lista4 sol

Upload: carcon10

Post on 24-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Lista4 Sol

    1/20

    Universidad Nacional de Colombia

    Electrodinamica II

    Ejercicios: Lista 4Profesor Carlos Viviescas

    Fecha de entrega: 17.09.14

    Exercise 10 (3 points) Wave packet

    General solutions of the wave equation can be written as superpositions of plane waves. In one dimen-sion, its general form is

    (r, t) =

    dk

    2a(k) ei(kxt) , (1)

    with dispersion relationk = w/c.

    One then talks about a wave packet center in k0 if the distribution a(k) shows a sharp peak in k0 anddecays for values ofk away from the center (see the figure). The width of the wave k is the mean

    k

    k0k

    ak

    Paquete de onda centrado en k0 y de ancho k

    squared root deviation (standard deviation) respect to the meank of the intensity|a(k)|2

    ,

    (k)2 =

    +

    dk (k k)2|a(k)|2

    +

    dk |a(k)|2,

    in which

    k =

    +

    dk k|a(k)|2

    +

    dk |a(k)|2

    .

    1. For (1), show the uncertainty relation x k 12 . Assume for simplicity that x = 0 and k = 0.Explain the implications of this uncertainty relation.

    Hint: Use Schwarz inequality.

    +

    dx |g(x)|2+

    dx |h(x)|2 14

    +

    dx [g(x)h(x) +g(x)h(x)]

    2

    1

  • 7/25/2019 Lista4 Sol

    2/20

    valid for well behaved functionsg(x) yh(x), and the relation

    +

    dx

    (x, t)x2

    =

    +

    dk

    2k2|a(k)|2

    that is obtained as a corollary of Percival theorem.

    2. Argument in a clear way (without repeating the calculation) the validity of the uncertainty relationt 12 , for the wave packet (1). ( is commonly call the band width of the wave spectrum|a()|2.) Explain the implications of this uncertainty relation.

    3. The ultra-short pulses use in femto-chemistry to observed chemical reactions in the time scale inwhich they occur have t 1013 s. For these pulses:(a) Find the minimum possible band width .

    (b) Find the minimum possible value of x. This last quantity gives an approximation to thesize of the wave packet in space.

    Hint: Use the dispersion relationk = /c to determinek.

    4. Wave packets for which x k = 12 are called packets of minimum uncertainty. Show that theGaussian wave packet center at the origin and with amplitud

    a(k) = 1

    2ke

    k2

    4(k)2 ,

    is a minimum uncertainty wave packet.

    Exercise 10 (3 points) Spherical Waves I

    Consider the following electric field

    E(r,,,t) = Asin()

    r

    cos(kr t) 1

    krsin(kr t)

    ,

    with the dispersion relation k

    =c. (This is the simplest form of a spherical wave. To simplify notationcall (kr

    t) = u in your calculations.

    1. Show that E satisfies Maxwell equations in vacuum and find the associated magnetic field.

    2. Evaluate the Pointing vectorS. The time average ofS over a cycle is equal to the intensity vectorI S and gives the power per surface unit that the wave carries.

    3. Calculate the flux ofI through a spherical surface in order to find the total radiated power.

    Exercise 11 (3 points) Spherical Waves II

    The wave equation in three dimensions is given by

    2= 1c2

    2

    t2 .

    Taking now a point source localized at the origin which emits waves with spherical symmetry:

    1. Show that the emitted waves are of the form

    =A

    rei(krt) .

    Hint: due to its spherical symmetry the wave function should only depend onr, therefore

    2= 1r2

    r

    r2

    r

    =

    1

    c22

    t2 .

    Consider the substitution = r to solve the equation.

    2

  • 7/25/2019 Lista4 Sol

    3/20

    Assume now that the source is a point dipole in direction ez.

    2. Show that

    E= ( ez)

    is a solenoidal solution (

    E= 0) of the wave equation

    2E= 1c2

    2E

    t2 .

    3. Find the magnetic associated field

    Hint: use Bt

    = iB (where does this relation come from?)4. Write the fields explicitly using spherical coordinates and show that in the limits

    kr 1 (near field)

    E=2p(t)cos

    40r3 er+

    p(t)sin

    40r3 e

    B= 0

    corresponding to a quasi-static electric dipole oscillating with momentum p p0eitez =40Ae

    it ez.

    kr 1 (far field)

    E= k2A sin

    r e

    B= k2A sin

    cr e

    here 1/r is typical for fields generated by radiation.

    5. In order to see the radiative character of the far field, evaluate its Poynting vector and show thatthe power through the spherical surface is independent of its radius.

    Hint: since we are dealing with time oscillating fields consider the time average of the Poyntingvector.

    3

  • 7/25/2019 Lista4 Sol

    4/20

    ade

    [*

    ^f,t*,t

    =

    lO"

    a(R)el(*r-'t)

    J

    :"

    tt)

    En

    donde

    lo:

    omplrfeds5

    cLtF)

    sl-a-n

    clelevmrrrc,do=

    p.

    lo

    tronsFor.od

    ,i

    Fout.t

    de

    r[,,tx,t)

    en

    el

    rrrslonk

    t

    =

    o

    :

    r*

    a(K)

    =

    /

    ^/r,*,o)di*,

    d*

    (\

    J

    _""

    /\horo

    bien

    ,

    got*ren

    de

    [o

    desigualdod

    de

    Swor

    c

    hz

    poro

    f

    unciones

    en

    0:pocio

    de

    l-litber*

    [-'

    ,

    es*e

    es.

    funciohes

    qu.

    curnplon

    :

    ELECTRODiAMlcA

    ft

    Iercicios,

    Lsta

    I

    Jillior"

    Dovid

    6oenz

    Doniela

    Ang.,o

    Corlos

    A

    Conde

    O

    .

    L133q{ts)

    (1CIq8l46oai.)

    L1oqB\zte

  • 7/25/2019 Lista4 Sol

    5/20

    x.r,*

    u,

    +]

    a,.

    convenien+er.,ente

    los

    f

    unoones:

    $t*l:

    x.{,

    \

    hr*)

    =

    ?^^'|,

    obtiene

    *l

    rternp\ozo.

    sn

    lq

    dest3uoldod

    de

    Stlorcl^

    /.D

    ro

    Ir

    I

    r*.l,

    l"o*

    I

    ir-.l,.

    dx

    _)

    +l

    *

    [*t

    z*.1,.

    +

    ]-

    l-:

    4l

    l*l.'v^t

    uso

    del

    crolotio

    del

    |serem

    de

    Porsevo[

    ,

    . r"

    r* | /* l.

    + I

    x,lt

    I'dx

    I

    **,ol"dk

    >

    +l

    |

    ,

    z,

    l**)

    ,

    l'

    j

    j

    4l.I-

    \

    ,.

    I

    -s

    -c

    Del

    lodo

    derecho

    de

    1o

    desi3uoidod en*erior

    se

    trene

    ,s

    ^()o

    I l' o) f

    lxz,[ft.)ar: lru*'

    l*l"ax

    =

    *l+l"l

    lt^l't"a

    )

    )

    l--

    J

    -cD

    -a

    dorde

    se

    ho

    rnte3rodo

    Po.

    Pcrrtes

    ,

    E

    I

    primer

    $6rrnino

    de

    cero

    ,

    es*o

    puede

    verse

    por

    medio

    del

    figuienla

    arrimen{o

    Ir.^f

    l'd,

    =

    Lilatrl'orr.

    deci3uoldod

    e

    resscribe

    Etl

    Lq

    ulVolentom

    ente

    :

    -t

    llodo

    derecho

    rs

    Z

  • 7/25/2019 Lista4 Sol

    6/20

    x1/ .

    Sin

    debr

    decrecr

    0ue

    +

    que

    -1

    I

    tn]s

    por

    lo

    f

    uer*

    Cero

    r

    enfonces

    .1,

    dele

    Cera

    rnor

    t

    osib)e

    dodo

    qr.

    V

    e

    Lz

    13)

    Ux

    :t

    .ur*

    x

    l^l

    r'

    -

    o

    X

    -)

    tco

    l 'l'l'dx

    Utitreondo

    el

    -{.eorerno

    de

    porsevq\

    L*

    x

    l.l'1

    no

    esto

    no

    C,orno

    r

    {:)

    rrp\do

    Volrrendo

    &

    e

    [lug

    e:

    lo

    destgvoldod,

    e

    rnlrodrciendo e[

    resultodo

    rn*eriqv

    ,

    @@

    r

    (

    .l

    r* l

    J

    J

    lJ-..

    I

    -o

    -eD

    jlrard