magnetic circuits.pdf

Upload: imtiax-laghari

Post on 06-Jul-2018

245 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/16/2019 Magnetic Circuits.pdf

    1/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 1

    METU

    Magnetic Circuits

    Magnetic Circuits

    byProf. Dr. Osman SEVAİOĞLU

    Electrical and Electronics Engineering Department

    Shanghai Pudong Airport

  • 8/16/2019 Magnetic Circuits.pdf

    2/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 2 

    METU

    Magnetic Circuits

    Principles of Magnetism

    Permanent Magnet

    A permanent magnet is a piece of metal withcharacteristics of attracting certain metals

    N

    S

    Horseshoe Magnets

  • 8/16/2019 Magnetic Circuits.pdf

    3/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 3

    METU

    Magnetic Circuits

    Principles of Magnetism

    Permanent Magnet

    NS

    Magnetic flux lines form closed paths thatare close together where the field isstrong and farther apart where the field isweak.

    Flux lines leave the north-seeking end of amagnet and enter the south-seeking end.

    When placed in a magnetic field, acompass indicates north in the directionof the flux lines.

  • 8/16/2019 Magnetic Circuits.pdf

    4/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 4

    METU

    Magnetic Circuits

    Principles of ElectromagnetismMagnetic Field around a wire

    A current in a wire creates a magneticfield around the wire as shown in thefollowing figure

    Right Hand Rule

    Wrap your right hand fingers aroudthe wire while your thumb fingerpoints the direction of current flow

    Other fingerswill point thedirection offield lines

  • 8/16/2019 Magnetic Circuits.pdf

    5/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 5 

    METU

    Magnetic Circuits

    Principles of ElectromagnetismMagnetic Field around a wire

    A current in a wire creates a magneticfield around the wire as shown in thefollowing figure

    If this wire is wound around an ironcore, the field lines are superposedas shown in the following figure

    Electromagnet

  • 8/16/2019 Magnetic Circuits.pdf

    6/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 6 

    METU

    Magnetic Circuits

    Application of Right Hand Rule to ElectromagnetsThe coil is grasped with the fingerspointing the direction of current flow,the thumb finger points the direction ofthe magnetic field in the coil

    Wire is grasped with the thumb fingerpointing the direction of current flow,the fingers encircling the wire pointthe direction of the magnetic field

    Field lines

  • 8/16/2019 Magnetic Circuits.pdf

    7/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 7 

    METU

    Magnetic Circuits

    Electromagnet

    Consider again the coil woundaround the iron core as shown

    Electromagnet Horseshoe Electromagnet

    If the iron core is shaped as an “U” shape , weobtain a “horseshoe” electromagnet 

  • 8/16/2019 Magnetic Circuits.pdf

    8/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 8 

    METU

    Magnetic Circuits

    Electromagnet

    Iron Core may be closed to form a magnetic “Loop”

  • 8/16/2019 Magnetic Circuits.pdf

    9/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 9

    METU

    Magnetic Circuits

    Magnetic Ohm’s Law

    Electrical Ohm’s Law Magnetic Ohm’s Law

    Voltage(Volt)

    Current I (Ampere)

    Resistance(R)

    +

    V = R  x  I (Volt) (Ohm) (Ampere)

    F  = R   x  Ф(Ampere x Turn) ( ) (Weber)

    Flux Ф (Weber)

    Reluctance( R  )

    F = N x I 

    Electro Motive Force (emf) Magneto Motive Force (mmf)

  • 8/16/2019 Magnetic Circuits.pdf

    10/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 10 

    METU

    Magnetic Circuits

    Magneto Motive Force (mmf)

    Definition F  = N  x  I (Ampere x Turn) (Turn) (Amper)

    Flux Ф (Weber)

    Reluctance( R  )

    F = N x I 

    Please note that flux is proportional toboth;• Current I,• Number of Turns, N,i.e. flux depends on the product: N x I,

    called Magneto Motive Force (mmf)

    Flux Ф (Weber)

  • 8/16/2019 Magnetic Circuits.pdf

    11/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 11

    METU

    Magnetic Circuits

    Electrical Resistance

    Electrical Resistance

    R = l  / A

    where, R is the resistance of conductor,  is the resistivity coefficient,

      = 1 / 56 Ohm-mm2  /m (Copper)

    1 / 32 Ohm-mm2 

     /m (Alumin.)l (m) is the length of the conductor  A (mm2  ) is the cross sectional area

    of conductor 

    Resistance of a cable is proportional tothe length and inversely proportional tothe cross sectional area of the cable

    A

    (Area- m 2  ) (meter) 

  • 8/16/2019 Magnetic Circuits.pdf

    12/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 12 

    METU

    Magnetic Circuits

    Magnetic Resistance (Reluctance)

    Reluctance

    R = (1/ µ) l  / A

    where, R is the resistance of conductor,

     µ is the magnetic permeabilitycoefficient,

     µ 0  = 4 10 -7  (Air)

    l (m) is the length of the material, A (mm2  ) is the cross sectional area

    of the material 

    The reluctance of a magnetic material isproportional to the mean length andinversely proportional to the crosssectional area, and the permeability ofthe magnetic material

    l (meter) (Area- m 2  ) 

  • 8/16/2019 Magnetic Circuits.pdf

    13/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 13

    METU

    Magnetic Circuits

    Magnetic Resistance (Reluctance)

    Reluctance

    The reluctance of a magnetic material isproportional to the mean length andinversely proportional to the product ofthe cross sectional area and thepermeability of the magnetic material

  • 8/16/2019 Magnetic Circuits.pdf

    14/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 14

    METU

    Magnetic Circuits

    SummaryReluctance

    R = (1/ µ)l

     / A

    A (Area- m 2  ) l (meter) 

    Resistance

    R =l

     / A

    A (Area- m 2  )  l (meter) 

  • 8/16/2019 Magnetic Circuits.pdf

    15/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 15 

    METU

    Magnetic Circuits

    Current Density

    Current Density

    Current density in a cable is the currentflowing through per unit area in a planeperpendicular to the direction of currentflow

    J = I / A (Amper / m2  )

    A (Area- m 2  ) I (Amper) 

  • 8/16/2019 Magnetic Circuits.pdf

    16/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 16 

    METU

    Magnetic Circuits

    Flux Density

    Flux Density

    Flux density in a magnetic material isthe flux flowing through per unit area ina plane perpendicular to the direction offlux flow

    B = Ф  / A ( Weber / m2  )

    A (Area- m 2  )    Ф  (Weber) 

  • 8/16/2019 Magnetic Circuits.pdf

    17/58

  • 8/16/2019 Magnetic Circuits.pdf

    18/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 18 

    METU

    Magnetic Circuits

    Magnetizing ForceDefinition

    B = µ  x 

    Please note that the µ coefficient in

    the following expression is notconstant, but function of H.

    0,0000

    0,0005

    0,0010

    0,0015

    0,0020

    0,0025

    0,0030

    0,0035

    0,0040

    0,0045

    0,0050

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

    Mild Steel Sheet 

    µ(H)

    Magnetizing Force H (AT / m)

    µ-H Characteristics

  • 8/16/2019 Magnetic Circuits.pdf

    19/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 19

    METU

    Magnetic Circuits

    Magnetizing ForceDefinition

    Magnetizing Force is the mmf perunit length of the magnetic material

    NI /l

    = H 

    B = µ  x  H 

    or 

    H = F / l (AT / meter)

    Relation between B and H;

    A

    (Area- m 2  ) l

    (meter) 

  • 8/16/2019 Magnetic Circuits.pdf

    20/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 20 

    METU

    Magnetic Circuits

    B-H CharacteristicsDefinition

    The importance of B-H

    characteristics is that, it isindependent of the crosssectional area A and length l, i.e.it is independent of the shape

    and volume of the material,In other words, B-Hcharacteristics exhibits themagnetic property of the

    material for per unit length andand cross sectional area,

    Hence, it is provided by themanufacturer of the magnetic

    material

    B-H Characteristics

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 1200 2000 2800 3600 4400 5200 6000

    Magnetizing Force H (At/m)

        M   a   g   n   e    t    i   c

        f    l   u   x    d   e   n   s    i    t   y    B    (    T   =    T   e   s    l   a    )

    Mild steel sheetCast steelCast iron

  • 8/16/2019 Magnetic Circuits.pdf

    21/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 21

    METU

    Magnetic Circuits

    B-H Characteristics

    B-H Characteristics

    Please note that µ is a function of H 

    µ-H Characteristics

    Please note that B-H characteristicssaturates at high values of H 

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 1200 2000 2800 3600 4400 5200

    0,0000

    0,0005

    0,0010

    0,0015

    0,0020

    0,0025

    0,0030

    0,0035

    0,0040

    0,0045

    0,0050

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

    Mild Steel Sheet 

    µ(H)

    Magnetizing Force H (AT / m)6000Magnetizing Force H (At/m)

        M   a

       g   n   e    t    i   c    f    l   u   x    d   e   n   s    i    t   y    B

        (    T   =    T   e   s    l   a    )

    Mild steel sheet

    Cast steel

    Cast iron

  • 8/16/2019 Magnetic Circuits.pdf

    22/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 22 

    METU

    Magnetic Circuits

    B-H Characteristics of Free Air 

    B-H Characteristics

    Please note that µ 0  is constant 

    µ0-H Characteristics

    B-H characteristics of free air is linearexhibiting no saturation effect 

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 1200 2000 2800 3600 4400 5200

    µ0(H)

    6000Magnetizing Force H (At/m)

        M   a

       g   n   e    t    i   c    f    l   u   x    d   e   n   s    i    t   y    B

        (    T   =    T   e   s    l   a    )

    0,0000011

    0,0000012

    0,0000013

    0,0000014

    0,0000015

    0,0000016

    0,0000017

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000Magnetizing Force H (AT / m)

     µ 0 = 4 10 -7  µ 0 = 4 10 

    -7 

    The ratio µ/ µ 0 

    is called “Relative Permeability”

  • 8/16/2019 Magnetic Circuits.pdf

    23/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 23

    METU

    Magnetic Circuits

    Ф- F  Characteristics

    Ф  -  F  Characteristics

    Vertical and horizontal axes in theB-H Characteristics may bemultiplied by A and l, respectivelyyielding the Ф  -  F Characteristics

    B x A = Ф (Weber)

    H x l = F (AT)

    F (mmf) (AT)

          Ф

        (    F    l   u   x    )    (    W   e    b   e   r    )

    Please note that the shape of the B-Hcharacteristics is unchanged, while onlythe figures on the axes are changed 

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    400 1200 2000 2800 3600 4400 5200 6000

    Mild steel sheetCast steel

    Cast iron

  • 8/16/2019 Magnetic Circuits.pdf

    24/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 24

    METU

    Magnetic Circuits

    Knee Point

    Definition

    Knee Point on the Ф - F Characteristics is the point belowwhich the characteristics may beassumed to be linear 

    Ф  -  F  Characteristics

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    1,40

    1,60

    1,80

    2,00

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

    Knee Point 

    F (mmf) (AT)

     

        (    F    l   u   x    )    (    W   e

        b   e   r    )

  • 8/16/2019 Magnetic Circuits.pdf

    25/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 25 

    METU

    Magnetic Circuits

    An Alternative Definition of Reluctance

    Definition

    Reluctance is the inverse of theslope of the chord drawn by joining the origin and a point onthe Ф - F Characteristics

    Ф  -  F  Characteristics

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    1,40

    1,60

    1,80

    2,00

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

    Knee Point 

    F (mmf) (AT)

     

        (    F    l   u   x    )    (    W   e    b   e   r    )

    R = (1/ µ) l  / A

  • 8/16/2019 Magnetic Circuits.pdf

    26/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 26 

    METU

    Magnetic Circuits

    An Alternative Definition of Reluctance

    Definition

    Please note that reluctance isconstant in the region below theknee point

    Ф  -  F  Characteristics

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    1,40

    1,60

    1,80

    2,00

    0 500 1000 1500 2000 2500 3000 3500

    Knee Point 

    F (mmf) (AT)

     

        (    F    l   u   x    )    (    W   e    b   e   r    )

    R = (1/ µ) l  / A

  • 8/16/2019 Magnetic Circuits.pdf

    27/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 27 

    METU

    Magnetic Circuits

    Magnetic Kirchoff’s Laws

    Kirchoff’s First Law

    Summation of fluxes entering in a junction is equal to that of leaving

    1 2

    0

    V0 = 0

    R13

    R20

    +

    3

    I 1 I 2 

    I 3V 1 V 2 

    Ф 1 = Ф 2  + Ф 3 (Weber)

    Electrical Analog

    I 1 = I 2  + I 3 (Amper)

    R12

    R30

    +

    R10

    + ++

    1 2

    0

    3Ø1 Ø2

    Ø3

  • 8/16/2019 Magnetic Circuits.pdf

    28/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 28 

    METU

    Magnetic Circuits

    Magnetic Kirchoff’s Laws

    Kirchoff’s Second Law

    Summation of magneto motive forcesin a closed magnetic circuit is zero

    R0

    F = NI = R 1 Ф + R 2 Ф  + R 0 Ф + R 3 Ф 

    Electrical Analog

    V = R 1 I + R 2  I + R 0  I +R 3 I

    R1

    R2

    R3

    R1

    R2

    R0

    R3

    V 1

    +

  • 8/16/2019 Magnetic Circuits.pdf

    29/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 29

    METU

    Magnetic Circuits

    R1

    R2

    R0

    R3

    Magnetic Kirchoff’s Laws: Application

    Kirchoff’s Second Law

    Reluctance of the parts of the magneticmaterial

    R 1 = l1 / µ A

    R 2  = l2  / µ A

    R 3 =l

    3  / µ A

    Reluctance of the air gap

    R 0 

    = l0  / µ 

    0  A

     µ 0  = 4 10 -7 

    Total reluctance

    R T  = R 1 + R 2 + R 3 + R 0 

  • 8/16/2019 Magnetic Circuits.pdf

    30/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 30 

    METU

    Magnetic Circuits

    Magnetic Kirchoff’s Laws: Application

    Kirchoff’s Second Law

    Then flux may be calculated as;

    Ф = F / R T = NI / ( R 1 + R 2 + R 3 + R 0 )

    or Then flux may be calculated as;

    F = Ф ( R 1 + R 2 + R 3 + R 0 )

    = Ф R 1 + Ф R 2 + Ф R 3 + Ф R 0 = F 1 + F 2 + F 3 + F 0  KVL for magnetic circuits

    R1

    R2

    R0

    R3

  • 8/16/2019 Magnetic Circuits.pdf

    31/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 31

    METU

    Magnetic Circuits

    Magnetic Kirchoff’s Laws: Application

    Kirchoff’s Second Law

    Then flux density may be written as;

    B = Ф   / A

    = ( F  / ( R 1 + R 2 + R 3 + R 0 )) / A

    = (NI / A)/( l1 /Aµ + l2  /Aµ + l3 /Aµ + l0  /Aµ 0  )

    = NI / ( l 1 / µ + l 2   µ + l 3 / µ + l 0   µ 0  )

    Ampere’s Law: ∑∫   =⋅   Nid lHMagnetomotive force may then be written as;F = NI = F 1 + F 2 + F 3 + F 0 

    = H 1 l 1 + H 2  l 2 + H 3 l 3 + H 0  l 0

    R1

    R2

    R0

    R3

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    32/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 32 

    METU

    Magnetic Circuits

    Example 1

    Question

    The magnetic circuit shown on theRHS is operated at saturated fluxvalues, hence linear techniques cannot be applied.

    For a flux density of 1.6 Weber / m2

    ,determine the current I and flux Ф

    Flux Ф (Weber)

    Reluctance

    ( R  )

    F = N x I 

    Parameters

    Cross sectional area = A = 10 cm2

    Mean length of flux path =l

    m = 30 cmNumber of turns = N = 500

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    33/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 33

    METU

    Magnetic Circuits

    Example 1

    Solution

    Flux Ф (Weber)

    Reluctance ( R  )

    F = N x I 

    Parameters

    Cross sectional area = A = 10 cm2

    Mean length of flux path = l m = 30 cm

    Number of turns = N = 500

    The first thing to do, is to use B-H

    curve for finding the value of Hcoreesponding to flux density of 1.6Weber / m2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600Magnetizing Force H (At/m)

        M   a   g   n   e    t    i   c    f

        l   u   x    d   e   n   s    i    t   y    B    (    T   =    T   e

       s    l   a    )

    B = 1.6 Wb/m2→ H = 2400 AT / m

    6000

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    34/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 34

    METU

    Magnetic Circuits

    Example 1

    Solution

    Flux Ф (Weber)

    Reluctance R

    F = N x I 

    Parameters

    Cross sectional area = A = 10 cm2

    Mean length of flux path = l m = 30 cm

    Number of turns = N = 500

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600

    Magnetizing Force H (At/m)

        M   a   g   n   e    t    i   c    f    l   u   x    d   e   n   s    i    t   y    B    (    T   =    T   e   s    l   a    )

    B = 1.6 Wb/m2 → H = 2400 AT / mF = NI = H l m   →   I = H  x  l m / N

    = 2400  x 0.3 / 500= 1.44 Amper 

    Ф = B  x  A = 1.6  x 10 x 10 -4 = 0.0016 Wb

    6000

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    35/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 35 

    METU

    Magnetic Circuits

    Example 2

    Flux density = B = 0.15 Wb / m2

    µ = 1000 x µ0 (B-H curve is linear)Question

    Determine the flux and mmf required to

    produce the flux in the toroid shown on theRHS wound around a certain ferromegneticmaterial called “Ferrite”

    Outer diamater = 0.10 mInner diameter = 0.08 mDept = 0.02 m

    The ratio  µ/ µ 0 is called “RelativePermeability”

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    36/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 36 

    METU

    Magnetic Circuits

    Example 2

    Flux density = B = 0.15 Wb / m2

    µ = 1000 x µ0(B-H curve is linear)

    Solution

    Outer diamater = 0.10 mInner diameter = 0.08 mDept = 0.02 m

    Thickness of the core = (0.10 – 0.08) / 2 = 0.01 mDiameter mean = (0.10 + 0.08 ) / 2 = 0.09 m

    Cross sectional area = 0.02 x 0.01 = 0.0002 m2 

    Then, flux = Ф = B x A = 0.15 x 0.0002 = 0.00003 Wb

    Cross sectional area A

  • 8/16/2019 Magnetic Circuits.pdf

    37/58

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    38/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 38 

    METU

    Magnetic Circuits

    The need for the Load Line Technique

    When the material is operated within the

    saturated region of the B-Hcharacteristics, solution of the circuitwhen the mmf is given, but the flux isunknown is rather difficult, due to the

    fact that µ of the material is a funcitonof flux Ф, but flux is unknown, i.e. theequation;

    Ф = F  / ( R total + R 0  )= F  / ( l total  / (  µ( Ф  ) x  A)) + R 0  )

    Load Line Technique

    In other words, both sides of the above

    equation involve the unknown variable Ф

    R1

    R2

    R0

    R3

    F = NI 

    Implicit nonlinar equation

    M ti Ci it

  • 8/16/2019 Magnetic Circuits.pdf

    39/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 39

    METU

    Magnetic Circuits

    Question

    B-H curve of the magnetic

    circuit shown on the RHS isgiven below. Fluxes in thebranches are given as;

    Ø a = 0.003 Weber,

    Ø b = 0.003 Weber,Ø c = 0.003 Weber 

    find the direction andmagnitudes of the currents

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    1,40

    1,60

    1,80

    0 500 1000 1500 2000 2500 3000H (AT/m)

        B    (    W    b    /   m    2    )

    Øa Øc

    Øb

    l BB’  = 0.1 ml BAA’B’ = l BCC’B’ = 0.4 m

     ABB’  = 5 cm2 

     ABAA’B’ = ABCC’B’  = 20 cm2 

    Example 4

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    40/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 40 

    METU

    Magnetic Circuits

    Solution

    A’ B’

    V1

    RBCC’B’

    + +

    C’

    I 1 I 2 

    I 3V 1 V 2 

    RAA’BB’

    A B C

    Solution

    Writing down magnetic KVL for the loops

    of the magnetic circuitF 1 = N 1 I 1 = H BB’ l BB’ + H BAA’B’ l BAA’B’ (1)

    F 2 = N 2 I 2 = H BCC’B’ l BCC’B’ + H BB’ l BB’ (2)

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    41/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 41

    METU

    Magnetic Circuits

    Solution

    Solution

    Now, flux densities

    BBB’ = Ø b / ABB’  = 0.0008 / ( 5 x 10 -4 )

    = 1.6 Wb/m2 

    BBAA’B’ = Ø a / ABAA’B’ = 0.0030 / (20 x 10 -4 )

    = 1.5 Wb/m2 

    BBCC’B’ = Ø c  / ABCC’B’ = 0.0022 /(20 x 10 -4 )

    = 1.1 Wb/m2 

    Now, find magnetizing forces by using thegiven B-H curve

    BBB’ = 1.6 Wb/m2 HBB’ = 3000 AT/m

    BBAA’B’ = 1.5 Wb/m2 HBAA’B’ = 2000 AT/m

    BBCC’B’ = 1.1 Wb/m2 HBCC’B’ = 400 AT/m

    0,00

    0,20

    0,40

    0,60

    0,80

    1,00

    1,20

    1,40

    1,60

    1,80

    0 500 1000 1500 2000 2500 3000H (AT/m)

        B    (    W    b    /   m    2    )

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    42/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 42 

    METU

    Magnetic Circuits

    Solution

    Solution

    Now, substitute the above magnetizing

    forces into equatins (1) and (2)

    100 I 1 = 3000 x 0.01 + 2000 x 0.4 = 1100 

    Thus, I 1 = 1100 / 100 = 11.0 Ampers

    300 I 2 = 400 x 0.4 – 3000 x 0.1 = -140 

    Thus I 2 = -140.0 / 300 = - 0.467 Ampers

    A’ B’

    V1

    RBCC’B’

    + +

    C’

    I 1 I 

    2 I 3V 1 V 2 

    RAA’BB’

    A B C

    Please note that I 1 is in the same direcitionas shown in the figure, but I 2  is in the

    opposite direction

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    43/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 43

    METU

    Magnetic Circuits

    Description

    F  = H c  l c + H 0  l 0  (1)

    where, H c and H 0 are the magnetizing

    forces in the material (core) andair gap,l c and l 0 are the lengths of the

    core and air gap, respectively 

    Graphical Solution (Load Line Technique)

    Writing Amper’s equation for the

    magnetic circuit

    Now, noting that;

    H 0 = B0  / µ 0  = Bc  / µ 0 

    And substituting this into (1)

    l 0

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    44/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 44

    METU

    Magnetic Circuits

    or writing the above equation in

    terms of Hc

    Graphical Solution (Load Line Technique)

    l 0Derivation of the Load Line Equation

    F  = NI = H C l c + ( Bc  / µ 0 ) l 0  (2)

    H C = -  l 0  / (µ 0  l c ) Bc  + NI / l c  (3)

    Load Line Equation:

    y = - a x + b

    The Load Line is then drawn on the B-Hcharacteristics and the intersection point

    of the two curves is found

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    45/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 45 

    METU

    Magnetic Circuits

    Graphical Solution

    Solve the magnetic circuit shown on the

    RHS with the B-H characteristics

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 1200 2000 2800 3600 4400 5200

    Magnetizing Force H (At/m)

        M   a   g   n   e    t    i   c    f    l   u   x    d   e   n   s    i    t   y    B    (    T   =    T   e   s    l   a    )

    Load Line

    B-H Characterstics

    l 0

    Graphical Solution (Load Line Technique)

    5600

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    46/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 46 

    METU

    Magnetic Circuits

    l 0 = 10-3 mQuestion

    Example 3

    Solve the magnetic circuit shown on the

    RHS with the B-H characteristics givenbelow by using the Load Line Technique

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600Magnetizing Force H (At/m)

        M   a   g   n   e    t

        i   c    f    l   u   x    d   e   n   s    i    t   y    B    (    T   =

        T   e   s    l   a    )

    6000

    Ac= 8 x 10-3 m l c = 0.55 m

    F = NI = 3300 AT 

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    47/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 47 

    METU

    Magnetic Circuits

    The Load Line Equation

    Example 3

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600Magnetizing Force H (At/m)

        M   a   g   n   e    t

        i   c    f    l   u   x    d   e   n   s    i    t   y    B    (    T   =

        T   e   s    l   a    )

    F = NI = 3300 AT 6000

    H C = -  l 0  / (µ 0  l c ) Bc + NI / l c = - 3327 Bc  + 6000

    Load Line

    B-H Characterstics

    Solution: B= 1.41 Wb / m2

    l 0 = 10-3 mAc= 8 x 10

    -3 m l c = 0.55 m

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    48/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 48 

    METU

    Magnetic Circuits

    Flux Ф t)

    Reluctance R

    F (t) = N x I(t)

    Energy in Magnetic Circuits

    Sinusoidally ExcitedMagnetic Circuits

    Consider the sinusoidally excitedmagnetic circuit shown on the RHS

    I (t) = - I cos wt 

    F (t) = - N I cos wt 

    Ф (t) = F (t) / R total 

    = - N I cos wt /R

    total 

    = - Ф cos wt 

    where Ф = NI / R total 

    ^

    ^

    ^

    ^

    ^

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    49/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 49

    METU

    Magnetic Circuits

    Energy in Magnetic Circuits

    Sinusoidally ExcitedMagnetic Circuits

    I (t) = - I cos wt 

    F (t) = - N I cos wt 

    Ф (t) = F (t) / R total 

    = - N I cos wt / R total 

    = - Ф cos wt 

    where, Ф = NI / R total 

    ^^

    ^

    ^

    ^

    Waveforms

    -2,5

    -2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    π   /2    π   3π   /2  2 π  

    I (t)

    Ф (t)

    Angle (radians)

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    50/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 50 

    METU

    Magnetic Circuits

    Voltage Induced in the Coil

    Sinusoidally ExcitedMagnetic Circuits

    By using Lenz’s law

    e (t) = N d/dt Ф(t)

    = - N d/dtФ

    cos wt = N Ф w sin wt 

    = e sin wt 

    where e = N Ф w 

    ^

    ^

    ^

    Waveforms

    ^

    ^

    -6,00

    -4,00

    -2,00

    0,00

    2,00

    4,00

    6,00

    π   /2    π   3π   /2  2 π  

    Angle (radians)

    e (t)

    Ф (t)

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    51/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 51

    METU

    Magnetic Circuits

    Voltage Induced in the Coil

    SinusoidallyExcited Magnetic

    Circuits

    If we plot Ф(t) and e(t) onthe same scale

    -6,00

    -4,00

    -2,00

    0,00

    2,00

    4,00

    6,00

    π   /2    π   3π   /2  2 π  

    Angle (radians)

    e (t)

    Ф (t)

    Magnetizing Force H (AT / m)

    0 1000 2000 3000

    0,00

    0,40

    0,80

    1,20

    1,60

    2,00

    0,40

    0,80

    1,20

    1,60

    2,00

        B    (    W   e    b   e   r    /   m    2    )

    - 2   , 5  

    - 2   , 0  

    - 1   , 5  

    - 1   , 0  

    -  0   , 5  

     0   , 0  

     0   , 5  

    1   , 0  

    1   , 5  

    2   , 0  

    2   , 5  

     π /     2   

     3    π /     2   

    2    π

    I (t)

    A n  g l    e  (  r  a  d i    a n 

     s  )  

     π

    -3000 -2000 -1000

    Please note that the shape of this waveform isnot actually of pure sinusoidal shape, but adistorded form of sinusoidal waveform, due to

    nonlinearity of the B-H curve

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    52/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 52 

    METU

    Magnetic Circuits

    Energy Stored in Magnetic Circuits

    Time duration dt required for achange d Ф in flux may be foundon the Ф – t curve

    Electrical EnergyStored in a Magnetic

    Circuit

    -2,5

    -2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    π   /2    π   3π   /2  2 π  Angle (radians)

    d Ф(t)

    dt 

           Ф    (    t    )    (    W   e    b   e   r    )

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    53/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 53

    METU

    Magnetic Circuits

    Energy Stored in Magnetic Circuits

    Let us now calculate theinstantaneous electrical energystored in a magnetic circuit within

    a time duration dt

    dW elect = e(t) I(t) dt 

    = N d Ф(t)/dt I(t) dt 

    = (NI) d Ф(t) / dt x dt = F d Ф

    Electrical Energy Storedin a Magnetic Circuit

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    54/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 66 

    METU

    Magnetic Circuits

    Fringing Effect

    Description

    Fringing effect is the deviation ofthe flux trajectory to outside in theair gap

    The effects of fringing;(a) increasing the cross sectional

    area of the air gap,(b) creating nonlinarity in the flux

    density in the air gap

    Usual practice for handling thefringing effect is to increase the crosssectional area of the air gap incalculations by a factor, such as 20 %

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    55/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 67 

    METU

    Magnetic Circuits

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    56/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 68 

    METU

    Magnetic Circuits

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    57/58

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİ O Ğ LU, Page 69

    METU

    Magnetic Circuits

  • 8/16/2019 Magnetic Circuits.pdf

    58/58