manipulator dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · manipulator dynamics...

38
1 Manipulator Dynamics Introduction to ROBOTICS

Upload: others

Post on 15-Aug-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

1

Manipulator Dynamics

Introduction to ROBOTICS

Page 2: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

2

Outline

• Homework Highlight• Review

– Kinematics Model– Jacobian Matrix– Trajectory Planning

• Dynamic Model– Langrange-Euler Equation– Examples

Page 3: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

3

Homework highlight

• Composite Homogeneous Transformation Matrix Rules: – Transformation (rotation/translation) w.r.t.

(X,Y,Z) (OLD FRAME), using pre-multiplication

– Transformation (rotation/translation) w.r.t. (U,V,W) (NEW FRAME), using post-multiplication

Page 4: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

4

Homework Highlight• Homogeneous Representation

– A frame in space3R

⎥⎥⎥⎥

⎢⎢⎢⎢

=⎥⎦

⎤⎢⎣

⎡=

10001000 zzzz

yyyy

xxxx

pasnpasnpasn

PasnF

x

y

z),,( zyx pppP

ns

a

(X’)

(y’)(z’)

Page 5: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

5

Homework Highlight– Assign to complete the right-

handed coordinate system.– The hand coordinate frame is specified by the

geometry of tool. Normally, establish Zn along the direction of Zn-1 axis and pointing away from the robot; establish Xn so that it is normal to both Zn-1and Zn. Assign Yn to complete the right-handed system.

iiiii XZXZY ××+= /)(

nO

a0 a1

Z0

X0

Y0

Z3

X2

Y1

X1

Y2

d2

Z1

X33O

2O1O0O

Z2

Joint 1

Joint 2

Joint 3

Page 6: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

6

Review

• Steps to derive kinematics model:– Assign D-H coordinates frames– Find link parameters– Transformation matrices of adjacent joints– Calculate kinematics matrix– When necessary, Euler angle representation

Page 7: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

7

Review• D-H transformation matrix for adjacent coordinate

frames, i and i-1.– The position and orientation of the i-th frame coordinate

can be expressed in the (i-1)th frame by the following 4 successive elementary transformations:

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡−

=

= −−−

10000

),(),(),(),( 111

iii

iiiiiii

iiiiiii

iiiiiiiii

i

dCSSaCSCCSCaSSSCC

xRaxTzRdzTT

ααθθαθαθθθαθαθ

αθ

Page 8: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

8

Review • Kinematics Equations

– chain product of successive coordinate transformation matrices of

– specifies the location of the n-th coordinate frame w.r.t. the base coordinate system

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=

= −

100010000

12

11

00

nnn

nn

n

PasnPR

TTTT K

iiT 1−

nT0

Orientation matrix

Position vector

Page 9: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

9

Jacobian Matrix

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

6

5

4

3

2

1

θθθθθθ

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

6

5

4

3

2

1

θθθθθθ

&

&

&

&

&

&

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

ϕθφzyx

Joint Space Task Space

Forward

Inverse

Kinematics

Jaconian Matrix: Relationship between joint space velocity with task space velocity

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

z

y

x

zyx

ω

ωω&

&

&

JacobianMatrix

Page 10: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

10

Jacobian Matrix

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

z

y

x

zyx

ω

ωω&

&

&

1

2

1

6

)(

×

× ⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡=

nn

n

q

qq

dqqdh

&

M

&

&

nn

n

n

n

qh

qh

qh

qh

qh

qh

qh

qh

qh

dqqdhJ

×

×

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛=

6

6

2

6

1

6

2

2

2

1

2

1

2

1

1

1

6

)(

L

MMMM

L

L

Jacobian is a function of q, it is not a constant!

Page 11: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

11

Jacobian Matrix• Inverse Jacobian

• Singularity– rank(J)<min{6,n}, – Jacobian Matrix is less than full rank– Jacobian is non-invertable– Occurs when two or more of the axes of the robot

form a straight line, i.e., collinear– Avoid it

⎥⎥⎥⎥

⎢⎢⎢⎢

==

666261

262221

161211

JJJ

JJJJJJ

qJY

L

MMMM

L

L

&&

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

6

5

4

3

2

1

qqqqqq

&

&

&

&

&

&

YJq && 1−=

5q

1q

Page 12: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

12

Trajectory Planning• Trajectory planning,

– “interpolate” or “approximate” the desired path by a class of polynomial functions and generates a sequence of time-based “control set points” for the control of manipulator from the initial configuration to its destination.

– Requirements: Smoothness, continuity

– Piece-wise polynomial interpolate– 4-3-4 trajectory

30312

323

334

343

20212

223

232

10112

123

134

141

)(

)(

)(

atatatatath

atatatath

atatatatath

++++=

+++=

++++=

Page 13: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

13

Manipulator Dynamics• Mathematical equations describing the

dynamic behavior of the manipulator– For computer simulation– Design of suitable controller– Evaluation of robot structure

– Joint torques Robot motion, i.e. acceleration, velocity, position

Page 14: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

14

Manipulator Dynamics• Lagrange-Euler Formulation

– Lagrange function is defined

• K: Total kinetic energy of robot• P: Total potential energy of robot• : Joint variable of i-th joint• : first time derivative of • : Generalized force (torque) at i-th joint

iq

PKL −=

iii q

LqL

dtd τ=

∂∂

−∂∂ )(&

iq& iqiτ

Page 15: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

15

Manipulator Dynamics• Kinetic energy

– Single particle: – Rigid body in 3-D space with linear velocity (V) , and

angular velocity ( ) about the center of mass

– I : Inertia Tensor: • Diagonal terms: moments of inertia• Off-diagonal terms: products of inertia

2

21 mvk =

ωωTT IVmVk21

21

+=

ω

⎥⎥⎥⎥

⎢⎢⎢⎢

+−−

−+−

−−+

∫∫∫∫∫∫∫∫∫

dmyxyzdmxzdm

yzdmdmzxxydm

xzdmxydmdmzy

I

)(

)(

)(

22

22

22

∫ += dmzyI xx )( 22

∫= dmxyI xy )(

Page 16: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

16

Velocity of a link

iir

ix

iyiz

0x

0z

0yir0

⎥⎥⎥⎥

⎢⎢⎢⎢

=

1i

i

i

ii z

yx

r

ii

ii

ii

ii rTTTrTr )( 12

11

000 −== L

A point fixed in link i and expressed w.r.t. the i-th frame

Same point w.r.t the base frame

Page 17: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

17

Velocity of a link

ii

i

jj

j

ii

iii

ii

i

ii

ii

ii

ii

ii

ii

iii

rqqTrTrTTT

rTTTrTTT

rTTTdtdr

dtdVV

)(

)(

1

001

21

10

12

11

012

11

0

12

11

000

∑=

−−

∂∂

=++

++=

==≡

&&&LL

L&L&

L

0=iir&

Velocity of point expressed w.r.t. i-th frame is zeroiir

Velocity of point expressed w.r.t. base frame is:i

ir

Page 18: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

18

Velocity of a link

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡−

=−

100001

iii

iiiiiii

iiiiiii

ii dCS

SaCSCCSCaSSSCC

Tαα

θθαθαθθθαθαθ

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡−

−−−

=∂∂ −

10000000

1 iiiiiii

iiiiiii

i

ii CaSSSCC

SaCSCCS

qT θθαθαθ

θθαθαθ

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡−

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡ −

==∂∂

−−

10000

0000000000010010

11

iii

iiiiiii

iiiiiii

iii

i

ii

dCSSaCSCCSCaSSSCC

TQq

Tαα

θθαθαθθθαθαθ

• Rotary joints, iiq θ=

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡ −

=

0000000000010010

iQ

Page 19: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

19

Velocity of a link

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡−

=−

100001

iii

iiiiiii

iiiiiii

ii dCS

SaCSCCSCaSSSCC

Tαα

θθαθαθθθαθαθ

⎥⎥⎥⎥

⎢⎢⎢⎢

=∂∂ −

0000100000000000

1

i

ii

qT

iii

i

ii TQq

T1

1−

− =∂∂

• Prismatic joint, ii dq =

⎥⎥⎥⎥

⎢⎢⎢⎢

=

0000100000000000

iQ

Page 20: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

20

Velocity of a link

⎩⎨⎧

>≤

=∂∂ −−

−−

ijforijforTTQTTT

qT i

ij

jjj

j

j

i

011

12

21

100 LL

⎩⎨⎧

>≤

=∂∂

≡ −−

ijforijforTQT

qTU

ijj

j

j

i

ij 01

100

The effect of the motion of joint j on all the points on link i

∑∑==

− =∂∂

===≡i

j

iijij

ii

i

jj

j

ii

ii

iii

i rqUrqqTrTTT

dtdr

dtdVV

11

01

21

1000 )()()( &&L

Page 21: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

21

Kinetic energy of link i

⎥⎦

⎤⎢⎣

⎡=

⎥⎦

⎤⎢⎣

⎡=

⎥⎦

⎤⎢⎣

⎡=

=++=

∑∑

∑∑

∑ ∑

= =

= =

= =

i

prp

Tir

Tii

iiip

i

r

i

prp

Tir

Tii

iiip

i

r

i

p

i

r

Tiirir

iipip

Tiiiiii

qqUdmrrUTr

dmqqUrrUTr

dmrqUrqUTr

dmVVtracedmzyxdK

1 1

1 1

1 1

222

)(21

21

)(21

)(21)(

21

&&

&&

&&

&&&

∑=

≡n

iiiaATr

1)(

• Kinetic energy of a particle with differential mass dm in link i

Page 22: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

22

Kinetic energy of link i⎥⎦

⎤⎢⎣

⎡== ∑ ∫∑∫

= =

i

prp

Tir

Tii

iiip

i

rii qqUdmrrUTrdKK

1 1)(

21

&&

⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢

−+

+−

++−

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

== ∫

∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫

iiiiiii

iizzyyxx

yzxz

iiyzzzyyxx

xy

iixzxyzzyyxx

iii

iiiiii

iiiiii

iiiiii

Tii

iii

mzmymxm

zmIII

II

ymIIII

I

xmIIIII

dmdmzdmydmx

dmzdmzdmzydmzx

dmydmzydmydmyx

dmxdmzxdmyxdmx

dmrrJ

2

2

2

2

2

2

⎥⎥⎥⎥

⎢⎢⎢⎢

=

1i

i

i

ii z

yx

r

Center of mass

∫= dmxm

x ii

i1

Pseudo-inertia matrix of link i

Page 23: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

23

Manipulator Dynamics

[ ]∑∑∑

∑ ∫∑∑∑

= = =

= ===

=

⎥⎦

⎤⎢⎣

⎡==

n

i

i

p

i

rrp

Tiriip

i

prp

Tir

Tii

iiip

i

r

n

i

n

ii

qqUJUTr

qqUdmrrUTrKK

1 1 1

1 111

)(21

)(21

&&

&&

iJ

iq

• Total kinetic energy of a robot arm

: Pseudo-inertia matrix of link i, dependent on the mass distribution of link i and are expressed w.r.t. the i-th frame,

Need to be computed once for evaluating the kinetic energy

Scalar quantity, function of and ,iq& ni L,2,1=

Page 24: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

24

Manipulator Dynamics

)( 00i

ii

ii

ii rTgmrgmP −=−=

∑ ∑= =

−==n

i

n

i

ii

iii rTgmPP

1 10 ])([

)0,,,( zyx gggg =

• Potential energy of link i

: gravity row vector expressed in base frame2sec/8.9 mg =

ir0

iir : Center of mass w.r.t. i-th frame

: Center of mass w.r.t. base frame

• Potential energy of a robot arm

g

Function of iq

Page 25: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

25

Manipulator Dynamics• Lagrangian function

[ ]∑∑∑ ∑= = = =

+=−=n

i

i

j

i

k

n

i

ii

iikj

Tikiij rTgmqqUJUTrPKL

1 1 1 10 )()(

21

&&

jjji

n

ijj

n

ij

j

k

j

mmk

Tjij

m

jkn

ij

j

kk

Tjijjk

iii

rUgm

qqUJqU

TrqUJUTr

qL

qL

dtd

∑∑∑∑∑

=

= = == =

∂+=

∂∂

−∂∂

=

1 11

)()(

)(

&&&&

Page 26: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

26

Manipulator Dynamics

⎪⎩

⎪⎨

<<≥≥≥≥

=≡∂

∂−

−−

−−

−−

kiorjikjiTQTQTjkiTQTQT

UqU i

jjj

kkk

ikk

kjj

j

ijkk

ij

01

11

10

11

11

0

The interaction effects of the motion of joint j and joint k on all the points on link i

⎩⎨⎧

>≤

=∂∂

≡ −−

ijforijforTQT

qTU

ijj

j

j

i

ij 01

100

The effect of the motion of joint j on all the points on link i

Page 27: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

27

Manipulator Dynamics

im

n

k

n

mkikm

n

kkiki CqqhqD ++= ∑∑∑

= ==

&&&&1 11

τ

∑=

=n

kij

Tjijjkik UJUTrD

),max(

)(

∑=

=n

mkij

Tjijjkmikm UJUTrh

),,max()(

• Dynamics Model

jjji

n

ijji rUgmC ∑

=

−=

Page 28: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

28

Manipulator Dynamics

)(),()( qCqqhqqD ++= &&&τ

⎥⎥⎥

⎢⎢⎢

⎡=

nnn

n

DD

DDD

L

M

L

1

111

⎥⎥⎥

⎢⎢⎢

⎡=

nh

hqqh M&

1

),(

• Dynamics Model of n-link Arm

⎥⎥⎥

⎢⎢⎢

⎡=

nC

CqC M

1

)(

The Acceleration-related Inertia matrix term, Symmetric

The Coriolis and Centrifugal terms

The Gravity terms⎥⎥⎥

⎢⎢⎢

⎡=

ττ M

1Driving torque applied on each link

Page 29: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

29

Example

X0

Y0

X1Y1

L

m

⎥⎥⎥⎥

⎢⎢⎢⎢

=

1001

1

l

r

Example: One joint arm with point mass (m) concentrated at the end of the arm, link length is l , find the dynamic model of the robot using L-E method.

Set up coordinate frame as in the figure

]0,0,8.9,0[ −=g

11

11

11

11

10

10

100001000000

rCSSC

rTr

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡ −

==θθθθ

Page 30: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

30

Example

X0

Y0

X1Y1

L

m

θθθ

&&

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⋅⋅−

====

00

1

1

11

101

11

10

101

ClSl

rTQrTdtdrV

11

11

11

11

10

10

100001000000

rCSSC

rTr

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡ −

==θθθθ

Page 31: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

31

Example

[ ] dmClSlClSl

TrK 2111

1

1

)00

00

(21 θθθ

θθ

&∫ ⋅⋅−

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⋅⋅−

=

dmVVTrdK T )(21

11=

mClCSl

CSlSl

Tr 21

21

211

211

221

2

)

0000000000)(00)(

(21 θ

θθθθθθ

&

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⋅⋅⋅−⋅⋅−⋅

=

21

2221

221

2

21])()([

21 θθθθ && mlmClSl =+=

Kinetic energy

Page 32: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

32

Example

)( 11

0 rTmgP −= [ ]⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡ −

−−=

100

100001000000

008.90 11

11 lCSSC

mθθθθ• Potential energy

18.9 θSlm ⋅⋅=

12

12 8.9

21 θθ SlmmlPKL ⋅⋅−=−= &

112

112

111

8.98.9)(

)(

θθθθ

θθτ

ClmmlClmmldtd

LLdtd

⋅⋅−=⋅⋅−=

∂∂

−∂∂

=

&&&

&

• Lagrange function

• Equation of Motion

Page 33: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

33

Example: Puma 560• Derive dynamic equations for the first 4 links of PUMA 560 robot

Page 34: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

34

Example: Puma 560

Joint i θi αi ai(mm) di(mm)1 θ1 -90 0 0 2 θ2 0 431.8 -149.09 3 θ3 90 -20.32 0 4 θ4 -90 0 433.07 5 θ5 90 0 0 6 θ6 0 0 56.25

• Get robot link parameters• Set up D-H Coordinate frame

• Get transformation matrices iiT 1−

• Get D, H, C terms

Page 35: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

35

Example: Puma 560

)()()( 31331212211111111TTT UJUTrUJUTrUJUTrD ++=

)()( 31332212222112TT UJUTrUJUTrDD +==

)( 313333113TUJUTrDD ==

• Get D, H, C terms

∑=

=n

kij

Tjijjkik UJUTrD

),max(

)( 3,2,1;3 == in

)()( 323322222222TT UJUTrUJUTrD +=

)( 323333223TUJUTrDD ==

)( 3333333TUJUTrD =

Page 36: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

36

Example: Puma 560

)()()( 313311212211111111111TTT UJUTrUJUTrUJUTrh ++=

∑=

=n

mkij

Tjijjkmikm UJUTrh

),,max()(

⎥⎥⎥

⎢⎢⎢

⎡=

nh

hqqh M&

1

),(

• Get D, H, C terms ∑∑= =

=n

k

n

mmkikmi qqhh

1 1

&&

)()( 313312212212112TT UJUTrUJUTrh +=

)( 313323123TUJUTrh =

)()( 313321212221121TT UJUTrUJUTrh +=

)()( 313322212222122TT UJUTrUJUTrh += ……

23133231321313132123

22122211213111321112

211111

qhqqhqqhqqh

qhqqhqqhqqhqhh

&&&&&&&

&&&&&&&&

++++

++++=

)( 313313113TUJUTrh =

Page 37: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

37

Example: Puma 560

20

21211 )( TQU =

⎪⎩

⎪⎨

<<≥≥≥≥

=≡∂

∂−

−−

−−

−−

kiorjikjiTQTQTjkiTQTQT

UqU i

jjkjk

k

ikk

kjj

j

ijkk

ij

01

11

10

11

11

0

30

21311 )( TQU =

• Get D, H, C terms

10

21111 )( TQU =

21

22

10222 )( TQTU =

312

101321312 TQTQUU ==

323

201313 TQTQU =

212

101221212 TQTQUU ==

31

22

10322 )( TQTU =

323

212

10332323 TQTQTUU == 3

232

01331 TQTQU = 3223

20333 TQQTU =

Page 38: Manipulator Dynamicsw3.uch.edu.tw/control/download/5運動學.pdf · Manipulator Dynamics Introduction to ROBOTICS. 2 Outline • Homework Highlight • Review – Kinematics Model

38

Example: Puma 560

jjji

n

ijji rUgmC ∑

=

−=

33313

22212

111111 rgUmrgUmrgUmC −−−=

33323

222222 rgUmrgUmC −−=

• Get D, H, C terms

333333 rgUmC −=