magnetic field evolution of terrestrial planets · 2009. 10. 7. · self-generated magnetic field...

72
Magnetic Field Evolution of Magnetic Field Evolution of Terrestrial Planets Terrestrial Planets Doris Breuer Doris Breuer Institute of Institute of Planetary Planetary Research Research DLR Berlin DLR Berlin

Upload: others

Post on 29-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Magnetic Field Evolution of Magnetic Field Evolution of Terrestrial PlanetsTerrestrial Planets

    Doris BreuerDoris BreuerInstitute of Institute of PlanetaryPlanetary ResearchResearchDLR BerlinDLR Berlin

  • ContentContent Part IPart I

    IntroductionIntroductionMotivationMotivationObservationsObservations

    MechanismsMechanisms forfor magneticmagnetic fieldfield generationgenerationin in thethe corecore

    Thermal Thermal convectionconvectionCompositionalCompositional convectionconvection

  • ContentContent Part IIPart II

    ExamplesExamplesMarsMarsEarthEarthMercuryMercuryGalileanGalilean SatellitesSatellites

    ConclusionsConclusions

  • WhyWhy itit isis InterestingInteresting to to StudyStudy thetheMagneticMagnetic FieldField

    General General understandingunderstanding of of dynamodynamo actionaction

    MagneticMagnetic fieldfield evolutionevolution and and magnetizedmagnetizedcrustcrust helpshelps to to constrainconstrain

    Thermal Thermal evolutionevolutionInteriorInterior structurestructureGeologicalGeological and and tectonictectonic processesprocessesEvolution of Evolution of thethe atmosphereatmosphere

  • SelfSelf--GeneratedGenerated MagneticMagnetic FieldFieldOf Of thethe terrestrialterrestrial planetsplanetsand and majormajor satellitessatellites, , Earth, Mercury, and Earth, Mercury, and GanymedeGanymede areare knownknown to to havehave selfself--generatedgeneratedmagneticmagnetic fieldsfields

    Mars, Venus, Moon, Mars, Venus, Moon, IoIo, , Europa, and Europa, and CallistoCallisto lack lack selfself--generatedgenerated magneticmagneticfieldsfields

  • PlanetaryPlanetary DataDataMercury Venus Earth Mars Ganymede

    Radius 0.38 0.95 1.0 0.54 0.41

    Mass 0.055 0.815 1.0 0.107 0.018

    Density[kg/m3]

    5430. 5250. 5515. 3940. 1940.

    ρ0 [kg/m3] 5300. 4000. 4100. 3800. 1800.

    Moment ofInertia factor

    0.34 ? 0.3355 0.3662 0.3105

    Rc/Rp 0.8 0.55 0.546 0.5 0.3

    DipoleMoment[1013 T m³]

    0.43 - 1577.

  • WhatWhat AboutAboutMagneticMagnetic FieldField Generation in Generation in thethe

    PastPast??

  • Remanent Remanent CrustCrust MagnetizationMagnetization

    Magnetized crust provides information Magnetized crust provides information aboutabout

    History of the magnetic fieldHistory of the magnetic fieldGeological and tectonic processesGeological and tectonic processes

    Acuna et al., 1999

  • OriginOrigin of Remanent of Remanent MagnetizationMagnetizationThermal remanent Thermal remanent magnetizationmagnetization (TRM)(TRM)

    If a magnetic mineral is cooled in an ambient If a magnetic mineral is cooled in an ambient magnetic field through a temperature characteristic magnetic field through a temperature characteristic of the material, of the material, Curie temperatureCurie temperature, it will begin to , it will begin to acquire a very large acquire a very large remanentremanent magnetization. As magnetization. As the material cools through the Curie temperature, the material cools through the Curie temperature, domains begin to form, in alignment with the domains begin to form, in alignment with the ambient field. The magnetic field is then frozen into ambient field. The magnetic field is then frozen into the rock and is extremely stable.the rock and is extremely stable.

    MagnetiteMagnetite ~ 853 K~ 853 KHematiteHematite ~ 953~ 953Iron ~ 1043 KIron ~ 1043 K

  • Remanent Remanent CrustCrust MagnetizationMagnetizationConstraintConstraint on on EarlyEarly Dynamo ActionDynamo Action

    EarthEarthAge of magnetized crust between 3.5 Age of magnetized crust between 3.5 GaGa and and todaytoday

    MoonMoonAge of magnetized crust between 3.9 and 3 Age of magnetized crust between 3.9 and 3 GaGa

    MarsMarsAge of magnetized crust between 4.5 and 4 Age of magnetized crust between 4.5 and 4 GaGa??

    Venus, MercuryVenus, MercuryNo data availableNo data available

  • WhatWhat do do wewe KnowKnow AboutAbout thetheOriginOrigin of of thethe MagneticMagnetic FieldField??

  • ‘‘Bar MagnetBar Magnet‘‘ in in thethe PlanetsPlanets??

    No! No! VariationsVariations withwith time (time (e.ge.g. polar . polar wanderwander, , reversalsreversals) ) cancan bebe observedobserved

    No! No! MagneticMagnetic material in material in thethe interiorinterior isis well well aboveabove thetheCurie Curie temperaturetemperature

  • DecayingDecaying Old Old MagneticMagnetic FieldField??

    EquationEquation of of magneticmagnetic inductioninduction

    ( )∂∂

    t

    Bu B B= ∇ × × + ∇Dma

    2

    1ma

    c

    Dμσ

    =

    uu velocityvelocity fieldfieldBB magneticmagnetic fieldfieldt timet time

    MagneticMagnetic diffusiondiffusion coefficientcoefficient

    σσcc electricalelectrical conductivityconductivityμ μ magneticmagnetic permeabilitpermeabilitäätt

  • DecayingDecaying Old Old MagneticMagnetic FieldField??

    In In thethe casecase of of uu = 0= 0CharacteristicCharacteristic diffusiondiffusion time:time:

    L L characteristiccharacteristic lengthlength scalescale ((planetaryplanetary radiusradius))

    Fast Fast decaydecay of of magneticmagnetic fieldfield isis inconsistentinconsistent withwithobservationsobservations

    2410 adiff

    ma

    LD

    τ = ≈

  • MagneticMagnetic FieldField GenerationGeneration

    NecessaryNecessary condictionscondictionsforfor existenceexistence

    A A conductingconducting fluidfluid

    Motion in Motion in thatthat fluidfluid

    CowlingCowling‘‘ss Theorem Theorem requiresrequires somesomehelicityhelicity in in thethe fluidfluidmotionmotion

  • CoresCores

    TheThe magneticmagnetic fieldsfields of of terrestrialterrestrial planetsplanets and and satellitessatellites areareproducedproduced in in theirtheircorescoresThereThere isis littlelittle doubtdoubtthatthat thethe planetsplanets and and mostmost of of thethe majormajorsatellitessatellites havehave ironiron--richrich corescores

  • DynamosDynamosHydromagneticHydromagnetic dynamosdynamos

    Thermal Thermal dynamosdynamos

    Chemical Chemical dynamosdynamos

    G. Glatzmeier‘s Dynamo model for Earth

  • Thermal DynamoThermal DynamoThermal Dynamo

    stabilystratified

    noconvectioninthecore

    efficient heat transferfromthe lower mantle

    thermal convectioninthecore

    inefficient heat transferfromthe lower mantle

    Fluid motion in the liquid iron core due to thermal buoyancy(=> cooling from above)

    ‘Critical‘ heat flow out of the core

  • ‘‘CriticalCritical‘‘ HeatHeat FlowFlow::HeatHeat FlowFlow AlongAlong thethe CoreCore AdiabateAdiabate

    c

    p

    thermal conductivity of the coreT temperaturez depth

    thermal expansivityg acceleration due to gravityC specific heat capacity

    cc c c

    ad p

    c

    TgdTq k kdz C

    k

    α

    α

    ⎛ ⎞= =⎜ ⎟⎝ ⎠

  • ‘‘CriticalCritical‘‘ HeatHeat FlowFlow

    Mars, Mercury Mars, Mercury 5 5 -- 20 mW/m20 mW/m22

    Earth, Venus Earth, Venus 15 15 –– 40 mW/m40 mW/m22

    GalileanGalilean SatellitesSatellites, Moon < 7 mW/m, Moon < 7 mW/m22

    Large Large uncertainitiesuncertainities duedue to to poorlypoorly knownknownparametersparameters

  • VigourVigour of of CoreCore ConvectionConvection

    A A sufficientlysufficiently large large ΔΔT T betweenbetween thethe corecore and and thethe mantlemantle isis requiredrequired in in order to order to drivedrive thermal thermal convectionconvection in in thethe corecore

    IfIf ΔΔT T isis tootoo smallsmall thanthanthethe corecore will will bebe coolingcoolingbyby conductionconduction

    Sohl and Spohn, 97

  • Chemical DynamoChemical Dynamo

    CompositionalCompositionalbouyancybouyancy releasedreleased bybyinner inner corecore growthgrowth

    DifficultDifficult to to stopstopoperatingoperating

    Mercury Model by Conzelmann and Spohn

  • Chemical DynamoChemical DynamoChemical Dynamo

    ExistenceExistence of light of light alloyingalloying elementselements in in thethecorecore likelike S, O, SiS, O, Si

    CoreCore temperaturetemperaturebetweenbetween solidussolidus and and liquidusliquidus

    Fe

    FeFe

    Fe-FeSFe-FeS Fe-FeS

  • CoreCore CompositionComposition: Earth: EarthIndirectIndirect informationinformation fromfromseismologyseismology

    SeimicSeimic velocitiesvelocities of of thethe corecore constrainconstraindensitydensity and and thereforetherefore compositioncomposition

    Inner solid Inner solid corecore22--3% 3% lessless densedense thanthan pure iron pure iron ~ 8% S / Si ?~ 8% S / Si ?

    OuterOuter fluidfluid corecore55--10 % 10 % lessless densedense thanthan pure iron pure iron ~ 8% S / Si and 8% O ?~ 8% S / Si and 8% O ?

  • 25

    Galile

    anSa

    tellite

    s

    Mercu

    ry

    Mars

  • 26

    Galile

    anSa

    tellite

    s

    Mercu

    ry

    Mars

  • 27

    Melting Melting TemperaturesTemperatures in in thethePlanetaryPlanetary CoresCores

    0 10 20 30 40 50Pressure (GPa)

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    Tem

    pera

    ture

    (K)

    Fe

    Fe-FeS eute

    ctic

    Galilean Satellites

    Core liquidus depending on S content

    Low S content

    High S content

  • ‘‘ClassicalClassical‘‘ Earth Earth Chemical DynamoChemical Dynamo

    Fe

    FeFe

    Fe-FeSFe-FeS Fe-FeS

    P

    T

    Mantle Core

    Tprofile core liquiduscore liquidus

    Solid

    inne

    r core

  • Solid Fe-richinner core

    Low Low PressurePressureChemical DynamoChemical Dynamo

    P

    T

    Mantle Core

    Tprofile

    core liquidus

    Fe snowMantle

    Iron snow may form a solid inner coreor remelt upon sinking (chemical iron gradient)

  • Liquid Fe- FeS core

    Solid (bouyant) FeS layer

    P

    T

    Mantle Core

    Tprofile

    core liquidus

    rising FeS-solid

    Mantle

    Low Low PressurePressureChemical DynamoChemical Dynamo

  • Power Power RequirementsRequirementsDynamo Dynamo convertsconverts thermal and thermal and gravitationalgravitational energyenergy intointo magneticmagnetic energyenergy

    Power Power neededneeded to to sustainsustain geomagneticgeomagneticfieldfield isis setset byby thethe ohmicohmic losseslosses ((dissipationdissipationduedue to to electricalelectrical resistanceresistance))

    EstimatesEstimates of of ohmicohmic lossloss forfor thethe Earth Earth covercover a a widewide rangerange (0.1 to 3.5 TW)(0.1 to 3.5 TW)

  • L

    i

    th

    c

    gravitational energy

    E latent heat of soldification

    dm rate of inner core growthdt

    dE rate of change of heat content of the coredt

    A heat conducted along adiabatCarnot effic

    i i thdiss g g t L c c

    g

    c

    dm dm dEE E A qdt dt dt

    E

    q

    χ χ

    χ

    ⎛ ⎞Φ = + − −⎜ ⎟⎝ ⎠

    iency factor

    OhmicOhmic DissipationDissipation

  • Dynamo Dynamo EfficiencyEfficiency

    Thermal Thermal dynamodynamo efficiencyefficiency isis restrictedrestrictedbyby CarnotCarnot efficiencyefficiency χχtt to to bebe a a fewfewpercentpercent

    Chemical Chemical dynamodynamo isis notnot restrictedrestricted; ; χχg g = 1= 1

  • SomeSome First First ConclusionsConclusionsThermal Thermal convectionconvection ((fluidfluid corecore withoutwithout inner inner corecoregrowth): growth): InefficientInefficient of of dynamodynamo generationgeneration

    CompositionalCompositional convectionconvection (inner (inner corecore growth): growth): EfficientEfficient of of dynamodynamo generationgeneration; ; difficultdifficult to to stopstop

    TheThe mantlemantle determinesdetermines whetherwhether a a terrestrialterrestrialplanet has planet has corecore convectionconvection and and whetherwhether itit cancanhavehave a a dynamodynamo

  • ComparisonComparison plateplate tectonicstectonics and and stagnantstagnant lidlid convectionconvection

    0 750 1500 2250 3000 3750 4500Time (Ma)

    16001700180019002000210022002300

    Cor

    e te

    mpe

    ratu

    re (k

    )

  • 0 750 1500 2250 3000 3750 4500Time (Ma)

    -10

    0

    10

    20

    30

    40

    50

    Cor

    e-m

    antle

    hea

    t flo

    w (m

    Wm

    2 )

    ComparisonComparison plateplate tectonicstectonics and and stagnantstagnant lidlid convectionconvection

  • SOME EXAMPLESSOME EXAMPLESMarsMarsEarth / VenusEarth / VenusMercuryMercuryGanymedeGanymede and and EuropaEuropa

  • MARSMARS

  • MarsMarsMars

  • Magnetic Field HistoryMagneticMagnetic FieldField HistoryHistory

    No No presentpresent--dayday dynamodynamo

    MagnetisationMagnetisation of of oldestoldest partspartsof of thethe MartianMartian crustcrust

    No No magnetisationmagnetisation of large of large impactimpact basinsbasins

    ⇒⇒ Dynamo Dynamo actionaction beforebefore thethelarge large impactsimpacts ~4 Ga ~4 Ga

    oror⇒⇒ Dynamo Dynamo actionaction afterafter large large

    impactsimpacts

    `The Great Nothing`

  • Dynamo Action Dynamo Action BeforeBefore Large Large ImpactsImpacts

    Pro Pro ‘‘EasiestEasiest‘‘ explanationexplanation: (: (oldold surfacesurface –– magnetizedmagnetized, , youngyoung surfacesurface –– nonnon--magnetizedmagnetized))MagnetizationMagnetization of of oldold SNC SNC meteoritemeteorite (age 4.4 Ga)(age 4.4 Ga)

    ContraContraThermal Thermal dynamodynamo notnot veryvery efficientefficientDifficultDifficult to to explainexplain thethe non non magnetizedmagnetized areasareas in in thethesouthernsouthern hemispherehemisphereNorthern Northern hemispherehemisphere has has oldold crustcrust belowbelow youngyoungsurfacesurface butbut almostalmost no no magnetizationmagnetization

  • Dynamo Action After Large Dynamo Action After Large ImpactsImpacts

    Pro Pro Inner Inner corecore growth growth moremore efficientefficientNon Non magnetizedmagnetized areaarea in in thethe southernsouthern hemispherehemisphere

    ContraContraChemical Dynamo Chemical Dynamo difficultdifficult to to stopstopLateLate strongstrong crustcrust productionproduction ((e.ge.g. . plutonismplutonism) ) necessarynecessary butbut notnot observedobserved on on thethe surfacesurfaceEarlyEarly HesperianHesperian volcanicvolcanic plainsplains ((aboutabout 3.7 3.7 –– 3.2 3.2 Ga) Ga) showshow no no magnetizationmagnetization

  • Melting Melting TemperaturesTemperatures in in thetheMartianMartian CoreCore

    0 10 20 30 40 50Pressure (GPa)

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    Tem

    pera

    ture

    (K)

    Martian coreMartian mantle

    Fe

    Fe-FeS eute

    cticFe-Fe

    S (14% S)

    Usselman

    n

    core adiabate

    core adiabate

    Fe-FeS (14% S) Fei et al.

  • Thermal Evolution ModelsThermal Evolution Models

    WhatWhat cancan wewe learnlearn aboutabout Mars Mars fromfrom thetheconstraintsconstraints on on thethe magneticmagnetic fieldfield historyhistory??

    HeatHeat transfertransfer mechanismmechanism((plateplate tectonicstectonics versusversus stagnantstagnant lidlidconvectionconvection))

    CompositionComposition((drydry versusversus wetwet MartianMartian mantlemantle))

  • Early Plate Tectonic Regime Versus

    Stagnant Lid Convection

    EarlyEarly PlatePlate TectonicTectonic Regime Regime VersusVersus

    StagnantStagnant Lid Lid ConvectionConvection

  • CoreCore TemperaturesTemperatures

    0 500 1000 1500 2000 2500 3000 3500 4000 4500time (Ma)

    1850

    1950

    2050

    2150

    2250

    2350

    core

    tem

    pera

    ture

    (K)

    1020 Pa s

    1022 Pa s

    1021 Pa s

    One-Plate Planet 1021 Pa s

  • Breuer and Spohn, 2003

    EarlyEarly MartianMartian (thermal) (thermal) dynamodynamo possiblepossiblewithwith a a superheatedsuperheated corecore

  • DryDry VersusVersus WetWet MartianMartian MantleMantle

  • 1700 1800 1900 2000 2100Initial mantle temperature (K)

    1600

    1700

    1800

    1900

    2000

    2100

    2200

    2300

    Cor

    e-m

    antle

    tem

    pera

    ture

    (K)

    mol

    ten

    core

    inne

    r cor

    e gr

    owth

    η = 1022 Pas

    core liquidus

    η = 1021 Pas

    η = 1020 Pas

    η = 1019 Pas

    Models Models withwith a a weak/wetweak/wet viscosityviscosity showshow presentpresent--daydayinner inner corecore growth growth forfor UsselmanUsselman datadata; ; inconsistentinconsistentwithwith thethe lack of a lack of a presentpresent dynamodynamo..

  • ConclusionsConclusions Mars IMars I

    EarlyEarly plateplate tectonicstectonics consistentconsistent withwith earlyearlystrongstrong magneticmagnetic fieldfield

    StagnantStagnant lidlid convectionconvection consistentconsistent withwithearlyearly magneticmagnetic fieldfield ifif thethe corecore isissuperheatedsuperheated byby moremore thanthan 100 K.100 K.

  • ConclusionsConclusions Mars IIMars II

    In In casecase of of UsselmanUsselman datadata and 14 wt.% S, and 14 wt.% S, a a drydry, , stiffstiff mantlemantle isis moremore likelylikely to to explainexplainearlyearly magneticmagnetic fieldfield

    In In casecase of Fei of Fei datadata ((strongstrong decreasedecrease of S of S withwith pressurepressure in in eutecticeutectic compositioncomposition) and ) and 14 wt.% S, Mars 14 wt.% S, Mars indirectlyindirectly ‘‘provesproves‘‘ thatthat a a thermal thermal dynamodynamo cancan existexist

  • EarthEarth

  • QuestionsQuestions

    WhenWhen diddid thethe inner inner corecore growth?growth?

    ThemalThemal dynamodynamo activeactive beforebefore inner inner corecoregrowth?growth?

    RadioactiveRadioactive elementselements in in thethe corecore??

  • ConstraintsConstraints on Thermal on Thermal Evolution Models Evolution Models forfor thethe EarthEarth

    ObservedObserved magneticmagnetic fieldfield evolutionevolution

    SurfaceSurface heatheat flowflow

    Inner Inner corecore radiusradius

  • Stevenson et al., 1983

    Evolution of the Earth‘s Core-Mantle Heat Flow

    Evolution of Evolution of thethe EarthEarth‘‘ss CoreCore--MantleMantle HeatHeat FlowFlow

  • Stevenson et al., 1983

    Evolution of the Earth‘sMagnetic Field

    Evolution of Evolution of thethe EarthEarth‘‘ssMagneticMagnetic FieldField

    Thermal Chemical

    Difficult to stopoperating

  • ConclusionsConclusions EarthEarthCurrentCurrent thermal thermal evolutionevolution modelsmodels showshowgrowth of inner growth of inner corecore betweenbetween 1.5 and 3 Ga1.5 and 3 Ga

    MagneticMagnetic fieldfield mustmust bebe poweredpowered byby thermal thermal dynamodynamo in in thethe earlyearly evolutionevolutionPotassiumPotassium in in thethe corecore isis requiredrequired dependingdependingmainlymainly on on ohmicohmic dissipationdissipation and and thethe corecore adiabateadiabate

    OnsetOnset of inner of inner corecore dependsdepends ononSolidusSolidus and and adiabateadiabate of of thethe corecoreContentContent of of radioactiveradioactive elementselements e.ge.g. K (. K (thethe higherhigherthethe potassiumpotassium contentcontent thethe youngeryounger thethe inner inner corecoregrowth)growth)TwoTwo--layeredlayered versusversus oneone--layeredlayered convectionconvection

  • MercuryMercury

  • MercuryMercury’’s Magnetic Fields Magnetic Field

    Mariner 10 discovered Mercury's planetary Mariner 10 discovered Mercury's planetary magnetic field and magnetospheremagnetic field and magnetosphereThe planetary magnetic field is sufficient to The planetary magnetic field is sufficient to stand off the solar wind (at least most of stand off the solar wind (at least most of the time)the time)

    22:10 22:20 22:30 22:40 22:50 23:00

    16 MARCH 1975

    BS - BOW SHOCKMP - MAGNETOPAUSECA - CLOSEST APPROACH

    MA

    GN

    ETI

    C F

    IELD

    MA

    GN

    ITU

    DE

    (nT)

    BS MP (5) BSCA MP

    UPSTREAMWAVES

    UW

    22:10 22:20 22:30 22:40 22:50 23:00

    16 MARCH 1975

    BS - BOW SHOCKMP - MAGNETOPAUSECA - CLOSEST APPROACH

    MA

    GN

    ETI

    C F

    IELD

    MA

    GN

    ITU

    DE

    (nT)

    BS MP (5) BSCA MP

    UPSTREAMWAVES

    UW

  • Thermal HistoryThermal History

    New thermal history New thermal history calculations using full calculations using full convection codesconvection codes

    Planet cools mostly Planet cools mostly by thickening its by thickening its lithospherelithosphere

  • Dynamo Dynamo DrivenDriven bybyCompositionalCompositional ConvectionConvection

    CompositionalCompositionalbouyancybouyancy releasedreleased bybyinner inner corecore growth growth afterafter a 100 a 100 –– 1000 Ma1000 MaSmall Small amountamount of S of S requiredrequired; ; consistentconsistentwithwith geochemicalgeochemicalmodelsmodels

  • Europa andEuropa andGanymedeGanymede

  • 63

    Ice or Ice + thin ocean

    Ganymede has a magnetic field while Ganymede has a magnetic field while EuropaEuropa has not!has not!

    Ganymede Ganymede –– EuropaEuropa DichotomyDichotomy

  • DeepDeep interiorsinteriors areare similarsimilarGanymedeGanymede‘‘ss MoIMoI of of 0.3105 suggests e.g.0.3105 suggests e.g.–– core radius: 800 kmcore radius: 800 km–– silicate shell: 900 kmsilicate shell: 900 km–– ice shell: 900 kmice shell: 900 km

    EuropaEuropa‘‘ss MoIMoI of 0.346 of 0.346 suggests e.g.suggests e.g.–– core radius: 600 km core radius: 600 km –– silicate shell: 800 kmsilicate shell: 800 km–– Ice shell: 150 kmIce shell: 150 km

  • Inner Inner CoreCore GrowthGrowth

    Present-day inner core growthInner core growth early in the evolution, remanent magnetic field possible

  • Temperature Profiles of Ganymede

  • GanymedeGanymede, Europa, Europa

    IfIf GanymedeGanymede‘‘ss corecore formedformedlatelate

    SlowSlow differentiationdifferentiation isis lesslessfavourablefavourable forfor a a sufficientsufficient ΔΔT to T to drivedrive a thermal a thermal dynamodynamo. .

    IfIf corecore formedformed earlyearlyDynamo Dynamo actionaction possiblepossible withwithchemicalchemical dynamodynamo ifif lowlow S S contentcontent oror weakweak rheologyrheology

    TidalTidal heatingheating in Europa in Europa maymay frustratefrustrate presentpresentdynamodynamo actionaction

    Ganym

    ede

    Europa

  • ThermoThermo--chemicalchemical dynamodynamo

    IfIf an inner an inner corecore growthsgrowths: a : a longstandinglongstandingmagneticmagnetic fieldfield generationgeneration isis likelylikely

    ExistenceExistence of a of a growinggrowing inner inner corecore dependsdependson:on:–– ContentContent of light of light elementselements–– HeatHeat transporttransport mechanismmechanism of of thethe mantlemantle

  • Fluid core

    Efficiency of mantle coolingStagnant lid Plate tectonics

    Ligh

    t ele

    men

    tsin

    the

    core

    PresentPresent magneticmagnetic fieldfield dependingdepending on on compositioncomposition and and heatheat transporttransport

    t1

    Inner core growthMagnetic field generation

  • Inner core growthMagnetic field generation

    Fluid core

    Large inner coreWeak magnetic field?

    Efficiency of mantle coolingStagnant lid Plate tectonics

    Ligh

    t ele

    men

    tsin

    the

    core

    Mars

    Earth

    Mercury

    Venus

    t2

    t2

    PresentPresent magneticmagnetic fieldfield dependingdepending on on compositioncomposition and and heatheat transporttransport

    Ganymede

  • Inner core growthMagnetic field generation

    Fluid core

    Solid coreNo magnetic field

    Stagnant lid Plate tectonics

    Ligh

    t ele

    men

    tsin

    the

    core

    Mars

    Earth

    Mercury

    Venus

    t3

    t3

    t3

    Large inner coreWeak magnetic field?

    LaterLater in time in time ……..

    Efficiency of mantle cooling

    Ganymede

  • General General ConclusionsConclusionsEarlyEarly dynamosdynamos forfor oneone--plateplate planetsplanets areare likelylikely ififtherethere isis a a sufficientlysufficiently large large ΔΔT as a T as a consequenceconsequenceof of corecore formationformationThermal Thermal dynamosdynamos forfor oneone--plateplate planetsplanets will last will last aboutabout 100 100 –– 500 Ma500 MaExtendedExtended dynamodynamo actionaction requiresrequires efficientefficient corecorecoolingcooling and an IC and an IC freezefreeze--outout (Earth, Mercury, (Earth, Mercury, and and GanymedeGanymede))

    Earth: Earth: plateplate tectonicstectonicsMercury: Large Mercury: Large corecore and and lowlow S S contentcontentGanymedeGanymede: : weakweak rheologyrheology ((plateplate tectonicstectonics?) ?) duedueto to waterwater

    Magnetic Field Evolution of Terrestrial PlanetsContent Part IContent Part IIWhy it is Interesting to Study the Magnetic FieldSelf-Generated Magnetic FieldPlanetary DataWhat About �Magnetic Field Generation in the Past?Remanent Crust MagnetizationOrigin of Remanent MagnetizationRemanent Crust Magnetization�Constraint on Early Dynamo ActionWhat do we Know About the Origin of the Magnetic Field?Decaying Old Magnetic Field?Decaying Old Magnetic Field?Magnetic Field GenerationCoresDynamosThermal Dynamo‘Critical‘ Heat Flow:�Heat Flow Along the Core Adiabate‘Critical‘ Heat FlowVigour of Core Convection Chemical DynamoChemical DynamoCore Composition: EarthMelting Temperatures in the Planetary Cores‘Classical‘ Earth Chemical DynamoLow Pressure �Chemical DynamoPower RequirementsDynamo EfficiencySome First ConclusionsComparison plate tectonics and stagnant lid convectionSOME EXAMPLESMARSMars Magnetic Field HistoryDynamo Action Before Large ImpactsDynamo Action After Large ImpactsMelting Temperatures in the Martian CoreThermal Evolution ModelsEarly Plate Tectonic Regime �Versus �Stagnant Lid ConvectionCore TemperaturesDry Versus Wet Martian MantleConclusions Mars IConclusionsMars IIEarthQuestionsConstraints on Thermal Evolution Models for the EarthEvolution of the Earth‘s Magnetic FieldConclusions EarthMercuryDynamo Driven by Compositional ConvectionEuropa and�GanymedeGanymede – Europa DichotomyDeep interiors are similarInner Core GrowthGanymede, EuropaThermo-chemical dynamoPresent magnetic field depending on composition and heat transport Present magnetic field depending on composition and heat transport Later in time ….General Conclusions