localization from incomplete noisy distance...

59

Upload: others

Post on 10-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Localization from Incomplete Noisy DistanceMeasurements

    Adel Javanmard and Andrea Montanari

    Stanford University

    July 27, 2011

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 1 / 41

  • A chemistry question

    Which physical conformations are produced by given chemical bonds?

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 2 / 41

  • . . .more questions. . .

    Manifold Learning Sensor Net. Localization

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 3 / 41

  • General `geometric inference' problem

    Given partial/noisy information about distances.

    Reconstruct the points positions.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 4 / 41

  • Connection with matrix completion

    What happens to matrix completion if the probabilty of revealingentry i ; j depends on the value of that entry?

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 5 / 41

  • Connection with matrix completion

    What happens to matrix completion if the probabilty of revealingentry i ; j depends on the value of that entry?

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 5 / 41

  • This talk

    0.5


    0


    ‐0.5


    ‐0.5
 0
 0.5


    R.G.G. G(n ; r)

    x1; � � � ; xn 2 [�0:5; 0:5]d

    r � �(logn=n)1=d

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 6 / 41

  • This talk

    0.5


    0


    ‐0.5


    ‐0.5
 0
 0.5


    R.G.G. G(n ; r)

    x1; � � � ; xn 2 [�0:5; 0:5]dr � �(log n=n)1=d

    adversarial noise

    j~d2ij � d2ij j � �

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 7 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Approaches

    Triangulation

    Multidimensional scaling

    Divide and conquer (Singer 2008)

    SDP relaxations (Biswas, Ye 2004)

    Manifold learning (ISOMAP, LLE, HLLE, . . . )

    Little quantitative theory, especially in presence of noise

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 8 / 41

  • Outline

    1 SDP relaxation and robust reconstruction

    2 Lower bound

    3 Rigidity theory and upper bound

    4 Discussion

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 9 / 41

  • SDP relaxation and robust reconstruction

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 10 / 41

  • Preliminary notes

    Positions can be reconstructed up to rigid motions

    NP-hard [Saxe 1979]

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 11 / 41

  • Optimization formulation

    minimizenXi=1

    kxik22; xi 2 Rd

    subject to���kxi � xj k22 � ed2ij ��� � �

    Nonconvex

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 12 / 41

  • Optimization formulation

    minimizenXi=1

    kxik22; xi 2 Rd

    subject to���kxi � xj k22 � ed2ij ��� � �

    Nonconvex

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 12 / 41

  • Optimization formulation

    minimizenXi=1

    Qii

    subject to���Qii � 2Qij +Qjj � ed2ij ��� � �Qij = hxi ; xj i

    Nonconvex

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 13 / 41

  • Optimization formulation (better notation)

    minimize Tr(Q)

    subj:to���hMij ;Qi � ed2ij ��� � �Qij = hxi ; xj i

    Mij = eij eTij ;

    eij = (0; : : : ; 0; +1|{z}i

    ; 0; : : : ; 0; �1|{z}j

    ; 0; : : : ; 0)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 14 / 41

  • Semide�nite programing relaxation

    minimize Tr(Q)

    subj:to���hMij ;Qi � ed2ij ��� � �((((

    (((Qij = hxi ; xj i Q � 0

    Mij = eij eTij ;

    eij = (0; : : : ; 0; +1|{z}i

    ; 0; : : : ; 0; �1|{z}j

    ; 0; : : : ; 0)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 15 / 41

  • Semide�nite programing relaxation

    SDP-based Localization

    Input : Distance measurements edij , (i ; j ) 2 GOutput : Low-dimensional coordinates x1; : : : ; xn 2 Rd

    1: Solve the following SDP problem:

    minimize Tr(Q),

    s.t.��hMij ;Qi � ed2ij �� � �, (i ; j ) 2 G ,Q � 0.

    2: Eigendecomposition Q = U�UT ;

    3: Top d e-vectors X = Ud�1=2d ;

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 16 / 41

  • Robustness?

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 17 / 41

  • Robustness?

    Theorem (Javanmard, Montanari '11)

    Assume r � 10pd(logn=n)1=d . Then, w.h.p.,

    d(X ; X̂ ) � C1(nrd)5 �r4

    ;

    Further, there exists a set of `adversarial' measurements such that

    d(X ; X̂ ) � C2 �r4

    :

    d(X ; X̂ ) � 1n

    nXi=1

    kxi � bxikJavanmard, Montanari (Stanford) Localization Problem July 27, 2011 18 / 41

  • Lower bound

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 19 / 41

  • Proof: Lower bound

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 20 / 41

  • Proof: Lower bound

    T : [�0:5; 0:5]d ! Rd+1

    T (t1; t2; � � � ; td) = (R sin t1R

    ; t2; � � � ; td ;R(1� cos t1R)); R =

    r2

    p�

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 21 / 41

  • Rigidity theory and upper bound

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 22 / 41

  • Uniqueness , Global rigidity

    Global rigidity

    Assume noiseless measurements.Is the reconstruction unique? (up to rigid motions)

    Depends both on G and on (x1; : : : ; xn)Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 23 / 41

  • Generic lobal rigidity: Characterization

    Theorem (Connelly 1995; Gortler, Healy, Thurston, 2007)

    (G ; fxig) is generically globally rigid in Rd,(G ; fxig) admits a stress matrix , with rank() = n � d � 1.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 24 / 41

  • Stress matrix: : : imagine putting springs on the edges : : :

    !ij

    Equilibrium x1; : : : ; xn :

    [force on i ] =Xj2@i

    !ij (xj � xi ) = 0

    ij = !ij , ii = �P

    j2@i !ijJavanmard, Montanari (Stanford) Localization Problem July 27, 2011 25 / 41

  • Stress matrix: : : imagine putting springs on the edges : : :

    !ij

    Equilibrium x1; : : : ; xn :

    [force on i ] =Xj2@i

    !ij (xj � xi ) = 0

    ij = !ij , ii = �P

    j2@i !ijJavanmard, Montanari (Stanford) Localization Problem July 27, 2011 25 / 41

  • In�nitesimal rigidity

    Consider a continuos motion preserving distances instantaneously

    (xi � xj )T ( _xi � _xj ) = 0; 8(i ; j ) 2 E

    Trivial motions

    _xi = Axi + b; A = �AT 2 Rd�d

    rotation translationJ

    J]

    De�nition

    (G ; fxig) is in�nitesimally rigid if rotations and translations are theonly in�nitesimal motions.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 26 / 41

  • In�nitesimal rigidity

    Consider a continuos motion preserving distances instantaneously

    (xi � xj )T ( _xi � _xj ) = 0; 8(i ; j ) 2 E

    Trivial motions

    _xi = Axi + b; A = �AT 2 Rd�d

    rotation translationJ

    J]

    De�nition

    (G ; fxig) is in�nitesimally rigid if rotations and translations are theonly in�nitesimal motions.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 26 / 41

  • Rigidity matrix

    (xi � xj )T ( _xi � _xj ) = 0; 8(i ; j ) 2 E

    Rigidity matrix: RG;X �

    264 _x1..._xn

    375 = 0

    dim(null(RG;X )) � d(d � 1)2| {z }A

    + d|{z}b

    =

    d + 1

    2

    !

    (G ; fxig) is in�nitesimally rigid if rank(RG;X ) = nd ��d+1

    2

    �.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 27 / 41

  • Rigidity matrix

    (xi � xj )T ( _xi � _xj ) = 0; 8(i ; j ) 2 E

    Rigidity matrix: RG;X �

    264 _x1..._xn

    375 = 0

    dim(null(RG;X )) � d(d � 1)2| {z }A

    + d|{z}b

    =

    d + 1

    2

    !

    (G ; fxig) is in�nitesimally rigid if rank(RG;X ) = nd ��d+1

    2

    �.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 27 / 41

  • Rigidity matrix

    (xi � xj )T ( _xi � _xj ) = 0; 8(i ; j ) 2 E

    Rigidity matrix: RG;X �

    264 _x1..._xn

    375 = 0

    dim(null(RG;X )) � d(d � 1)2| {z }A

    + d|{z}b

    =

    d + 1

    2

    !

    (G ; fxig) is in�nitesimally rigid if rank(RG;X ) = nd ��d+1

    2

    �.

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 27 / 41

  • (Idea of the) proof of the upper bound

    Noise is analogous to stretching/compressing the edges

    Global/in�nitesimal rigidity: Rank of Stress/Rigidity matrix.

    Needed: Quantitative rigidity theory(Rank ) bounds on singular values)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 28 / 41

  • A mechanical analogy

    Graph I Graph II

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 29 / 41

    RGG1_aristotelian.aviMedia File (video/avi)

    RGG2_aristotelian.aviMedia File (video/avi)

  • A mechanical analogy

    U (X ) =X

    (i ;j )2E

    1

    2(kxi � xj k2 � d2ij )2 �

    Xi

    f Ti xi

    _X = �rXU

    xi + �xi equilibrium positions in the presence of force

    (

    Id +RG;XRTG;X ) � �x � f

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 30 / 41

  • A mechanical analogy

    U (X ) =X

    (i ;j )2E

    1

    2(kxi � xj k2 � d2ij )2 �

    Xi

    f Ti xi

    _X = �rXU

    xi + �xi equilibrium positions in the presence of force

    (

    Id +RG;XRTG;X ) � �x � f

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 30 / 41

  • Steps of the proof

    Solution of SDP ! QGram matrix ! Q0 (Q0 = XXT , X = [x1jx2j � � � jxn ]T )

    Q = Q0 + S

    = Q0 +XYT +YXT + S?

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 31 / 41

  • Steps of the proof

    Solution of SDP ! QGram matrix ! Q0 (Q0 = XXT , X = [x1jx2j � � � jxn ]T )

    Q = Q0 + S

    = Q0 +XYT +YXT + S?

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 31 / 41

  • Steps of the proof

    Solution of SDP ! QGram matrix ! Q0 (Q0 = XXT , X = [x1jx2j � � � jxn ]T )

    Q = Q0 + S

    = Q0 + XYT +YXT| {z }

    Controlled by rigidity matrix

    + S?|{z}by stress matrix

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 32 / 41

  • Steps of the proof

    Lemma

    For a stress matrix � 0,

    kS?k� � �max()�min(jhu ;x i?)

    jE j�:

    Lemma

    �min(jhu ;x i?) � C1(nrd)�2r4; �max() � C2(nrd)2:

    Lemma

    kXY T +YXTk1 � C (nrd)5n2

    r4:

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 33 / 41

  • Of independent interest

    Lemma

    jhu ;x i? � C1(nrd)�3r2 Ljhu ;x i?

    (Manifold learning folklore: � L2)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 34 / 41

  • Discussion

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 35 / 41

  • Discussion : Manifold learning

    Data set Proximity graph

    ~dij = kxi � xj kRN ; dij = dM(xi ; xj )

    � / r4

    r20(r0 � curvature radius)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 36 / 41

  • Discussion : Manifold learning

    Data set Proximity graph

    ~dij = kxi � xj kRN ; dij = dM(xi ; xj )

    � / r4

    r20(r0 � curvature radius)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 36 / 41

  • Discussion : Manifold learning

    Data set Proximity graph

    ~dij = kxi � xj kRN ; dij = dM(xi ; xj )

    � / r4

    r20(r0 � curvature radius)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 36 / 41

  • Manifold learning: Reconstruction error

    d(X ; X̂ ) � C (nrd)5

    r20

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 37 / 41

  • Maximum Variance Unfolding

    [cf. Weinberger and Saul, 2006]

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 38 / 41

  • Optimization formulation

    maximizenX

    1�i ;j�n

    kxi � xj k2

    subj:to���kxi � xj k2 � d2ij ��� � � 8(i ; j ) 2 EnXi=1

    xi = 0

    Nonconvex

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 39 / 41

  • Semide�nite programing relaxation

    maximize Tr(Q)

    subj:to���hMij ;Qi � d2ij ��� � �uTQu = 0

    Q � 0

    Mij = eij eTij ;

    eij = (0; : : : ; 0; +1|{z}i

    ; 0; : : : ; 0; �1|{z}j

    ; 0; : : : ; 0)

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 40 / 41

  • Conclusion

    Numerous examples of geometric inference.

    Many open problems.

    Thanks!

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 41 / 41

  • Conclusion

    Numerous examples of geometric inference.

    Many open problems.

    Thanks!

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 41 / 41

  • Conclusion

    Numerous examples of geometric inference.

    Many open problems.

    Thanks!

    Javanmard, Montanari (Stanford) Localization Problem July 27, 2011 41 / 41

    SDP relaxation and robust reconstructionLower boundRigidity theory and upper boundDiscussion