materials science &technolog y control of plasma ... · materials science &technolog y....

23
18th Int. Sym. on Plasma Chemistry August 26 31 2007 Kyoto Japan Materials Science & Technolog y August 26-31, 2007, Kyoto, Japan Control of Control of Plasma Polymerization Processes Plasma Polymerization Processes Plasma Polymerization Processes Plasma Polymerization Processes 25 nm Dr. Dirk Hegemann Empa, St.Gallen, Advanced Fibers Materials Sci ence & Technolog y Dirk Hegemann, Plasma Polymerization, ISPC 18 [email protected] Empa, Swiss Materials Science & Technology Empa, Swiss Materials Science & Technology Member of ETH board in Switzerland 865 employees at three sites 865 employees at three sites R&D for (international) SMEs Dübendorf Thun St. Gallen St.Gallen Bodensee (Lake of Konstanz) Materials Sci ence & Technolog y Dirk Hegemann, Plasma Polymerization, ISPC 18

Upload: others

Post on 16-Jul-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

18th Int. Sym. on Plasma ChemistryAugust 26 31 2007 Kyoto Japan

Materials Sci ence & Technolog y

August 26-31, 2007, Kyoto, Japan

Control ofControl of

Plasma Polymerization ProcessesPlasma Polymerization ProcessesPlasma Polymerization ProcessesPlasma Polymerization Processes

25 nm

Dr. Dirk Hegemann

Empa, St.Gallen, Advanced Fibers

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

[email protected]

Empa, Swiss Materials Science & TechnologyEmpa, Swiss Materials Science & Technology

Member of ETH board in Switzerland865 employees at three sites865 employees at three sites

→ R&D for (international) SMEsDübendorf

Thun

St. Gallen

St.Gallen

Bodensee (Lake of Konstanz)

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

辻野貴志
タイプライターテキスト
Copyright remains with the author(s).
Page 2: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Empa LaboratoryEmpa Laboratoryp yp y

Advanced Fibers

■ Fiber and Textile Chemistry- finishing, wet-chemical treatmentfinishing, wet chemical treatment

■ Fiber Development

- bi-component fiber spinning device

f S f■ Plasma-modified Surfaces

- cleaning, activation, deposition

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

OutlineOutline

Control of Plasma Polymerization ProcessesControl of Plasma Polymerization Processes

■ Plasma polymerization

■ Influence of■ Influence of- reactor geometry

- plasma expansion

- pressure

- monomers

carrier / reactive gas- carrier / reactive gas

■ Nanoporous coatings

■ Scale-up

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 3: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Plasma PolymerizationPlasma Polymerizationyy

Different regimesretention of monomer groupsretention of monomer groups

fragmentation, cross-linking

hydrogels

functional density control

e.g. PEO-like

e g hydrophobic COOH NHfunctional density control

permeation control / barrier

e.g. hydrophobic, -COOH, -NH2

e.g. SiOx, a-C:H

d fi i d fi i

hard coatings e.g. a-C:H

energy input SEa

energy-deficient monomer-deficient

D H I di J Fib T t R 31 2006 99

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

D. Hegemann, Indian J. Fibre Text. Res. 31, 2006, 99.

Macroscopic KineticsMacroscopic Kineticspp

Concept of chemical quasi-equilibria related to plasma

dissociationexcitation

recombinationrelaxation

gas

flow

stable

productsp

active zone passive zonee.g. monomer e.g. deposition

Macroscopic kinetics:(Becker formula) F

W

pV

WS

act

act ∝=τ

Fp

pVactact

0

The similarity parameter S represents the energy invested per particle

of the gas mixture during the flow through the active plasma zone

act

of the gas mixture during the flow through the active plasma zone.

H.-E. Wagner, in: Low Temperarure Plasma Physics, ed. Hippler et al., Wiley-VCH, 2001, p. 305.

A. Rutscher, H.-E. Wagner, Plasma Sources Sci. Technol. 2, 1993, 279.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 4: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Plasma PolymerizationPlasma Polymerizationyy

Evaluation of deposition rates

For radical-dominated discharges the reaction parameter

power input per gas flow W/F within the active plasma zone

⎞⎛ ER

determines the mass deposition rate Rm

i [ / 5]

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

FW

EG

F

R am expin [g/cm5]deposited mass from (per) plasma volume and per area⎠⎝

Ea: (apparent) activation energyY.S. Yeh, I.N. Shyy, H. Yasuda, J. Appl.

Polym. Sci.: Appl. Polym. Symp. 42, 1988, 1.

G: geometrical factor D. Hegemann, H. Brunner, C. Oehr, Plasmas

Polym. 6, 2001, 221.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Plasma PolymerizationPlasma Polymerizationyy

Evaluation of deposition rates

w)

⎞⎛ ER

ion-induceddeposition

te p

er

flow

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

FW

EG

F

R am exp

t hi d

ositi

on r

at

oligomers taking part

etching andtemperature

effects

ln (

depo

in deposition

ti ti

monomerdeficient

energydeficient D. Hegemann,

M.M. Hossain, Plasma Process.

(energy input)-1

activation energy =slope of linear fit

Polym. 2, 2005, 554.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

(energy input)

Page 5: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Evaluation of Deposition RatesEvaluation of Deposition Ratespp

Deposited mass for different reactor geometries1010

1

10

m]

IGB

1

10

IGB

Park

Alexander

1 Hegemann et al., Plasma

Polym. 6, 2001, 221.

2 Park, N. Kim, J. Appl.

P l S i A l P l

1

2

3

pp-HMDSO

1

n cm

2 scc

m

EMPA1

Zajickova

Kim

EMPA

Polym. Sci.: Appl. Polym.

Symp. 46, 1990, 91.

3 Alexander et al., Plasma

4

5

6

0.1

F [1

0-6

g/m

i

0.1 Polym. 2, 1997, 277.

4 Zajickova et al., Proc.

ISPC 14, 1999, 1439.

0.01

Rm/F

0.01 5 M.T. Kim, Thin Solid

Films 311, 1997, 157.

6 Hegemann et al J VacEa: slope of linear fit0.001

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(W/F)-1 [(W/sccm)-1]

0.001

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

6 Hegemann et al., J Vac

Sci Technol A23, 2005, 5.

a p

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Influence of Reactor GeometryInfluence of Reactor Geometryyy

Plasma deposition in a reaction vessel

Wgas in

dgas W/F

gas inA ddep gasdepF

WS =

Adep

dgas dactW/F dep VdisVgas

A ddep act

dis

actdep

dep V

dAWW =

gas

gasdep

dep V

dAFF =

Similarity parameter is related to power and flowgasact

V

V

d

d

F

WS = Similarity parameter is related to power and flow

that contribute to film deposition.disgas VdF

D. Hegemann et al., Thin Solid Films 491, 2005, 96; Surf. Coat. Technol. 200, 2005, 458.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 6: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of Reactor GeometryInfluence of Reactor Geometryyy

Tubular set-up

d

l

d

F

WS act=

i

dgas

V = A dgas dep gaslF gas in

Adep

d

V = A ldis dep

g p g

act

V

WS

τ= pV

=τ ; T = const

ldact

Similarity parameter changes with position of substrate within the discharge.

disVp0pF

τ ; T const.

y p g p g→ Fragmentation increases with distance and residence time

J.M. Kelly, R.D. Short, M.R. Alexander, Polymer 44, 2003, 3173.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Influence of Reactor GeometryInfluence of Reactor Geometryyy

Symmetric plane parallel set-up

l

d

F

WS act=

gas in

shact ddl 2+= V = Vdis gasdact d = lgas

⎟⎠⎞

⎜⎝⎛ −=

l

d

F

WS sh21

Adep

Similarity parameter increases with electrode distance.

⎟⎠

⎜⎝ lF

D. Hegemann, H. Brunner, C. Oehr, Surf. Coat. Technol. 142-144, 2001, 849.

V. Sciarratta, D. Hegemann, M. Müller, U. Vohrer, C. Oehr, in: Plasma Processes and Polymers, Wiley-VCH, 2005, p. 39.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 7: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Symmetric ReactorSymmetric Reactoryy

Plasma length dact

active zoneactive zone

passive zone plasma/sheathboundary

tens

ity

l = dgas

glow

in

dact

distance between electrodes■ well defined geometrical conditions

■ known gas flow (vertical flow)■ known gas flow (vertical flow)

■ known power adsorption

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Symmetric ReactorSymmetric Reactoryy

Variation of temperature, power, flow, and pressure1

sccm

] HMDSO RF dischargeTS: 30-90°C

W: 50-400 W

F 50 120dW

S act=

0 1min

cm

2 s F: 50-120 sccm

p: 10-50 PalF

S =

0.1

[10

-6 g

/m dact ≈ constVdis = Vgas

Rm

/F [

D. Hegemann et al.,

Plasmas Polym. 6,

2001 221Ea

0.01

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

(W/F)-1 [(J/cm3)-1]

2001, 221.a

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

( ) [( ) ]

Page 8: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of Plasma ExpansionInfluence of Plasma Expansionpp

Plasma polymerization within asymmetric discharges10

Different

activation

ccm

] 4 sccm

8 sccmenergies

(slopes) were

obtained for

1

min

cm

2 sc 8 sccm

16 sccm

obtained for

different gas

flows.0.1

[10

-6 g

/m

flows.

D. Hegemann et al., Thin Solid Films 491 2005 96

CH4 dischargeRF, 7.5 PaR

m/F

491, 2005, 96.0.01

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

(W/F)-1 [(J/cm3)-1]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

( ) [( ) ]

Influence of Plasma ExpansionInfluence of Plasma Expansionpp

Light distribution of plasma in front of RF electrode

maximum brightness: 0.475curves at 0.05 0.1 0.2 0.3 0.4 5

4

z [cm

4

3

m]

2

1

CH discharge-3 -2 -1 0 1 2 3

x [cm]

0

D. Hegemann et al., Thin Solid Films 491, 2005, 96.

CH4 dischargeRF, 7.5 Pa

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 9: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of Plasma ExpansionInfluence of Plasma Expansionpp

Light distribution of plasma in front of RF electrode0.6

0.5

nits

]

16 sccm

passivezone

activezone

0.4

ity [

arb

.un

8 sccm

16 sccm

dgas = 6.5 cm

0.2

0.3

ve in

ten

si

CH4 dischargeRF 7 5 P

0.1rela

tiv

4 sccm

d RF, 7.5 Pa0

0 1 2 3 4 5 6

distance from electrode [cm]

d act

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

[ ]

Influence of Plasma ExpansionInfluence of Plasma Expansion

6

pp

Expanding plasma zone depending on power and flow6

5

e [c

m] d act = 3.7 (W /F )0.33

d act = 3.0 (W /F )0.33

dact only

depends on W5

e [

cm].

dact ≈ 1.5 W 0.33

4

asm

a zo

ne

d act = 2.5 (W /F )0.34 (independent

of different

monomer flows)

4

sma

zone

2

3

act

ive

pla

4 sccm

monomer flows)

2

3

activ

e pl

a

4 sccm

1

wid

th o

f a scc

8 sccm

16 sccmD. Hegemann et al., Thin Solid Films

CH4 dischargeRF, 7.5 Pa1

wid

th o

f a 4 sccm

8 sccm

16 sccm

0

0 50 100 150 200 250 300 350 400

W/F [J/cm3]

491, 2005, 96.

0

0 5 10 15 20 25 30 35

power input W [W]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

W/F [J/cm ]power input W [W]

Page 10: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of Plasma ExpansionInfluence of Plasma Expansionpp

10

Consideration of similarity factor0

ccm

] 4 sccm

8 sccmdis

gas

gas

act

V

V

d

d

F

WS =

1

min

cm

2 sc 8 sccm

16 sccm Vgas ≈ Vdis

volume-dominated

Introduction of

similarity factor 0.1

[1

0-6

g/m

y

yield same

activation

CH4 dischargeRF, 7.5 PaR

m/F

energy.0.01

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

(W dact/F dgas)-1 [(J/cm3)-1]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Influence of PressureInfluence of Pressure

Plasma polymerization within asymmetric discharges1

Different

activation

ccm

] 4 Pa

7.5 Pa

energies

(slopes) were

obtained forin c

m2 s

c

9.5 Pa

11 Pa

15 Pa obtained for

different

pressures.[10-6

g/m

15 Pa

pressures.

D. Hegemann, Thin Solid Films 515 2006 2173

Rm

/F [

CH4 RF discharge

515, 2006, 2173.

0.10 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

(W/F)-1 [(J/cm3)-1]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

(W/F) [(J/cm ) ]

Page 11: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of PressureInfluence of Pressure

Light distribution of plasma in front of RF electrode0.9

0.7

0.8

nits

]

15 Pa

dgas = 6.5 cm0.5

0.6

ty [

arb.

un

7 5 Pa

0.3

0.4

ve in

ten

sit 7.5 Pa

CH4 RF discharge0.1

0.2

rela

tiv

4 Pa

dact

0

0 1 2 3 4 5 6

distance from electrode [cm]

act

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Influence of PressureInfluence of Pressure

Expanding plasma zone depending on energy input7

dact increases

with 6

7

decreasing

pressure

(and power4

5

gth

[cm

]

(and power

input)3

asm

a le

ng

4 Pa7.5 Pa

1

2pla

9.5 Pa11 Pa15 Pa

CH4 RF discharge D. Hegemann, Thin Solid Films 515 2006 2173

0

0 50 100 150 200

W/F [J/cm3]

515, 2006, 2173.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

W/F [J/cm ]

Page 12: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of PressureInfluence of Pressure

1

Consideration of similarity factor1

ccm

] 4 Pa

7 5 Padis

gas

gas

act

V

V

d

d

F

WS =

ccm

] 4 Pa

7.5 Pa

min

cm

2 sc 7.5 Pa

Vgas > Vdis

corner-dominated

min

cm

2 sc

9.5 Pa

11 Pa

15 Pa

[10

-6 g

/m

Transition from

volume- to corner-[10

-6 g

/m

15 Pa

Rm

/F

dominated

discharge at a

pressure >8 PaCH4 RF dischargeR

m/F

0.1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

(W dact/F dgas)-1 [(J/cm3)-1]

pressure >8 Pa.0.1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

(W dact/F dgas)-1 [(J/cm3)-1]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Influence of PressureInfluence of Pressure

Consideration of similarity factor1

dis

gas

gas

act

V

V

d

d

F

WS =

ccm

]

4 Pa

7.5 Pa

9 5 Pa

Introduction of

similarity factormin

cm

2 sc 9.5 Pa

11 Pa

15 Pasimilarity factor

with decreasing

discharge [10

-6 g

/m

Vgas/Vdis = 1.8g

volume yield

same activation

Rm

/F

Ea

Vgas/Vdis = 2.6

Vgas/Vdis = 3.7

energy.0.1

0.00 0.01 0.02 0.03 0.04 0.05

S-1 [(J/cm3)-1]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 13: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Plasma PolymerizationPlasma Polymerizationyy

Formation of film-forming radicalsw

)

Same radicals determine film growth(same plasma chemistry) –higher number (due to more fragmentation)

te p

er

flow

⎟⎟⎞

⎜⎜⎛ E

GR am

higher number (due to more fragmentation)with increasing energy input

ositi

on r

at

⎟⎟⎠

⎜⎜⎝−=

FWG

Fam exp

ln (

depo

monomerdeficient

energydeficient

D. Hegemannet al., Plasma Process. Polym.

(energy input)-1

Ea

4, 2007, 229.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

(energy input)

Influence of MonomersInfluence of Monomers

i il it f t bl th fi di f VdW

Generalized activation energy

similarity factor enables the finding of a

generalized activation energy dis

gas

gas

act

V

V

d

d

F

WS =

101

n s

ccm

]

pyridine borane

TBBD

1

m2 s

ccm

] acetylene

ethylene

methane

a-C:H a-BCN:H

1

F [1

0-6 g

/cm

2 m

i

0.1

[10-6

g/m

in c

m methane

0.1

0 0 002 0 004 0 006 0 008 0 01 0 012

Rm

/F

0.01

0 0 01 0 02 0 03 0 04 0 05 0 06

Rm

/F

0 0.002 0.004 0.006 0.008 0.01 0.012

(W/F)|dep-1 [(J/cm3)-1]

0 0.01 0.02 0.03 0.04 0.05 0.06

(W/F)|dep-1 [(J/cm3)-1]

symmetric RF discharge asymmetric, confined RF discharge

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 14: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of MonomersInfluence of Monomers

Generalized activation energy of different monomers

Monomer

methane

Formula

CH

Activation energy

5 3 ± 0 5 eV

Main dissociation

C H (H H)methane

acetylene

CH4

C2H2

5.3 ± 0.5 eV

9.0 ± 0.7 eV

C-H, (H-H)

C≡C

ethylene

pyridine borane

C2H4

N BH

12 ± 1.2 eV

12 ± 1 5 eV

C=C, C-H (2x)

C-N C-C N:B C-Hpyridine borane

TBBD

N:BH3

B

N

12 ± 1.5 eV

15 ± 1.5 eV

C-N, C-C, N:B, C-H

C-N (3x), C-C, C-H

HMDSO (CH3)3-Si-O-Si-(CH3)3

BNH

NH

12.8 ± 0.7 eV Si-C, C-H, Si-O

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

D. Hegemann et al., Plasma Process Polym 4, 2007, 229.

HMDSO DischargeHMDSO Dischargegg

Initiation of HMDSO plasma polymerization

E 55 J/ 3Ea = 55 J/cm3

= 7.6 MJ/kg

= 1230 kJ/mol (HMDSO)CH3 CH3

linearization= 1230 kJ/mol (HMDSO)= 12.8 eV per molecule

Si SiOH C3 CH3

linearization

Si-O bond: 452 kJ/mol

Si-C bond: 360 kJ/molCH3 CH3C-H bond: 435 kJ/mol

→ 1247 kJ/mol (12.9 eV)

CH3 CH3

cross-linking2

The activation energy gives the dissociation energy to obtain the radicals that predominantly lead to plasma polymer growth.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 15: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of Carrier / Reactive GasesInfluence of Carrier / Reactive Gases

Oxygen added to HMDSO discharge101010

cm]

pure HMDSO

O2/HMDSO 1:5

O2/HMDSO 1:1F = Fm + a Fc

10

cm]

pure HMDSO

O2/HMDSO 1:5

O2/HMDSO 1:1

a: reaction

crossection

1

in c

m2 s

c O2/HMDSO 1:1

O2/HMDSO 4:1

O2/HMDSO 8:1

O2/HMDSO 15 1

m c1

n c

m2 s

cc O2/HMDSO 1:1

O2/HMDSO 4:1

O2/HMDSO 8:1

O2/HMDSO 15:1

→ energy

consumed

0.1[10-6

g/m O2/HMDSO 15:1

0.1[10-6

g/m

i O2/HMDSO 15:1by carrier

gas

Rm/F

m

Rm/F

[

E

a = 0.6 D. Hegemann, M.M. Hossain, Plasma Process.

0.01

0 0.005 0.01 0.015 0.02 0.025

(W/Fm)-1 [(J/cm3)-1]

0.01

0 0.005 0.01 0.015 0.02 0.025

(W/F)-1 [(J/cm3)-1]

Ea Polym. 2005, 2, 554.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

(W/Fm) [(J/cm ) ](W/F) [(J/cm ) ]

Design of ODesign of O22/HMDSO Coatings/HMDSO Coatingsgg 22 gg

Control of wetting properties

100

120

PDMSO2/HMDSO

CH3 CH3

80

angl

e [°

]

SiOC:H filmsSi Si

O

CH3

H C3

CH3

CH3

40

60

dv. co

ntac

t

The residualC concentration also scales with

20

ad

quartzalso scales with the crosslinking and thus the

0

0 10 20 30 40 50

rel. carbon concentration [at%]

permeability.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 16: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Influence of Carrier / Reactive GasesInfluence of Carrier / Reactive Gases

Correction factor for the combined flow F = Fm + a Fc

Monomer

hydrocarbons

Flow factor a

0.05-0.1

Added gas

Ar, Hehydrocarbons 0.05 0.1

~0.15

0 15

Ar, He

H2

CO ~0.15

0.35

CO2

N2

HMDSO

0.5

0 6

NH3

OD. Hegemannet al PlasmaHMDSO

Acrylic acid

0.6

~0.25

O2

H2

et al., Plasma Process. Polym. 4, 2007, 229.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Influence of Reactive GasesInfluence of Reactive Gases

Plasma polymerization of hydrocarbon/ammonia0 10 10.1

m]

pure C2H2NH3/C2H2 1:1NH3/C2H2 2:1

0.1

m]

pure C2H2

NH3/C2H2 1:1

NH3/C2H2 2:1F = Fm + a Fc

a: reaction

crossection

0.01

n cm

2 scc

m

NH3/C2H2 3:1NH3/C2H2 5:10.01

n cm

2 s

ccm NH3/C2H2 2:1

NH3/C2H2 3:1

NH3/C2H2 5:1→ energy

consumed

0.001[10-6

g/m

in

0.001[10-6

g/m

in

chemical etching

0 5

by carrier

gas

Rm

/F

Rm

/F [

EN2

+ sputtering

increasing NH3a = 0.5

D. Hegemann, M.M. Hossain, Plasma Process.

0.0001

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

(W/F)-1 [(J/cm3)-1]

0.0001

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

(W/F)-1 [(J/cm3)-1]

Eahigh ← energy input → low Polym. 2005, 2, 554.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

(W/F) [(J/cm ) ](W/F) [(J/cm ) ]

Page 17: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

ReRe--EngineeringEngineeringg gg g

Plasma polymerization of asymmetric N2/CH4 discharges

RF l 40 P 650 V1

]

RF plasma, 40 Pa, -650 Vbias

N2+

2 m

in s

ccm

]

cathode

anode

2

sputtering

0.1

F [1

0-6

g/c

m2

plasmapolymerization

0 01

Rm/F

Eaa = 0.35

F = Fm + a Fc

0.01

0 0.0025 0.005 0.0075 0.01 0.0125 0.015

(W/F)-1 [(J/cm3)-1]

M. Zhang, Y. Nakayama, T. Miyazaki, M. Kume, J. Appl. Phys. 85, 1999, 2904.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Deposition of Nanoporous CoatingsDeposition of Nanoporous Coatingsp p gp p g

Rivaling deposition/etching processes

plasma polymerization + chem./phys. etching

monomer reactive gas

radicals

monomerVUV radiation

reactive gas

O N H radicals

etching

radicalsenergetic particles

O,N,H radicals

surf. diff.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 18: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Deposition of Nanoporous CoatingsDeposition of Nanoporous Coatings

Hydrocarbon/ammonia RF discharges

p p gp p g

Amine-functionalized coatings

porous structure: <30 nm porous structure: <20 nm

D. Hegemann, M.M. Hossain, D.J. Balazs, Prog. Organic Coat. 58, 2007, 237.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Deposition of Nanoporous CoatingsDeposition of Nanoporous Coatings

2 0

Film density related to porous structure

p p gp p g

1.8

2.0

a-CN:H

1.6

g/cm

3 ]

NH3/C2H4 0 8

a-C:H (N)

1.2

1.4

den

sity

[g NH3/C2H4=0.8

NH3/C2H4=1

NH3/C2H4=1.3

1.0

d

NH3/C2H4=1.7

NH3/C2H4=2.5

NH3/C2H4=3.6nano pores

0.8

0 2 4 6 8 10 12W/Fm [W/sccm]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

m [ ]

Page 19: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Nanoporous Plasma CoatingsNanoporous Plasma Coatingsp gp g

Dyeing of plasma coatings on textile fabrics

0.5

0.6

K/S nm

C2H2/NH3 discharge

0.3

0.4

inte

nsity

K

~50

0.1

0.2

colo

r i

PETD l l ( 3 )0

0 20 40 60 80 100 120 140

a-C:H:N thickness [nm]

Dye molecules (~3 nm) are able to diffuse into nanoporous structure.

dyestuff: C.I. Acid blue 127:1nanoporous structure.

M.M. Hossain, A.S. Herrmann, D. Hegemann, Plasma Process. Polym. 4, 2007, 135.

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Nanoporous Plasma CoatingsNanoporous Plasma Coatings

50

p gp g

Dyeability (color intensity K/S) vs. pore sizes

40

50

m-1

]

Color intensity

correlates with

NH3/C2H2 = 1.25

30

s [1

0-4 n

m

nm]

.

correlates with

pore sizes,

while overall

20

r th

ickn

ess

ore

siz

e [n

N content is

constant for a N content ~20 at%

10

K/S

pe

r

K/S per thickness

pore size

po

fixed NH3/C2H2

ratio.

N content 20 at%

0

60 70 80 90 100 110 120 130

energy input W/F [J/cm3]

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

energy input W/F [J/cm ]

Page 20: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Nanoporous Plasma CoatingsNanoporous Plasma Coatings

Permanence of dyed plasma coatings on textile fabrics

p gp g

M ti d l b f t ti ft 70‘000 lMartindale before testing

PP

after 70‘000 cycles

PPmultifil

dyestuff: C.I.

Acid blue 127:1PETmonofil

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Nanoporous Plasma CoatingsNanoporous Plasma Coatings

Hydrophilic treatment – hydrophobic recovery80

p gp g

70

80

Aging due to internal and

PET foils

50

60

angl

e [°

]

Corona treatment

internal and external effects:

- re-organization

30

40

2O c

onta

ct Ar/O2 plasma

quartz-like coating

nano-porous coating

g

- surface reactions

- absorption layerscomplete wettingon fabrics

10

20

H2 absorption layers

permanent hydrophilicity0

0 5 10 15 20 25

aging [days]

permanent hydrophilicity

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

aging [days]

Page 21: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Nanoporous Plasma CoatingsNanoporous Plasma Coatings

Loading with wet chemicals

p gp g

UV b b Fl bUV absorber Fluorocarbon

6

7

8

e

3

4

5

6

pelle

ncy

grad

1

2

3

oil r

ep PET fabric plasma + fluorocarbon

PET fabric plasma + FC (washed)

PET fabric perfluoro + nano particles

M ti d lUV

0

0 20000 40000 60000 80000

rubbing cycles

Martindaleabrasion test

UV exposureof aramid fabrics

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Transfer of Plasma PolymerizationTransfer of Plasma Polymerizationyy

Scale-up to Web Coater

Continuous processing oft til b f iltextiles, membranes, foils,bands, and papers

idth 65width = 65 cmvelocity = 0.1..100 m/minAdep = 10‘000 cm2

W b tW b tAdep 10 000 cm

Web coaterWeb coater

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 22: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

Transfer of Plasma PolymerizationTransfer of Plasma Polymerizationyy

Different reactor geometries10

Scale-up can

be performed

f ll

pp-HMDSORF, 7.5 Pa

Vgas/Vdis~4.5

Vgas/Vdis~4.3

10

m]

succesfully

using the

identifiedVgas/Vdis~1.0

1

n cm

2 s

ccm

llidentified

similarity

parameter V /Vdi ~1 00.1[1

0-6 g

/min asym. small

asym. large

sym. small

gastVdW

S

parameterVgas/Vdis~1.8

Vgas/Vdis 1.0

Rm

/F

sym. large

web coater

Ea = 55 J/cm3

dis

gas

gas

act

Vd

d

F

WS = 0.01

0 0.01 0.02 0.03 0.04 0.05

S-1 [(J/cm3)-1]

a

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

OutlookOutlook

t l / d i f

Control of Plasma Polymerization ProcessesControl of Plasma Polymerization Processes

control / design of

■ plasma reactors

■ nano-scaled coatings

highantimicrobial

mechanical stability

■ nanoporous coatings

mediumwettabilityfunctional group densitybioactivity

mechanical stability

■ multifunctional (textile) surfaces

transfer into industry

0 1 10 100

Ag in nanoporous a-C:H:N [%]

lowconductivity

■ transfer into industry

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18

Page 23: Materials Science &Technolog y Control of Plasma ... · Materials Science &Technolog y. Dirk Hegemann, Plasma Polymerization, ISPC 18. Plasma Polymerization. Evaluation of deposition

AcknowledgementAcknowledgementgg

Laboratory of Advanced Fibers

Pl■ Plasma group

contact

[email protected]

D. Balazs, M. Hossain, E. Körner, U. Schütz, M. Amberg, S. Guimond

■ Chemistry group: M. Heuberger, A. Ritter, F. Reifler

■ CTI Bern (funding)

Materials Sci ence & Technolog yDirk Hegemann, Plasma Polymerization, ISPC 18