mass transfer - distillation final 20.1.2016.pptx

Upload: nivedhitha

Post on 23-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    1/66

    Distillation

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    2/66

    Boiling Point - Composition

    Curve for Cyclohexane-Toluene

    mixture

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    3/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    4/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    5/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    6/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    7/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    8/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    9/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    10/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    11/66

    VLE An Azeotrope

    Ethyl acetate Ethanol VLE

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Xa (EA liquid)

    Ya(EAvapo

    ur)

    EA and Eth form an Azeotrope at55% EAAn azeotrope is formed when

    the liquid and vapourcompositions are the same

    Separation b conventionaldistillation is not possible

    Dewpoint and bubble point

    are the same at theazeotrope

    !suall occurs at a particularmole fraction" #utside thispoint separation is possible

    $an have a minimum ormaimum boilin& pointazeotrope

    $an limit the separation andpurit of the product

    $han&in& the pressure can bethe solution Etractive

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    12/66

    Ethyl acetate Ethanol VLE

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Xa (EA liquid)

    Ya(EAvapour)

    Ethyl acetate Ethanol VLE (T-x-y)

    70

    71

    72

    73

    74

    75

    76

    77

    78

    79

    80

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Xa, Ya (EA)

    TempC

    Bubble

    Dew

    'in () Azeotrope EA Ethanol

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    13/66

    ater !ormic Acid VLE

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Xa ("#$ liquid)

    Ya("#$

    vapour)

    ater !ormic Acid VLE (T-x-y)

    99

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Xa, Ya ("#$)

    TempC

    Bubble

    Dew

    #ther azeotropic mitures include *water + nitric acid, *water +hdrochloric acid, and man *water alcohols,

    'a () Azeotrope + -ater.ormic Acid

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    14/66

    /f equilibrium data are not available )artial )ressure0 Dalton and 1aoult

    Dalton2s Law

    )a3 a)

    )ais the partial pressure0 ais the vapour mole fraction and ) is the totalpressure

    1aoult2s law applies to an ideal miture

    )a3 )oaa )

    oa is the vapour pressure0 a is the liquid mole fraction

    -e assume we are dealin& with ideal mitures"

    $ombinin& Dalton and1aoult4

    .rom 1aoult2s law and Dalton2s law0 we have

    6herefore0 if we 7now the vapour pressure we can calculate the molefractions of the liquid and vapour phases

    8ou can then plot an + dia&ram or a 6++ dia&ram" 1emember0 this isfor constant pressure onl"

    T

    a

    o

    aa

    P

    xPy =o

    b

    o

    a

    o

    bT

    aPP

    PPx

    =

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    15/66

    Temperatu

    re

    (%C)

    Vapor

    pre&&ure

    (mm"')

    0 4.5

    5 6.8

    10 9.0

    20 17.3

    30 31.5

    40 55.5

    50 92.3

    60 149.3

    70 234.0

    80 354.9

    90 525.8

    100 760.0

    Water 'ethanol

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    16/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    17/66

    9" .rom 1elative Volatilit

    o

    b

    o

    aba

    P

    P=,

    6his is another wa to &et mole fractions" -e can determine therelative volatilit from the Vapour )ressures" !se the de:nition of

    relative volatilit and 1aoult2s law to &et the followin&

    is a function of V) which is a function of 6" ;/f ou need

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    18/66

    Activit Eth ?9#Ethanol and -ater are separated b distillation" 6he 6++ dataare &iven as follows" )err is a source for data ;limited=

    Temp Xa Ya

    100.0 0.000 0.000

    89.0 0.072 0.38985.3 0.124 0.470

    82.7 0.234 0.545

    81.5 0.327 0.583

    79.8 0.508 0.656

    79.3 0.573 0.684

    Ethanol Wate

    75

    80

    85

    90

    95

    100

    105

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Xa, Ya (Eth)

    TempC

    .ermentation &ives an ethanol conc of about @5%" -hathappens when the miture is boiled -hat is the hi&hest conc ofeth that can be achieved in this wa

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    19/66

    S/')LE D/S6/LLA6/#>

    6otal mole present when time t3 oBL

    *

    *

    ( ) ( )Lx y dL L dL x dx

    Lx y dL Lx Ldx xdL dxdL

    = +

    = +

    *

    *

    ( )

    ( )

    f

    W

    dL y x Ldx

    dL dx

    L y x

    x x L F

    x x L W

    =

    =

    = =

    = =

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    20/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    21/66

    .LAS? D/S6/LLA6/#>

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    22/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    23/66

    Steam Distillation

    Steam Distillation :

    )ossible to distill an or&anic compound at much lower temp" At constant sstem pr")60steam lowers the partial C vapor pressure

    of or&anic compound C its correspondin& boilin& pt" Due to immiscibilit of water 0it can be separated from product b

    simple condensation C followed b decantin&"Application )uri:cation of heat sensitive material as an alternativeto

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    24/66

    Azeotropic & Extractive Distillation.

    Ver close boilin& mi can be separated economicall b this technique"

    Solvent when added will increase the dierence between volatilities ofli&ht C heav component" 6he attraction of solvent to one of thecomponent reduces the volatilit of solvent C the component to whichitis attracted"

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    25/66

    Solvent for Distillation should be>on+corrosive"Should not react with feed to form undesirable product">on+toic"Azeotropic solvent should have volatilit near the ma

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    26/66

    Overheadvapor

    Top stage

    Totalcondenser

    Rectifying section(Enriching section)

    Stripping section(Exhausting section)

    Feed

    Bottomof column

    Partial reboiler

    Bottom stage

    eed stage

    Distillate

    Bottomproduct

    Topof column

    Boilup

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    27/66

    Applications: the most widely used large-scale method for separating homogeneous fluid mixtures

    in the chemical and petrochemical industry

    if no azeotropes are encountered, overhead and bottom products may be obtained in

    any desired purity

    suitable for the separation of liquid mixtures of components having similar boilingpoints into their individual components (at low relative volatility, but >,!"#

    $quipment: %ray &olumns (stagewise contact

    between the phases on individual

    trays#

    'aced &olumns (continuous contact bet-

    ween the phases on the surface of a pac-

    ing material#

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    28/66

    Types of Binary Distillation Calculation

    $nergy requirements and heat exchanger design for a given adiabatic separation process (calculate the

    heat duties of the condenser and reboiler, specify the heating steam consumption and coolant

    requirements, thermal-hydraulic design of the condenser and reboiler#

    )etermination of main dimensions of the distillation column: estimating the number of equilibrium

    stages required for a given separation, the column height and the column diameter for a desired

    pressure drop (H* f(N#, D#

    Historical Review of Calculation Methods

    until +!s: simplified, partially graphical design procedures for tray columns separating binary

    mixtures: Ponchon-Savarit(+.#, McCabe-Thiele(+"#

    approximate calculation methods for the solution of multicomponent, multistage sepa-

    ration problems (/hortcut methods#: Fenske(+0#, Gilliland(+1!#, Underwood(+12#

    design of paced columns based on 3%4.5%4 concepts: Chilton, Colburn(+0"#

    in the present: complex mathematical matrix methods allow to find exact solutions of nonlinear equation

    systems: an!-Henke(+22#, Na"htali-Sandhol#(+#

    commercial process simulation software allowing design and rating calculations of tray and

    paced columns operating at steady or unsteady state conditions (A/'$3, &5$6&A)#

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    29/66

    .undamentals of (inar DistillationAssumptions for an Approimate $alculation of the (inar

    DistillationA&&umption& and impliication&*

    1! The two "omponent# ha$e e%ual an& "on#tant mola enthalp'e# o( $apo')at'on *latent heat#!.

    2! The "omponent heat "apa"'t+ "han,e# an& the heat o( m'-'n, ae ne,l','ble "ompae& to the heat o($apo')at'on *"on#'&e'n, '&eal beha$'ou o( b'na+ m'-tue#!.

    3! The &'#t'llat'on "olumn the "on&en#e an& the ebo'le ae well 'n#ulate& #o that heat lo##e# to en$'onmentae ne,l','ble.

    4! The pe##ue '# "on#tant thou,hout the "olumn no pe##ue &op o""u#.

    The abo$e a##umpt'on# lea& to the concept o con&tant molar overlo+. Th'# appoa"h a##ume# that the

    amount o( mole"ule# wh'"h e$apoate an& wh'"h "on&en#ate 'n ea"h #ta,e ae the #ame o neal+ the #ame.

    That mean# that all l'%u'& an& $apo mola (low ate# 'n the e"t'(+'n, #e"t'on ae "on#tant an& that all l'%u'& an&

    $apo mola (low ate# 'n the #t'pp'n, #e"t'on ae "on#tant but not the #ame a# tho#e 'n the e"t'(+'n, #e"t'on.

    /uthe e%u'ement# ae

    5! 'net'" an& potent'al ene,'e# ae ne,l','ble.

    6! The &'#t'llat'on "olumn '# opeate& at "ont'nuou# #tea&+ #tate "on&'t'on#.

    7! The #team# lea$'n, ea"h #ta,e ae a##ume& to be 'n $apol'%u'& e%u'l'b'um. The l'%u' an& $apo# ae

    alwa+# at the' bubble po'nt# an& &ew po'nt# e#pe"t'$el+.

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    30/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    31/66

    Basic Operation and Terminology

    The $apou mo$e# up the "olumn an& a# 't

    e-'t# the top o( the un't 't '# "oole& b+ a

    "on&en#e. The "on&en#e& l'%u'& '# #toe& 'n a

    hol&'n, $e##el nown a# the e(lu- &um.ome o( th'# l'%u'& '# e"+"le& ba" to the top

    o( the "olumn an& th'# '# "alle& the e(lu-. The

    "on&en#e& l'%u'& that '# emo$e& (om the

    #+#tem '# nown a# the &'#t'llate o top

    po&u"t.

    "eat i& &upplied to the reoiler to 'enerate

    vapour The &ource o heat input can e any

    &uitale luid, althou'h in mo&t chemical

    plant& thi& i& normally &team .n reinerie&, the

    heatin' &ource may e the output &tream& o

    other column& The vapour rai&ed in the

    reoiler i& re-introduced into the unit at the

    ottom o the column The liquid removed rom

    the reoiler i& /no+n a& the ottom& product

    or &imply, ottom&

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    32/66

    %he mathematical-graphical McCabe-Thiele Methodcan be used to determine the number of ideal stages N needed for a givenseparation of a binary mixture (to produce a distillate and a bottom product # and column operating pressure7 %he methoduses material balances around certain parts of the column and the equilibrium curve7

    Rectifying section including the total condenser:

    V 3 L D0 L 3 V D0 D 3 V + L

    Stripping section including the partial reoiler:

    @

    'c$abe+6hiele 'ethod for 6raed 6owers

    n

    n

    x

    L

    1

    1

    +

    +

    n

    n

    y

    Vplaten th

    DxD,

    V

    LDLV

    balancematerialOverall

    nn +=

    +1

    11

    1

    11

    1

    11

    ++

    +=

    =+++=

    +=

    +=

    +

    ++

    +

    ++

    R

    xx

    R

    Ry

    D

    LRDL

    DxxDL

    Ly

    V

    DxxV

    Ly

    DxxLyV

    AbalanceComponent

    D

    n

    n

    Dn

    n

    nn

    n

    D

    n

    n

    n

    n

    Dnnnn

    FxF,

    1

    1

    +

    +

    m

    m

    y

    V

    1

    1

    +

    +

    m

    m

    x

    L

    platem

    th

    WxW,

    WVL

    balancematerialOverall

    mm +=

    +1

    WL

    WxxWL

    Ly

    WL

    WxxWL

    Ly

    V

    WxxV

    Ly

    WxyVxL

    AbalanceComponent

    m

    W

    m

    m

    m

    W

    n

    m

    m

    n

    m

    W

    n

    m

    m

    m

    Wmmmm

    +

    =

    +

    =

    +=

    +=

    +

    ++

    +

    ++

    1

    11

    1

    11

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    33/66

    %he quantities of the liquid and the vapor streams change abruptly at the feed tray $since the feed may consist ofliquid, vapor, or a mixture of both7 %he feed-stage condition influences the change in slope of the operating lines:

    a# 8eed is a saturated liquid b# 8eed is a saturated vapor

    1S

    SS

    f @

    f !@

    f

    f @

    f + @

    f

    !"""""#"""""

    sec

    $"""""

    %""""""

    sec

    &"""""")1(

    '""""")1(

    """"""

    1"""""

    W

    D

    WxxLyVWLV

    tionlowerbalancematerialOver

    DxLxVy

    balanceAComponent

    DLV

    tionupbalancematerialOver

    FVV

    FVV

    FLL

    FLL

    +=

    =

    +=

    +=

    =

    +=

    =

    +=

    ( ) ( )

    ( )

    xx

    y

    FxFxFy

    invalue!LLVV"ub

    WxDxLLxVVy

    n#!ub!tracti

    F

    F

    WD

    +

    =

    +=

    ++=

    11

    1*""""")1(

    +,

    +"""""

    !$

    FxF,FxF,

    L L

    L2 L2

    V V

    V2

    V2

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    34/66

    'ossible feed-stage conditions:

    a# /aturated liquid

    b# /aturated vapor

    c# /ubcooled liquid

    d# /uperheated vapor

    e# 'artially vaporized (liquid 9 vapor#

    $ffect of thermal condition of feed

    %

    &'

    FF&'

    ('

    )'F @

    @

    "G F

    "3 F

    F G "G @"3 @

    "H @

    Eq" ;I=

    !

    !

    !

    F

    F

    F

    F

    F

    h h % * * F + +

    h h % * * + + F

    h h % * * F + +

    h h % * * + + F

    h h h % * * * F + + + F

    = = = + =

    = = = = +

    < > > + < < > +

    < < < < < < + < < +

    % % C C C C C

    % % C C C C C

    % % C C C C C

    % % C C C C C

    % % % C C C C C C C C

    "lope

    =

    1

    +=

    =

    )(

    1

    fbp TTC

    ionvapouri$atofheatlatent%olal

    vapour!aturatedtofeedofmoleconvertto&ner#yliuidcoldFor

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    35/66

    ;n +", 6c&abe and %hiele published an approximate graphical method for combining the equilibrium curve for a bi-nary system with operating lines to estimate the number of equilibrium stages required for a desired degree of separa-tion of the feed7

    # )raw the equilibrium curve

    # )raw the rectifying section operating line

    a#

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    36/66

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    37/66

    ! Minimum Reflu% Ratio rmin

    As the reflux ratio decreases from the limiting case of total reflux, the intersection of the two operating lines andthe %-line moves from the diagonal toward the equilibrium curve7 %he number of equilibrium stages requiredincreases because the operation lines move closer and closer to the equilibrium curve, thus requiring more andmore stairs to move from the top of the column to the bottom7 8inally, a limiting condition is reached when thepoint of intersection / is on the equilibrium curve and therefore an infinite number of stages is required7

    %he minimum reflux ratio rmincan be determined graphically

    from the ordinate intercept of the rectifying operating lineor by the Underwood equation (that can be applied to saturated-liquid feed, %* #:

    The minimum reflu% ratio corresponds to the need for an infinite numer of stages at a minimum

    oilup ratio& thus at minimum operating costs necessary for the separation(

    min

    N

    r

    (

    )F @

    @

    ,)% D)%

    !min(% !minmin

    D)(r

    =+

    %%

    S

    F&%

    )inch)oint

    J )rof" Dr" '" 1eppich J $onceptual Desi&n of Distillation0 Absorption and Strippin& Sstems J KM J

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    38/66

    An distillation column must be operated between the twolimiting conditions of minimum reflux rminand total reflux,

    with the corresponding number of equilibrium stages re-quired varying from infinity to the minimum number Nmin7

    %he reflux ratio to be used for a new design should be theoptimum, the one for which the total annual cost Ctotof the

    distillation, which is the sum of the installed capital andoperating costs, will be the least7

    %he reflux ratio influences both the number of stages

    required (and thus the installed capital cost Cca".r# andthe energy requirements (and thus the operating costs

    Co"r#7

    %he total cost must pass through a minimum at theoptimum reflux ratio, that frequently occurs in the range of

    ,!" ? rmin@ ropt@ ," ? rmin

    at high energy costs at high costs of construction materials

    A first estimate of the optimum reflux ratio can be obtainedfrom ropt* , ? rmin7

    Cca"

    Co"

    Ctot

    total installed annual capital cost

    annual operating and maintenance cost

    (heating and cooling costs#

    total annual cost

    rmin ropt

    r

    r=

    &op ;r=

    &tot;r=

    &*NOa,

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    39/66

    .or a non+ideal sstem0 where the molarlatent heat is no lon&er constant and where

    there is a substantial heat of miin&0 thecalculations become much more tedious"

    .or binar mitures of this 7ind a &raphical

    model has been developed b 1!?E'A>>0)#>$?#>0 and SAVA1/60 based on the use ofan enthalp+composition chart"

    /t is necessar to construct an enthalp+composition dia&ram for particular binarsstem over a temperature ran&e coverin&the two+phase vapor+liquid re&ion at the

    pressure of the distillation"

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    40/66

    6he followin& data are needed

    @" ?eat capacit as a function oftemperature0 composition and pressure"

    9" ?eat of miin& and dilution as a function of

    temperature and composition"K" Latent heats of vaporization as a function

    of composition and pressure ortemperature"

    P" (ubble+point temperature as a function ofcomposition and pressure"

    Enthalp of liquid

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    41/66

    Enthalp+composition dia&ram

    n

    iim hh

    /n Qre&ularR O ideal mitures

    oiii hxh =

    .or &aseous O vapor mitures atnormal 6 and )

    n

    iii

    n

    iim yhH

    Enthalp of liquid

    soBBAAmix

    Hhxhxh ;K=

    sorefB!BrefA!Amix H""#x""#xh

    mimixmix hH

    BBAAmix xx

    ;P=

    ;5=

    ;=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    42/66

    q.

    V

    L

    #ver+all material balance

    . 3 V L

    . .3 V L

    . h.3 V ? L h

    ;M=

    ;I=

    ;=

    6he enthalp+concentration dia&ram ma be used to evaluate &raphicall theenthalp and composition of streams added or separated"

    Stead+state Towsstem with phase

    separation and heatadded

    $omponent material balance

    Enthalp balance

    .or adiabatic process0 q 3 F

    V ;? h.= 3 L ;h. h=

    V ; .= 3 L ;. =

    hh

    hH

    $

    %

    &

    &

    =

    xx

    xy

    $

    %

    &

    &

    Substitutin& eq" ;M= to ;= &ives

    Substitutin& eq" ;M= to ;I= &ives

    hLHVhLV F

    ;@F=

    ;@@=

    ;@9=

    ;@K=

    $ i ;@@= t ;@K= i

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    43/66

    $omparin& eq" ;@@= to ;@K= &ives

    xx

    xy

    hh

    hH

    &

    &

    &

    &

    =

    Eq" ;@P= can be rearran&ed

    xx

    hh

    xy

    hH

    &

    &

    &

    &

    =

    ;@P=

    ;@5=

    h

    h.

    ?

    L

    .

    V

    .

    Enthalp+concentration lines adiabatic0 q 3 F

    :is$&lineofslope"he'''

    &

    &

    xy

    hH

    :'''

    isFLlineofslopeThexx

    hh

    &

    &

    ""o&'n, to e%. *15! the #lope# o( both

    l'ne# ae the #ame.

    'n"e both l'ne# ,o thou,h the #ame po'nt

    */! the l'ne# l'e on the #ame #ta',ht l'ne.

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    44/66

    L

    .

    V?

    h.

    h

    .

    A

    (

    LEVE1+A1' 1!LE )1/>$/)LE

    hh

    hH

    $

    %

    =

    $onsider trian&le L(V

    $

    %

    hh

    hH

    BA

    A$

    %

    $

    '''

    '''

    '''

    '''

    ==

    '''

    '''

    %

    $

    %=

    Similarl '''

    '''

    %

    %

    $= '''

    '''

    %

    %=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    45/66

    D0 D0 ?LD

    (0 (0 ?L(

    ..?.

    qD

    q(

    V@

    LFF?LF

    #ver+all material balance

    . 3 D ( ;@=

    $omponent material balance

    . .3 D D ( ( ;@

    . .3 D D ;. D= ( ;@

    BD

    B

    xx

    xxD

    =

    ;@=

    Enthalp balance

    ;9F=BDDB

    hB(hD(h

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    46/66

    TOTAL CONDENSER

    V@3 LF D ;9@=

    V@@3 LFF D F ;99=

    'aterial balance around condenser

    $omponent material balance

    Enthalp balance

    A

    V@

    L@

    LF

    DD

    qD

    qD V@?@3 LFhF D hD;9K=

    $ombinin& eqs" ;9@= and ;9P=

    D)

    )DD*

    hH

    H+h

    D

    %

    =

    /nternal reTu is shown as

    *DD

    )DD

    )

    *

    h+h

    H+h

    $

    %

    =

    ;95=

    ;9=

    Desi&natin& D(+ DD=

    V@?@3 LFhF D ;hD UD= ;9P=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    47/66

    /nternal reTu between each plate0until a point in the column isreached where a stream is addedor removed0 can be shown as

    mDD

    mDD

    m

    m

    hQh

    HQh

    V

    L

    =

    )

    )

    ;9M=

    A

    Vm@

    Lm

    LF

    DD

    qD

    m

    LF0 DhF0 hD

    V@

    ?@

    ;hD UD=0 D

    hD UD ?@

    ?@ hD

    @0 F0 D

    ?o

    rh

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    48/66

    hF0 F

    V@

    ?D0 D

    ;?D UD=0 D

    ?D UD ?@

    ?@ hF

    @0

    F0

    D

    ?o

    rh

    D

    6he material balance equation mabeEnthalp balanceof total condensor

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    49/66

    RECTIFYING SECTION

    V@

    VK

    Vn@

    L@

    L9

    Ln

    LFDD

    !L

    qD

    rearran&ed in the from of dierence

    LF V@3 L@ V93 L9 VK

    3 " " " " 3 Lm Vm@

    3 D 3

    ;9I=LF V@3 D 3

    n

    V9

    $ombinin& eqs" ;K5= and ;K=

    D3 ;KF=

    .or the component material balance

    LFF V@@3 L@@ V99

    3 L99 VKK3 " " " "

    3 Lmm Vm@m@

    3 D D3

    ;9=LFF V@@3 D D3

    .or the enthalp balanceLFhF V@?@3 L@h@V9?93 L9h9VK?K3 " " " "

    3 Lmhm Vm@?m@3 D ;hD UD= 3 h;K@=

    $ombinin& eqs" ;9K= and ;K@=

    h3 hD UD ;K9=

    a p ba a ceo o a co de so

    qD V@?@3 LFhF D hD;9K=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    50/66

    6hese K independent equations *eqs" ;9I=0 ;9=0 and ;KF=, can be written forrectifin& section of the column between each plate"

    #n the enthalp scale and on the composition scale0 the dierences inenthalp and in composition alwas pass throu&h the same point0 ;*D0 ;hD

    UD=,

    6his is desi&nated as point 0 the dierence point0 and all lines correspondin&

    to the combined material and enthalp balance equations ;operatin& lineequations= for the rectifin& section of the column pass throu&h thisintersection"

    )LA6E+6#+)LA6E 1A)?/$AL )1#$ED!1E .#1 DE6E1'/>/> 6?E

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    51/66

    )LA6E 6# )LA6E 1A)?/$AL )1#$ED!1E .#1 DE6E1'/>/> 6?E>!'(E1 #. EU!/L/(1/!' S6AES

    @" !se 10 D0 ?Dor hDto establish the location of point with 3 Dand

    h3 hD UDor h3 ?D UD

    9" !se Equilibrium data alone to establish the point L@at ;@0 h@=" Since

    L@is assumed to be a saturated liquid0 @must lie on the saturated+

    liquid line"

    K" Draw the operatin& line between L@and " 6his line intersects the

    saturated+vapor line at V9;

    90 ?

    9="

    P" 1epeat steps 9 and K until the feed plate is reached"

    or

    ?o

    rh V@V9VKVP

    DL@L9LK

    ;0 h=

    6he material balance equation mabe rearran&ed inthe from of dierence

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    52/66

    61/))/> SE$6/#>

    (

    (q(

    m

    >

    L)mV

    )MV

    MV )ML

    ML

    the from of dierence

    MMMM VLBVL ))

    ...), =MM LL

    )mm VL ;KK=

    .or the component material balance

    MMMMBMMMM yVxLxByVxL + ))))

    ...)),, =MMMM yVxL

    xyVxL mmmm ));KP=

    $ombinin& eqs" ;PF= and ;P@=

    Bxx=;K5=

    .or the enthalp balance

    ;K=

    MMMBBMMMM HVhLQhBHVhL ))))

    ...)),, =MMMM HVhL

    hHVhL mmmm ))

    $ombinin& eqs" ;@= and ;P=

    BB Qhh ;KM=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    53/66

    6hese K independent equations *eqs" ;KK=0 ;KP=0 and ;K5=, can be written forstrippin& section of the column between each plate"

    #n the enthalp scale and on the composition scale0 the dierences in enthalpand in composition alwas pass throu&h the same point0 *(0 ;h( U(=,"

    6his is desi&nated as point 0 the dierence point0 and all lines correspondin&to the combined material and enthalp balance equations ;operatin& lineequations= for the strippin& section of the column pass throu&h thisintersection"

    3$B

    ;KI=

    $ombinin& eq" ;KI= with eqs" ;9I= and;KK= &ives

    ;K=

    Equation ;K= implies that lies on the etension of the strai&ht line passin& throu&h and "

    U(is usuall not 7nown" /t can be derived from over+all material balance

    )LA6E+6#+)LA6E 1A)?/$AL )1#$ED!1E .#1 DE6E1'/>/> 6?E

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    54/66

    >!'(E1 #. EU!/L/(1/!' S6AES

    @" Draw a strai&ht line passin& throu&h . and "

    9" Draw a vertical strai&ht line at (all the wa down until it intersects the

    etension of line .inK" Assumin& the reboiler to be an equilibrium sta&e0 the vapor V'@is in

    equilibrium with the bottom stream"

    P" !se equilibrium data alone to establish the value of m@on the

    saturated+vapor line"

    5" Draw the operatin& line between Lm;m0 hm= and V'@" 6his line intersectsthe saturated+liquid line at

    " 1epeat steps P and 5 until the feed plate is reached"

    or

    ?o

    rh h(

    )-$ -$ )-$

    0x,

    L' L'+

    @

    TOTAL COLUMN

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    55/66

    TOTAL COLUMN

    D

    (

    .

    qD

    q(

    V@

    LF

    6he construction ma start

    from either side of thedia&ram0 indicatin& eitherthe condition at the top orthe bottom of the column"

    )roceed as eplained inprevious slides"

    /n either case0 when anequilibrium tie line crosses

    the line connectin& thedierence points throu&h thefeed condition0 the otherdierence point is used to

    complete the construction"

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    56/66

    ?o

    rh

    .

    @9KP5MI

    . D(

    ?o

    rh

    V@

    @

    @

    L@

    EWA')LE K

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    57/66

    EWA')LE K

    !sin& the enthalp+concentration dia&ram from Eample 90 determinethe followin& for the conditions in Eample @0 assumin& a saturatedliquid feed"

    a" 6he number of theoretical sta&es for an operatin& reTu ratio of 13 LFOD 3 9"5

    b" 'inimum reTu ratio LFOD"

    c" 'inimum equilibrium sta&es at total reTu"d" $ondenser dut feedin& @F0FFF lb of feedOhr0 (tuOhr"

    e" 1eboiler dut0 (tuOhr"

    S#L!6/#>

    ;a= .rom the &raph hD3 hF3 50@@M calOmole

    ?@3 @90M9K calOmole

    12

    2113

    h"

    "4h

    1

    L

    =

    225,65#7,2#

    5#7,2#4225,66# 1

    =

    UD3 909@ calOmole

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    58/66

    h

    3 hD

    UD

    3 50@@M ; 909@= 3 K@0MKI calOmole

    6he coordinate of point is

    3 D3 F"M

    Draw a strai&ht line passin& throu&h and ."

    Etend the line until it intersects a vertical line passin& throu&h(0 at

    Draw operatin& lines and equilibrium lines in the whole columnusin& the method eplained in the previous slides"

    >umber of sta&es 3 @@

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    59/66

    .

    3 9@0MFF calOmole

    ;b=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    60/66

    .

    12

    2113

    h"

    "4h

    1

    L

    =

    12

    2

    h"

    "h

    =

    225,65#7,2#

    5#7,2#533,#2

    1

    L

    min

    3

    =

    3 @"@I

    ;c=

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    61/66

    .

    @9KP5M

    > 3 M

    ;c=

    ;d= h U 3 h 3 K@ MKI calOmole

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    62/66

    ;d= hD UD3 h3 K@0MKI calOmole

    hD3 50@@M calOmole

    UD3 909@ calOmole

    !molel237

    hr!l333,23

    !mole

    1mole8#93

    molecal

    molel0tu:2

    mole

    cal9#2,#941

    3 @0I@0IPK (tuOhr

    ;e= h( U(3 @P0K5F calOmole

    h(3 50II calOmole

    U(3 @P0K5F 50II 3 9F09K calOmole

    !molel237

    hr!l333,23

    !mole

    0mole6583

    molecal

    molel0tu:2

    mole

    cal#79,#941

    3 90K@0M5@ calOmole

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    63/66

    A#"/S AE#"012

    D0S"0%%A"01 #%3-1!E/A"01)apour *low Conditions

    +dverse vapour flow conditions can cause

    *oaming

    #ntrainment

    ,eeping-dumping

    *looding

    *oaming

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    64/66

    *oaming8oaming refers to the expansion of liquid due to passage of vapour

    or gas7 Although it provides high interfacial liquid-vapour contact,excessive foaming often leads to liquid buildup on trays7 ;n some cases,foaming may be so bad that the foam mixes with liquid on the trayabove7 hether foaming will occur depends primarily on physicalproperties of the liquid mixtures, but is sometimes due to tray designsand condition7 hatever the cause, separation efficiency is alwaysreduced7

    #ntrainment$ntrainment refers to the liquid carried by vapour up to the tray

    above and is again caused by high vapour flow rates7 ;t is detrimental

    because tray efficiency is reduced: lower volatile material is carried to aplate holding liquid of higher volatility7 ;t could also contaminate highpurity distillate7 $xcessive entrainment can lead to flooding7

    ,eeping-Dumping%his phenomenon is caused by low vapour flow7 %he pressure exerted bythe vapour is insufficient to hold up the liquid on the tray7 %herefore,liquid starts to lea through perforations7 $xcessive weeping will lead todumping7 %hat is the liquid on all trays will crash (dump# through to thebase of the column (via a domino effect# and the column will have to bere-started7 eeping is indicated by a sharp pressure drop in the columnand reduced separation efficiency7

    *looding8looding is brought about by excessive vapour flow causing liquid to be

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    65/66

    8looding is brought about by excessive vapour flow, causing liquid to beentrained in the vapour up the column7 %he increased pressure fromexcessive vapour also bacs up the liquid in the downcomer, causing anincrease in liquid holdup on the plate above7 )epending on the degree offlooding, the maximum capacity of the column may be severely reduced7

    8looding is detected by sharp increases in column differential pressureandsignificant decrease in separation efficiency7

    Column Diameter6ost of the above factors that affect column operation is due to vapour

    flow conditions: either excessive or too low7 Bapour flow velocity is dependenton column diameter7 eeping determines the minimum vapour flow required

    while flooding determines the maximum vapour flow allowed, hence columncapacity7%hus, if the column diameter is not sized properly, the column willnot perform well7 3ot only will operational problems occur, the desiredseparation duties may not be achieved7

    State of Trays and .ac/ingsCemember that the actual number of trays required for a particular

    separation duty is determined by the efficiency of the plate, and the pacings ifpacings are used7%hus, any factors that cause a decrease in tray efficiency willalso change the performance of the column7 %ray efficiencies are affected byfouling, wear and tear and corrosion, and the rates at which these occurdepends on the properties of the liquids being processed7 %hus appropriatematerials should be specified for tray construction7

  • 7/24/2019 Mass transfer - Distillation final 20.1.2016.pptx

    66/66

    ,eather Conditions

    6ost distillation columns are open to the atmosphere7 Although many of the

    columns are insulated, changing weather conditions can still affect column

    operation7 %hus the reboiler must be appropriately sized to ensure that enoughvapour can be generated during cold and windy spells and that it can beturned down sufficiently during hot seasons7 %he same applies to condensors7