livak_schmittgen2001

7
8/20/2019 Livak_Schmittgen2001 http://slidepdf.com/reader/full/livakschmittgen2001 1/7 METHODS 25,  402–408 (2001) doi:10.1006/ meth.2001.1262, available online at http:// www.idealibrary.com on Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2 T  Method Kenneth J . Livak* and Thomas D. Schmittgen† ,1 *Applied Biosystems, Foster City, California 94404; and  † Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164-6534 of the target gene relative to some reference group The two most commonly used methods to analyze data from such as an untreated control or a sample at time zero real-time, quantitative PCR experiments are absolute quantifica- in a time-course study. tion and relative quantification. Absolute quantification deter- Absolute quantification should be performed in situ- mines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal  ations where it is necessary to determine the absolute of the target transcript in a treatment group to that of another  transcript copy number. Absolute quantification has sample such as an untreated control. The 2 T method is a been combined with real-time PCR and numerous re- convenient wayto analyze the relative changes in gene expression ports have appeared in the literature (6– 9) including from real-time quantitative PCR experiments. The purpose of this two articles in this issue (10, 11). In some situations, report is to present the derivation, assumptions, and applications it may be unnecessary to determine the absolute tran- of the 2 T method. In addition, we present the derivation and script copy number and reporting the relative change applications of two variations of the 2 T method that may be useful in the analysis of real-time, quantitative PCRdata.   2001  in gene expression will suffice. For example, stating Elsevier Science (USA) that a given treatment increased the expression of Key Words:  reverse transcription polymerase chain reaction; gene  x  by 2.5-fold may be more relevant than stating quantitative polymerase chain reaction; relative quantification; that the treatment increased the expression of gene x real-time polymerase chain reaction; Taq Man. from 1000 copies to 2500 copies per cell. Quantifying the relative changes in gene expression using real-time PCR requires certain equations, as- sumptions, and the testing of these assumptions to Reserve transcription combined with the polymer-  properly analyze the data. The 2 T method may be ase chain reaction (RT-PCR) has proven to be a power-  used to calculate relative changes in gene expression ful method to quantify gene expression (1– 3). Real- determined from real-time quantitative PCR experi- time PCR technology has been adapted to perform ments. Derivation of the 2 T equation, including quantitative RT-PCR (4, 5). Two different methods of assumptions, experimental design, and validation analyzing data from real-time, quantitative PCR ex- tests, have been described in Applied Biosystems User periments exist: absolute quantification and relative Bulletin No. 2 (P/N 4303859). Analyses of gene expres- quantification. Absolute quantification determines the sion data using the 2 T method have appeared in input copy number of the transcript of interest, usua lly the literature (5, 6). The purpose of this report is to by relating the PCR signal to a standard curve. Rela- present the derivation of the 2 T method, assump- tive quantification describes the change in expression tions involved in using the method, and applications of this method for the general literature. In addition, we present the derivation and application of two varia- tions of the 2 T method that may be useful in the 1 To whom requests for reprints should be addressed. Fax: (509) 335-5902. E-mail: [email protected].  analysis of real-time quantitative PCR data. 402  1046-2023/01 $35.00  2001 Elsevier Science (USA) All rights reserved.

Upload: sibie

Post on 07-Aug-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 1/7

METHODS 2 5 ,  402–408 (2001)

doi:10.1006/ meth.2001.1262, available online at http:/ / www.idealibrary.com on

Analysis of Relative Gene Expression Data Using Real-

Time Quantitative PCR and the 2

C T

 MethodKenneth J . Livak* a nd Thom a s D. S chm itt gen† ,1

*A ppli ed Bi osystems, Foster City, Cali forn ia 94404; and   † Department of Pharmaceutical Sciences, College of Pharmacy,

Washin gton State Un iversity, Pul lm an, Washi ngton 99164-6534 

of t h e t a r g et g en e r e la t i ve t o s o m e r e f er e n ce g r ou pThe two most commonly used methods to analyze data from

s u ch a s a n u n t rea t ed con t ro l or a s a mp le a t t ime z eroreal-time, quantitative PCR experiments are absolute quantifica-

in a time-course study.tion and relative quantification. Absolute quantification deter-

Absolute q ua ntificat ion should be performed in s itu-mines the input copy number, usually by relating the PCR signalto a standard curve. Relative quantification relates the PCR signal   a t ions wh ere it is necessa ry to determine the absoluteof the target transcript in a treatment group to that of another   t ra n s crip t c op y n u mb er. Ab s olu t e q u a n t i f ica t ion h a ssample such as an untreated control. The 2C T method is a b een comb in ed w it h rea l-t ime P CR a n d n u m erou s re-convenient way to analyze the relative changes in gene expression

ports have appeared in the literature (6– 9) includingfrom real-tim e quantit ative PCR experiments. The purpose of this

tw o ar t icles in t his issue (10, 11). In some sit ua tions,report is to present the derivation, assumptions, and applicationsi t ma y b e u n n eces sa r y t o d et ermin e t h e a b s o lu t e t ra n -of the 2C T method. In addition, we present the derivation andscript copy number and reporting the relat ive changeapplications of two variations of the 2C T method that may be

useful in the analysis of real-tim e, quantitat ive PCR data.    2001   in gen e expres s ion w il l s u f fice. F or exa m p le, s t a t in gElsevier Science (USA) t h a t a g i ve n t r e a t m e n t i n cr e a s ed t h e e xp r es s ion of

Key Words:   reverse transcription polymerase chain reaction; gene   x  b y 2. 5-fold ma y b e mo re relev a n t t h a n s t a t in gquantitative polymerase chain reaction; relative quantification;

t h a t t h e t rea t men t in c rea s ed t h e expres s ion o f gen e  x real-time polymerase chain reaction; Taq Man.from 1000 copies to 2500 copies per cell.

Qua nt ifying the rela t ive cha nges in gene expression

u s in g r e a l -t i m e P C R r e q u ir e s c er t a i n e q u a t i on s , a s -

s u m p t i o n s , a n d t h e t e s t i n g o f t h e s e a s s u m p t i o n s t oRes erv e t ra n s crip t ion comb in ed w it h t h e p oly mer-   p rop erly a n a ly z e t h e d a t a . Th e 2C T met h o d ma y b e

a se cha in rea ction (RT-P CR ) ha s proven to be a power-   used to calculate rela t ive cha nges in gene expressionfu l m et h od t o q u a n t i fy gen e expres s ion (1– 3). Rea l- d et ermin ed fro m rea l- t ime q u a n t i t a t iv e P CR exp eri-t i m e P C R t e c h n o l o g y h a s b e e n a d a p t e d t o p e r f o r m m e n t s . D e r i v a t i o n o f t h e 2C T eq u a t ion , in clu d in gqua ntit a t ive RT-P CR (4, 5). Two different meth ods of a s s u m p t ion s , e xp er i m en t a l d es i gn , a n d v a l i da t i ona n a l y zi n g d a t a f r om r e a l -t i m e, q u a n t i t a t i v e P C R e x- tests, have been described in Applied Biosystems User

p erimen t s exis t : a b s o lu t e q u a n t i f ic a t io n a n d rela t iv e B ullet in N o. 2 (P /N 4303859). Ana lys es of gene expr es-qua ntificat ion. Absolute qua nt ifica t ion determin es th es ion d a t a u s in g t h e 2C T met h o d h a v e a p p ea red in

input copy number of th e tr a nscript of int erest , usua llythe literature (5, 6). The purpose of this report is to

b y r e la t i n g t h e P C R s i g n a l t o a s t a n d a r d cu r v e. R el a -present the derivat ion of the 2C T met h o d , a s s u mp -tive qua ntificat ion describes the cha nge in expressiont ion s in v olv ed in u s in g t h e met h o d , a n d a p p lica t ion s

of t h is m et h od fo r t h e gen era l l i t era t u re. In a d d it ion ,

we present t he derivat ion and a pplica t ion of two varia -

t ion s o f t h e 2C T m e t h od t h a t m a y b e u se fu l i n t h e1 To whom requests for r eprints should be a ddressed. Fa x: (509)335-5902. E-mail: [email protected].   a n a l y si s of r e a l -t i m e q u a n t i t a t i v e P C R d a t a .

402   1046-2023/01 $35.00

 2001 E lsevier S cience (USA)All rights reserved.

Page 2: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 2/7

ANALYSIS OF REAL-TIME PCR DATA   403

or1. THE 2C T METHOD

X N   (1 E  )C T K , [6]

1.1. Derivation of t he 2C T Methodw h ere   X N   i s eq u a l t o t h e n o rma liz ed a mou n t of t a rgetThe equation that describes the exponential amplifi-(X 0 /R 0) a n d   C T is equal to th e difference in thresholdcation of PCR iscycles for ta rget a nd reference (C T,X   C T,R ).

Rearr an ging gives th e expressionX n   X 0 (1 E X)n , [1]

X N   K   (1 E  )C T. [7]

w h ere   X n    i s t h e n u mb er o f t a rget mo lec u les a t c y c leThe fina l s t ep is to divide th e   X N   for a n y s a mp le   q   byn   of the reaction,   X 0   i s t h e i n i t i a l n u m b e r o f t a r g e tt h e   X N   for th e calibra tor (cb):molecules.   E X   is t he efficiency of ta rget am plifica t ion,

a n d   n   is the number of cycles. The threshold cycle (C T)

i n di ca t e s t h e f r a ct i on a l cy cl e n u m b er a t w h i ch t h e   X N, q 

X N,cb

K   (1 E  )C T,q 

K   (1 E  )C T,cb (1 E  )C T. [8]

amount of amplified target reaches a f ixed threshold.

Thus,

H ere  C T (C T,q    C T,cb).

For a mplicons designed to be less tha n 150 bp an d forX T

X 0

(1

E X)C T,X

K X   [2] w h ic h t h e p rimer a n d M g 2+ concentra t ions ha ve been

properly optim ized, t he efficiency is close to one. There-w h ere   X T  is the threshold number of target molecules, fore, th e a mount of ta rget, norma lized to a n endogenousC T,X  is the threshold cycle for t ar get a mplificat ion, a nd reference a nd r ela t ive to a ca libra tor, is given byK X is a const a nt . A simila r equa tion for th e endogenous

reference (intern a l cont rol gene) reaction is amount of target   2C T. [9]

R T R 0 (1 E R)C T,R K R, [3]1.2. Assumptions and Applications of the 2C T Method

For th e C T calculat ion to be va lid, th e a mplifica tionw h ere   R T   is the threshold number of reference mole-efficiencies of th e ta rget a nd r eference must be approxi-cules,   R 0   is the initial number of reference molecules,

mately equal. A sensit ive method for assessing if twoE R   is the efficiency of reference amplification,   C T,R   isamplicons have the same efficiency is to look at how the threshold cycle for reference amplification, and   K RC T va ries with template dilution. Figure 1 shows theis a constant .

Dividing   X T b y   R T gives t he expression

X T

R T

X 0 (1 E X)C T,X

R 0 (1 E R)C T,R

K X

K R K . [4]

For rea l-time a mplifica tion using Ta qMa n probes, th e

exact va lues of  X T a n d  R T depend on a number of factors

including the reporter dye used in the probe, the se-quence context effects on the fluorescence properties of

the probe, the efficiency of probe cleavage, purity of

the probe, and sett ing of the fluorescence threshold.

Therefore, t he consta nt   K  does not ha ve to be equa l toFIG. 1.   V alidat ion of t he 2C T method: Amplification of cDNAone. Assuming efficiencies of the t ar get a nd the refer-synt hesized from different a mounts of RNA. The efficiency of amplifi-

en ce a re t h e s a me,cation of the target gene (c-m yc ) and int ernal cont rol (GAPD H) w a sexamined using real-time P CR a nd Ta qMa n detection. Us ing reverset ra nscript a se, cDNA w a s synt hesized from 1   g t ot al R NA isolat edE X E R   E ,from human Raji cells. Serial dilutions of cDNA were amplified byreal-time PCR using gene-specific primers. The most concentratedsample contained cDNA derived from 1 ng of total RNA. The   C T(C T,cmy c C T,GAP DH ) wa s calculated for each cDNA dilution. The da ta

X 0

R 0 (1 E  )C T,XC T,R K , [5]

w ere f i t u sing least -squ ares l inear regression ana lysis (N    3).

Page 3: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 3/7

LIVAK AND SCHMITTGEN404

results of a n experiment where a cDNA prepara t ion cha nge in gene expression relat ive to an untreat ed con-

tr ol, for exam ple, if one wa nt ed to determ ine the expres-wa s diluted over a 100-fold ra nge. For ea ch dilution

sam ple, a mplifica t ions w ere performed using primers s ion of a part icular mRNA in an orga n. In these cases,

the calibra tor ma y be the expression of the sam e mRNAa nd flu orogenic probes for c-m yc a nd G AP DH . The aver-

a ge   C T wa s calculat ed for both c-m yc  a n d G A P D H a n d i n a n ot h e r o rg a n . Ta b l e 1 p r es en t s m e a n   C T   values

determined for c-m yc   a n d G A P DH t ra n s c rip t s in t o t a lt h e   C T  (C T,m yc     C T,G APD H ) wa s determined. A plot of

the log cDNA dilution versus   C T  w a s ma d e (F ig. 1). RN A s a mp les from b ra in a n d k id n ey. Th e b ra in w a s

a rbitr a rily chosen a s the ca libra tor in this exa mple. TheIf the absolute value of the slope is close to zero, theefficiencies of the ta rget a nd reference genes a re s imi- am ount of c-m yc , norma lized to G AP DH a nd relat ive to

b ra in , is report ed . A lt h o ugh t h e rela t iv e q u a n t i t a t iv elar, a nd the C T calculation for the relative quantifica-

tion of ta rget ma y be used. As shown in Fig. 1, th e slope meth od can be used to ma ke th is ty pe of tissue compari-

son, biological int erpreta tion of th e results is complex.of the line is 0.0471; therefore, t he a ssumption holds

a n d t h e  C T met h od ma y b e u s ed t o a n a ly z e t h e d a t a . Th e s in gle rela t iv e q u a n t i t y report ed a ct u a l ly reflect s

va ria tion in both ta rget a nd reference tr a nscripts a crossIf the efficiencies of the two amplicons are not equal,

t h e n t h e a n a l y si s m a y n ee d t o be p er f or m ed v i a t h e a v a r i et y of c el l t y pe s t h a t m i gh t b e pr es en t i n a n y

part icular t issue.a bsolute qua ntificat ion meth od using sta nda rd curves.

Alter na tively, new pr imer s ca n be designed a nd/or opti-

mized to achieve a s imila r efficiency for the ta rget a nd1.4. Data Analysis Using the 2C T Methodreference a mplicons.

Th e   C T   values provided from real-t ime PCR instru-

menta t ion a re easily imported into a spreadsheet pro-1.3. Selection of Internal Control and Calibrator for the gra m such a s Microsoft E xcel. To demonstr a te th e an a l-2C T Method y sis , d a t a a r e r epor t ed f rom a q u a nt it a t iv e g en e

expression experiment a nd a sa mple sprea dsheet is de-The purpose of th e intern a l cont rol gene is to norma l-

ize t he P CRs for the a mount of RNA a dded to t he re- scribed (Fig. 2). The change in expression of the  f os–gl o– 

m yc   t a rget gen e n orma liz ed t o   -actin wa s m onitoredv er s e t r a n s cr i pt i on r ea c t ion s . We h a v e f ou n d t h a t

sta nda rd housekeeping genes usually suffice as int er- over 8 h. Triplica te sa mples of cells were collected a t

each t ime point . Rea l-t ime P CR wa s performed on thenal control genes. Suitable internal controls for real-

t i m e q u a n t i t a t i v e P C R i n c l u d e G A P D H ,    -actin,    2- corresp on d in g c DN A s y n t h es iz ed from ea ch s a mp le.

The data were analyzed using Eq. [9], where  C T microglobulin, a nd rRNA. Other housekeeping genes

w i ll u n dou bt ed ly w or k a s w e ll . I t i s h i gh ly r ecom - (C T,Ta rg et   C T,Act in )Time   x   (C T,Ta rg et   C T,Act in )Time 0. Timex  is any t ime point a nd Time 0 represents th e 1 expres-mended that the internal control gene be properly vali-

da ted for each experiment t o determine th a t gene ex- s ion of the ta rget gene normalized to  -a ctin. The mea n

C T values for both th e ta rget a nd interna l control genespression is unaffected by the experimental treatment.

A met h od t o v a l id a t e t h e effect o f experimen t a l t rea t - w ere d et ermin ed a t t ime z ero (F ig. 2 , colu mn 8) a n d

w ere used in Eq . [9]. The fold cha nge in t he ta rget gene,ment on the expression of t he interna l control gene is

descr ibed in S ect ion 2.2. n orm a lized t o   -actin and relative to the expression at

time zero, was calculated for each sample using Eq. [9]The choice of calibrator for the 2C T method de-

p en d s on t h e t y p e of gen e express ion exp erimen t t h a t (F ig. 2 , c olu mn 9). Th e mea n , S D , a n d CV a re t h en

d et ermin ed fro m t h e t r ip l ic a t e s a mp les a t ea c h t imeone has planned. The simplest design is to use the un-

t r e a t e d c on t r ol a s t h e ca l i br a t o r. U s i n g t h e 2C T p oin t . U s in g t h is a n a ly s is, t h e v a lu e o f t h e m ea n fold

change at t ime zero should be very close to one (i .e. ,met h od , t h e d a t a a re p res en t ed a s t h e fold c h a n ge ingene expression norma lized to a n endogenous reference since 2 0   1). We h a ve found the verifica t ion of the

mea n fold cha nge at tim e zero to be a convenient meth odgene and relat ive to the unt reat ed control. For t he un-

treated control sample,  C T equals zero an d 20 eq u a ls t o ch eck for errors a n d v a ria t ion a m on g t h e t r ipl ica t e

samples. A value that is very different from one sug-one, so tha t t he fold chan ge in gene expression rela tive

to the untr eated control equals one, by definit ion. For gests a calculat ion error in the sprea dsheet or a very

high degree of experimenta l va riat ion.the t reat ed samples, evalua tion of 2C T indicat es the

fold change in gene expression relat ive to the untrea ted In the preceding example, three separ at e RNA prepa -

r a t i on s w e r e m a d e f or e a ch t i m e p oi n t a n d ca r r i edcontr ol. Similar a na lysis could be a pplied t o s tudy t he

time course of gene expression where the ca libra tor through the an a lysis. Therefore, i t ma de sense to trea t

ea c h s a mp le s ep a ra t ely a n d a v era ge t h e res u lt s a f t ersam ple represents the a mount of tra nscript tha t is ex-

pr essed a t t im e zer o. t h e 2C T calculat ion. When replicate PCRs are run

on t he same sa mple, i t is more appropriate t o averageS i t u a t i on s e xi st w h e r e o ne m a y n ot com pa r e t h e

Page 4: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 4/7

ANALYSIS OF REAL-TIME PCR DATA   405

C T   data before performing the 2C T ca lcu la t ion . E x- (G AP DH ) w ere a mp lif ied in s ep a ra t e w ells . Th ere is

n o rea s o n t o p a ir a n y p a rt ic u la r c -m yc   w e ll w i t h a n yactly how the averaging is performed depends on if the

t a rget a n d referen ce a re a mp li fied in s ep a ra t e w ells p a rt icu la r G AP DH w ell. Th erefore, i t ma k es sen se t o

a v era ge t h e c -m yc   a n d G AP D H   C T   values separatelyor i n t h e s a m e w e ll . Ta b l e 1 p r e se nt s d a t a f r om a n

exp erimen t w h ere t h e t a rget (c-m yc ) a n d r e fe re nce b ef or e pe rf or m in g t h e   C T   calculat ion. The variance

TABLE 1

Trea tment of Replica te D a ta Where Tar get a nd Reference Are Amplified in Sepa ra te Wellsa 

C T (Avg. c-myc C T   C T (Avg.  C T   Normalized c-m yc  a mountTissue c-myc C T   G A P D H   C T   Avg. G AP DH   C T    Avg.  C T,Br ain ) rela tive t o bra in 2C T

B r a in 30.72 23.7030.34 23.5630.58 23.4730.34 23.6530.50 23.6930.43 23.68

Aver a ge 30.49    0.15 23.63    0.09 6.86    0.17 0.00    0.17 1.0 (0.9– 1.1)

K idney 27.06 22.7627.03 22.6127.03 22.6227.10 22.6026.99 22.6126.94 22.76

Aver a ge 27.03    0.06 22.66    0.08 4.37    0.10   2.50    0.10 5.6 (5.3– 6.0)

a  Tot al R NA from hu ma n brain and kidney w ere p u rchased from Clont ech. U sing reverse t ra nscrip t ase, cDNA w as synt hesized from 1 g tota l RNA. Aliquots of cDNA were used a s templa te for real-time P CR rea ctions containing either primers a nd probe for c-m yc  or primersand probe for GAPDH. Each reaction contained cDNA derived from 10 ng total RNA. Six replicates of each reaction were performed.

FIG. 2.   Samp le sp readsheet of dat a analysis u sing t he 2C T method. The fold change in expression of the target gene ( fos–gl o–m yc )relative to the internal control gene ( -act in) at various t ime p oint s w as st u died. The sa mp les w ere a nalyzed u sing rea l-t ime qu a nt it at iveP C R a n d t h e   C t   data were imported into Microsoft Excel. The mean fold change in expression of the target gene at each time point wascalculated using Eq . [9], w here  C T (C T,Tar ge t   C ,Actin)Time  x  (C T,Tar ge t   C ,Actin)Time 0. The mea n   C T  at time zero are shown (colored boxes)

as is a sample calculation for the fold change using 2C T (black box).

Page 5: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 5/7

LIVAK AND SCHMITTGEN406

e st i m a t e d f r om t h e r e pl ica t e   C T   v a lu es is ca rr ied of a n a r b it ra ry con s t a n t . Th is gives resu lt s eq u iv a len t

to those report ed in Fig. 2 where  C T values for nonrepli-t h ro ugh t o t h e f in a l ca lc ula t ion of rela t iv e q u a n t i t ies

using sta nda rd propaga tion of error methods. One diffi- cat ed sa mples w ere car ried th rough the entire 2C T

calculation before averaging. Alternatively, it is possi-culty is tha t   C T is exponentia lly rela ted t o copy nu mber

(see Section 4 below ). Thus, in the final calculation, the ble to report results w ith the calibra tor qua ntit y defined

a s 1   w i t h ou t a n y error . In t h is c a s e, t h e erro r es t i-error is est ima ted by evaluat ing the 2C T term using

C T p lu s t h e s t a n d a rd d evia t ion a n d  C T m i n us t h e m a t e d f or t h e a v e r a g e C T,cb value must be propaga ted

in t o ea ch of t h e   C T   v a lu es for t h e t est s a mp les . Insta nda rd deviat ion. This lea ds to a ra nge of values tha tis a s y mmet rica l ly d is t r ib u t ed rela t iv e t o t h e a v era ge Ta b le 1, t h e   C T   value for the kidney sample would

become 2.50 0.20 an d th e norma lized c-m yc amountva lue. The a symm etric distr ibution is a consequence of

converting the results of an exponential process into a would be 5.6   with a range of 4.9 to 6.5. Results for

brain would be reported as 1 without any error.linear compar ison of a mounts .

B y using probes labeled with dist inguisha ble report er

dyes, it is possible to run t he ta rget a nd reference ampli-

ficat ions in the sa me w ell. Table 2 presents dat a from   2. THE 2C T METHODan experiment where the target (c-m yc ) an d reference

(G AP DH ) were am plified in the sam e well. In a ny par-2.1. Derivation of t he 2C T Methodt icu la r w ell, w e k n o w t h a t t h e c -m yc   rea ct ion a n d t h e

G AP DH rea ct ion h a d exa ct ly t h e s a me c DN A in pu t . N orma liz in g t o a n en d ogen ou s referen ce p rov ides a

method for correcting results for differing am ounts ofTherefore, it makes sense to calculate  C T   separately

for each w ell. These  C T  va lu es ca n t h en b e a v era ged in pu t RN A. On e h a l lma rk of t h e 2C T method is that

i t u s e s d a t a g e n e r a t e d a s p a r t o f t h e r e a l - t i m e P C Rbefore proceeding with the 2C T ca lculat ion. Aga in,

t h e est ima t ed error is given a s a n a s y mmet ric ra n ge of exp erimen t t o p erform t h is n orma liz a t io n fu n ct ion .

This is part icularly at tract ive when it is not practicalva lues, reflecting conversion of a n exponent ia l var iable

t o a lin ea r com pa rison . t o m ea sure t h e a moun t of in put RNA by ot h er met h ods.

Such situa tions include when only limited a mounts ofIn Tables 1 a nd 2, the est ima ted error ha s not been

increased in proceeding from the   C T   column to the RNA ar e ava ilable or wh en high-throughput processing

of many samples is desired. I t is possible, though, toC T  column. This is because we have decided to dis-

p la y t h e d a t a w it h error s h ow n b o t h in t h e ca l ib ra t o r n orma liz e t o s ome mea s u remen t ext ern a l t o t h e P C R

experiment. The most common method for normaliza-a nd in the test sam ple. Subtra ction of the a verage C T,cb

to determine the  C T  va lu e is t rea t ed a s s u b t ra ct ion t ion is t o u s e U V a b s orb a n c e t o d et ermin e t h e a mo u n t

TABLE 2

Trea tment of Replica te D a ta Where Ta rget a nd R eference a re Amplified in t he S a me Wella 

c-m yc    C T (Avg. c-myc C T   C T (Avg.   C T   Normalized c-m yc  a mountTissue   C T   G AP D H C T   Avg. G APDH   C T)    Avg.   C T,Br ain ) rela tive t o bra in 2C T

B r a in 32.38 25.07 7.3132.08 25.29 6.7932.35 25.32 7.03

32.08 25.24 6.8432.34 25.17 7.1732.13 25.29 6.84

Aver a ge 6.93    0.16 0.00    0.16 1.0 (0.9– 1.1)K idney 28.73 24.30 4.43

28.84 24.32 4.5228.51 24.31 4.2028.86 24.25 4.6128.86 24.34 4.5228.70 24.18 4.52

Aver a ge 4.47    0.14   2.47    0.14 5.5 (5.0– 6.1)

a  An experiment like tha t d escribed in Ta ble 1 wa s performed except the reactions conta ined primers a nd probes for both c-m yc   a ndGAPDH. The probe for c-m yc   w as labeled w it h t he rep ort er dye FAM a nd t he p robe for G AP DH w a s la beled w it h t he rep ort er dye J OE .Because of the different reporter dy es, the real-time P CR signa ls for c-m yc  and G AP DH can be distinguished even though both amplificat ions

are occu rring in t he sa me w ell.

Page 6: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 6/7

ANALYSIS OF REAL-TIME PCR DATA   407

of RN A a d d ed t o a cDN A rea ct ion . P C Rs a re t h en s et eq u a t ion w h ere C T C T,Tim e   x   C T,Time 0 (Fig. 3). Ast a -

t is t ica l ly s ign ifica n t rela t ion s h ip exist s b et w een t h eup using cDNA derived from the sa me a mount of input

RNA. One example of using this external normalizat ion trea tment an d expression of G AP DH but not for    2-

microglobulin (Fig. 3). Therefore,    2-microglobulinis to s tudy t he effect of experimental t reat ment on th e

expression of a n endogenous reference to determine if ma kes a suitable interna l control in qua ntita t ive serum

stimu lat ion studies wh ile G AP DH does not. This exa m-the int ernal control is affected by trea tment. Thus, the

t a rget gen e a n d t h e en d ogen ou s referen ce a re o n e in p le d emon s t ra t es h ow t h e 2C T met h od ma y b e u s ed

to ana lyze relat ive gene expression da ta wh en only onethe same. In this case, Eq. [2] is not divided by Eq. [3]a n d E q . [5] becom es gen e is bein g st udied.

X 0 (1 E X)C T,X K X. [10]3. STATISTICAL ANALYSIS OF REAL-TIMEPCR DATARearr a nging gives th e expression

The endpoint of rea l-time P CR a na lysis is the th resh-X 0 K X (1 E X)C T,X. [11]

old cycle or   C T. The  C T is determin ed from a log– linea r

plot of t he P CR signal versus the cycle number. Thus,Now, dividing   X 0   fo r a n y s a mp le   q   b y t h e   X 0   fo r t h e   C T   i s a n exp o n en t ia l a n d n o t a l in ea r t erm. F o r t h is

calibra tor (cb) gives   rea s on , a n y s t a t ist ica l p res en t a t ion u s in g t h e ra w    C T

X 0,q 

X 0,cb

K X (1 E X)C T,q 

K X (1 E X)C T,cb (1 E X)C T, [12]

w h ere   C T   i s eq u a l t o   C T,q      C T,cb. The prime is used

to dist inguish this expression from the previous   C Tcalculat ion (see Eq. [6]) tha t involved subt ra ction of  C Tvalues for target and reference.

As stated in Section 1.1, if properly optimized, the

efficiency is close to one. The amount of endogenous

reference relat ive to a ca libra tor t hen becomes

2C T. [13]

2.2. Application of t he 2C T Method

An appropriate application of the 2C T method is to

determine the effect of the experimental t reat ment on

th e expression of a candida te int erna l cont rol gene. To

demonstra te this ana lysis , serum star vat ion and induc-

tion experiment s were performed (7). Serum st a rva tion/induction is a commonly used m odel to study t he decayFIG. 3.   Application of th e 2C 

T meth od. The following experimentof certain mRNAs (8). However, serum may alter the

was conducted to validate the effect of treatment on the expressione xp re ss ion of n u m er ou s g en es i n cl ud in g s t a n d a r d of ca ndida te interna l control genes. NIH 3T3 fibroblast s w ere serumhousekeeping genes (9).   sta rved for 24 h a nd then induced wit h 15%serum over a n 8-h period.

Sa mples were collected a t va rious t imes following serum stimula tion;Gene expression was induced in NIH 3T3 cells bymR NA w a s ext ract ed a nd convert ed t o cDNA. The cDNA w a s su b-a dding 15% serum following a 24-h period of serumjected to rea l-time q ua ntita tive P CR using gene-specific primers for

sta rva tion. P oly(A)+ RNA wa s extra cted from t he cells  2-microglobulin and GAPDH. The fold change in gene expressiona nd equiva lent a mounts w ere converted t o cDNA. The   wa s calculat ed using Eq. [13], where  C T (C T,Time  x    C T,Time 0) and

is presented for both   2-microglobulin (A) a nd G APD H (B). Reprintedamounts of    2-microglobulin an d G AP DH cDNA w erefrom T. D. S chmitt gen a nd B . A. Zakra jsek (2000)E ffect of experimen-d et ermin ed b y rea l-t ime q u a n t i t a t iv e P CR w it h S Y BRtal treatment on housekeeping gene expression: Validation by real-

G reen det ection (7). The rela tive a mounts of  2-micro- t ime qua ntita tive RT-P CR,  J . Bi ochem. Biophys. Methods 46, 69– 81,

with permission of Elsevier Science.g l o b u l i n a n d G A P D H a r e p r e s e n t e d u s i n g t h e 2C T

Page 7: Livak_Schmittgen2001

8/20/2019 Livak_Schmittgen2001

http://slidepdf.com/reader/full/livakschmittgen2001 7/7

LIVAK AND SCHMITTGEN408

va lues should be a voided. As described w ithin the previ- should be used. Otherw ise, presenta tion of the rela tive

gene expression should suffice. Relative quantificationous sections of th is ar ticle, present a tion of relat ive PC Rm a y b e e a s i er t o p er f or m t h a n t h e a b s ol ut e m e t h odd a t a is mo s t o f t en c a lc u la t ed a lo n g w it h a n in t ern a lbeca use the use of s tanda rd curves is not required.cont rol and /or ca libra tor sa mple an d is ra rely presented

The equa tions provided her ein should be sufficient fora s t h e   C T . An exception is when one is interested inan investiga tor to ana lyze quan tita t ive gene expressionexam ining th e sa mple-to-sa mple varia tion among repli-d a t a u s in g rela t iv e q u a n t i f ica t ion . To s u mma r iz e t h ecate reactions.

imp o rt a n t s t ep s in t h e d es ign a n d ev a lu a t io n o f t h eTo d emon s t ra t e t h is , 96 rep lica t e rea ct ion s of t h eexperiment : (i ) select a n int erna l cont rol gene, (i i ) vali-identical cDNA were performed using real-t ime PCRd a t e t h e i n t e r n a l c o n t r o l t o d e t e r m i n e t h a t i t i s n o ta n d S Y B R G r e en d et e ct i on . A m a s t er m i xt u r e con -a f fec t ed b y exp erimen t a l t rea t men t , a n d (i i i ) P C R onta ining all of the ingredients w as pipett ed into individ-perform dilutions of R NA or cDNA for both the ta rgetua l tubes of a 96-w ell reaction plat e. The sa mples werea nd intern a l contr ol genes to ensure tha t th e efficienciessubjected to real-t ime P CR a nd the individual  C T valuesa re similar. Fina lly, stat istical da ta should be convert edw ere d et ermin ed . To exa min e t h e in t ra s a mp le v a ria -t o t h e l in ea r fo rm b y t h e 2C T calculat ion and shouldtion, the mean   SD wa s determined from th e 96 sam -not be presented by the raw   C T va lues.ples. I f calcula ted from the r aw   C T t h e mea n   S D w a s

20.0   0.194 with a CV of 0.971%. H owever, w hen the

individual   C T values w ere converted to t he linear form

REFERENCESu s in g t h e t erm 2C 

T, t h e mea n   S D w a s 9. 08   10

7

  1.33     107 with a CV of 13.5%. As demonstra ted1. Murphy, L. D., Herzog, C. E., Rudick, J . B., Fojo, A. T., and B a tes,

b y t h is s imp le exa mp le, rep o rt in g t h e d a t a o b t a in edS. E. (1990)   Biochemistry   29, 10351– 10356.

from the ra w   C T values falsely represents the va riat ion 2. Noonan , K. E ., Beck, C., H olzma yer, T. A., Chin , J . E., Wunder,a nd should be avoided. Converting t he individua l dat a   J . S. , Andrulis, I . L., G azda r, A. F. , Willman, C. L. , G riffith, B. ,

Von-Hoff, D . D., a nd Robinson, I. B . (1990) Proc. Natl. Acad. Sci.to a l inear form using 2C T more accurately depicts theU SA   87, 7160– 7164.

individual var iat ion a mong replica te rea ctions.3. Horikoshi, T.,   et al.   (1992)   Can cer Res.  52, 108– 116.

4. Heid, C . A., St evens, J . , Liva k, K. J . , a nd William s, P. M. (1996)Genome Res.   6, 986– 994.

5. Winer, J . , J ung, C. K., S ha ckel, I . , an d Willia ms, P. M. (1999)4. CONCLUDING REMARKSAnal . Bi ochem.   270, 41– 9.

6. Schm itt gen, T. D., Zakra jsek, B . A., Mills, A. G., G orn, V., Singer,

E x p e r i m e n t a l d e s i g n a n d d a t a a n a l y s i s f r o m r e a l -   M. J ., a nd Reed, M. W. (2000) Anal . Bi ochem.  285, 194– 204.t ime, q u a n t i t a t iv e P CR exp erimen t s ma y b e a c h iev ed   7. Schmittg en, T. D., an d Za krajsek, B. A. (2000)  J. Bi ochem. B io- 

phys. Methods  46, 69– 81.using either relat ive or a bsolute q uan tifica t ion. When8. Ch en, C. Y., and S hyu, A. B. (1994) M ol. Cell . Biol. 14,8471– 8482.designing quantitat ive gene expression studies using9. Iyer, V. R.,   et al.   (1999)   Science  283, 83– 87.

rea l-t ime P CR, t h e f irst q u est ion t h a t a n in v es t iga t o r10. G iulietti, A., Overbergh, L. , Va lckx, D., D ecallone, B . , B ouillon,

should ask is how should the da ta be presented. If a bso-   R. , a nd Ma thieu, C. (2001)  M ethods  25, 386– 401.

11. Niesters, H. G . M. (2001)  M ethods  25, 419– 429.lute copy number is requ ired, then t he absolute meth od