local optimal polarization of piezoelectric material

28
Introduction Local Optimal Polarization Numerical Examples Summary Local Optimal Polarization of Piezoelectric Material Fabian Wein , M. Stingl 9th Int. Workshop on Direct and Inverse Problems in Piezoelectricity 30.09-02.10.2013

Upload: fwein

Post on 06-May-2015

519 views

Category:

Technology


1 download

DESCRIPTION

My presentation at the 9th Int. Workshop on Direct and Inverse Problems in Piezoelectricity in Weimar (30.09-02.10.2013).

TRANSCRIPT

Page 1: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Local Optimal Polarization of Piezoelectric Material

Fabian Wein, M. Stingl

9th Int. Workshop on Direct and Inverse Problems in Piezoelectricity30.09-02.10.2013

Page 2: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Overview

General

linear continuum model

numerical approach based on finite element method

PDE based optimization with high number of design variables

Optimization

optimization helps to understand systems better

manufacturability in mind

no real prototypes

Page 3: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Structural Optimization = Topology Optimization + Material Design

Topology optimization

“where to put holes”/ material distribution

design of (piezoelectric) devices

macroscopic view

Material design

“assume you could have arbitrary material, what do you want?”

realization might be another process

realizations might be metamaterials

Page 4: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Motivation

stochastic orientationJayachandran, Guedes,Rodrigues; 2011

Material Design

common homogeneous material seems tobe not optimal

Free Material Optimization → why it doesnot work

local optimal material → new approach

Page 5: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Standard Topology Optimization

distributes uniform polarized material/holes

“macroscopic view”

established in 2 1/2 dimensions (single layer)

scalar variable ρe for each design element (= finite element cell)

SIMP (solid isotropic material with penalization)

piezoelectric topology optimization Kogel, Silva; 2005

[ cEe ] = ρe [cE ] [ ee ] = ρe [e ] [ εSe ] = ρe [ε

S ], ρe ∈ [ρmin,1]

Page 6: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Piezoelectric Free Material Optimization (FMO)

all tensor coefficients of every finite element cell are design variable

[c ] =

c11 c12 c13− c22 c23− − c33

, [e ] =

(e11 e13 e15e31 e33 e35

)>, [ε] =

(ε11 ε12

− ε22

)

properties

[c ] and [ε] need to be symmetric positive definite

[ε] only for sensor case (mechanical excitation) relevant

questions to be answered

[c ] orthotropic?

[e ] with only standard coefficients?

orientation of [c ] and [e ] coincides?

something like an optimal oriented polarization?

Page 7: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

FMO Problem Formulation (Actor)

min l>u maximize compression

s.th. K u = f, coupled state equation

Tr([c ]e) ≤ νc, 1≤ e ≤ N, bound stiffness

Tr([c ]e) ≥ νc, 1≤ e ≤ N, enforce material

(‖[e ]e‖2)2 ≤ νe, 1≤ e ≤ N, bound coupling

[c ]e −ν I � 0, 1≤ e ≤ N. positive definiteness

realize positive definiteness by feasibility constraints

c11e −ν ≤ ε, 1≤ e ≤ N,

det2([c ]e −νI) ≤ ε, 1≤ e ≤ N,

det3([c ]e −νI) ≤ ε, 1≤ e ≤ N.

Page 8: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Tensor Visualization similar to [Marmier et al.; 2010]

[c ] =

12.6 8.41 08.41 11.7 0

0 0 4.6

, [e ] =

0 −6.50 23.3

17 0

, [ε] =

(1.51 0

0 1.27

)

[c ] [e ] [ε] ‖[c ]‖“ortho” ‖[e ]‖“zeros” ‖[ε]‖“ε12”

orientational stiffness

σ[c ]x (θ) =

100

> [c ](θ)

100

, σ[e ]x (θ) =

100

> [e ](θ)

(10

), D

[ε]x . . .

Page 9: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Actuator Model Problem

Page 10: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

FMO Results - Elasticity Tensor [c ]

orientational stiffness

orientational orthotropy norm

Page 11: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

FMO Results - Piezoelectric Coupling Tensor [e ]

orientational stress coupling

orientational “zero norm”

Page 12: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Discussion of the FMO Results

objective

maximize vertical displacement of top electrode

observations

less vertical stiffness to support compression

in coupling tensor e33 is dominant

characteristic orientational polarization

standard material classes (orthotropic)

coinciding orientation for [c ] and [e ]

ill-posed problem (stiffness minimization)

inhomogeneity due to boundary conditions

boundary conditions

deformation

elasticity

coupling

Page 13: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Electrode Design vs. Optimal Polarization

Electrode Design

pseudo polarization Kogel, Silva; 2005

[ cEe ] = [cE ], [ ee ] = [e ], [ εSe ] = ρp[ε

S ] ρp ∈ [−1,1]

(continuous) flipping of polarization (+ topology optimization)

applied on single layer piezoelectric plates

only scales polarization, does not change angle

known to result in -1 and 1 full polarization (static)

erroneously called “optimal polarization”

Page 14: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Optimal Orientation

parametrization by design angle θ

[ cE ] = Q(θ)>[c ]Q(θ) [ e ] = R(θ)>[e ]Q(θ) [ εS ] = R(θ)>[ε]R(θ)

R =

(cosθ sinθ

−sinθ cosθ

)Q =

R211 R2

12 2R11R12

R221 R2

22 2R21R22

R11R21 R12R22 R11R22 +R12R21

concurrent orientation of all tensors

corresponds to local polarization

Page 15: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Numerical System

linear FEM system (static)(Kuu Kuφ

K>uφ−Kφφ

)(uφ

)=

(fq

), short Ku = f

K∗ assembled by local finite element matrices K∗e

K∗e constructed by [ cEe ](θ), [ ee ](θ) and [ εSe ](θ)

f is discrete force vector, corresponding to mesh nodes.

q from applied electric potential (inhomogeneous Dirichlet B.C.)

f = 0 for sensor, q = 0 for actuator

Page 16: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Function

discrete solution vector u =(u1x u1y u2x u2y . . .φ1 φ2 . . .

)>displacement (each direction) and electric potential at mesh nodes

generic function f identifying solution

f = u>l

scalar product of solution with selection vector l = (0 . . . 1 . . .0)>

f can be maximized or used to specify a restriction

vertical displacement of all upper electrode nodeshorizontal displacement of a cornerdiagonal displacement of a given regionselection of electric potential at electrode. . .

Page 17: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Sensitivity Analysis

the gradient vector ∂ f∂θ

determines for every θe the impact on f

sensitivity analysis based on adjoint approach

f = uT l,∂ f

∂θe= λ>e

∂ Ke

∂ρeue with λ solving Kλ =−l

one adjoint system Kλ =−l to be solved for every function f

∂ Ke∂ρe

easily found by product rule

numerically very efficient, independent of number of design variables

iteratively problem solution by first order optimizer (SNOPT, MMA)

Page 18: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Problem Formulation

generic problem formulation

minθ

l>u objective function

s.th. K u = f, coupled state equation

l>k u ≤ ck , 0≤ k ≤M, arbitrary constraints

θe ∈ [−π

2,π

2], 1≤ θe ≤ N, box constraints

for sensor and actuator problem

full material everywhere

individual polarization angle in every cell

Page 19: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Regularization

orientational optimization in elasticity known to have local optimima

restricts local change of angle

filtering Bruns, Tortorelli; 2001

θe =∑Nei=1w(xi )θi

∑Nei=1w(xi )

w(xi ) = max(0,R−|xe −xi |)

local slope constraints Petersson, Sigmund; 1998

gslope(θ) = |< ei ,∇θ(x) >| ≤ cs i ∈ {1, . . . ,DIM}gslope(θe , i) = |θe −θi | ≤ c ,

Page 20: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Example Problems

A BC

actuator problems

maximize compression C ↓maximize compression C ↓ and limit A ← and B →twist A ↓ and B ↑

sensor problem

maximize electric potential at C

Page 21: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

maximize compression C ↓

initial |u| optimized |u|

gain: 6.1% of integrated y -displacement of C nodes

C is flattened

probably no global optimum reached

Page 22: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

maximize compression C ↓ and limit A ← and B →

loss: 4.9% of integrated y -displacement of C nodes

but A and C bounded to 50 % of initial x-displacement

Page 23: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

twist A ↓ and B ↑

note θ ∈ [−π

2 ,π

2 ]

electrode design might be more effective for this case

Page 24: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

maximize electric potential at C

gain: 0.6 % in difference of potential

possibly due to poor local optima

Page 25: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Coupling Tensor vs. Stiffness Tensor

what is the impact of the transversal isotropic stiffness tensor?

assume isotropic stiffness tensor

gain: 4.7 % vs. 6.1 % with PZT-5A tensors

Page 26: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Conclusion

General

local polarization works in principle

solutions might be far from global optimium

more feasible than piezoelectric Free Material Optimization

simple support would change everything

Applications

not to improve performance

exact tuning of devices

metamaterial not yet possible (e.g. auxetic material)

Page 27: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

Future Work

Examples

dynamic problems, shift of resonance frequencies possible?

metamaterials (e.g. auxetic material)

Mathematical

novel tensor based solver

very promising for elasticity

Technical Realization

polarization by local electric field

piezoelectric building blocks

. . . any suggestions?

Page 28: Local Optimal Polarization of Piezoelectric Material

Introduction Local Optimal Polarization Numerical Examples Summary

End

thanks for your patience :)