Pulse width

    ms825.01.1105.7101.03lnCRtwidthPulse36

    C ====