math 2020 b solution

Upload: wan-chin-ching

Post on 07-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 MATH 2020 B Solution

    1/45

    MATH2020B Advanced Calculus II

    Tutorial Solution

    by Chan Chi Ming

    This note contains all the solutions to the tutorial questions given by an excellent tutor,John, LAM Yi-Chun, in his MATH2020B class in 2013-2014. When I was a tutor in theMath Clinic (http://mathclinic.math.cuhk.edu.hk/), the questions are found useful forthe students to familiar with the definitions and theorems. Therefore, I decide to write allthe solutions for the coming MATH2020 students. Since definitions and theorems are notprovided in this note, students are advised to use this note, as a list of worked examples,after learning them. Although this note covers most of the topic in the syllabus, it shouldNOT  be used to substitute any lectures and tutorials.

    The solutions are modified from the material given by John after discussing with mystudents, with emphasis placed on the use of definition and theorems but not tediouscomputation. Although many solutions are short, the students are highly advised towork out   ALL   the steps (smartly). Unlike the notation in the questions,  a, b   is usedto denote the standard inner product of the two vectors   a  and   b   in  Rn instead of   a · b.Sometimes a parametrization of a curve is written in  γ  while a parametrization of a surfaceis written in Φ instead of the common notation  r  to avoid confusion.

    Finally, I would like to thank John, LAM Yi-Chun for providing the source so that thisnote can be completed. Also, I am grateful to Kelvin, CHAN Cheuk-Kit for verifyingevery step in the solution and many helpful discussions. If there are any mistakes, pleasenotify me by email: . Any help would be appreciated.

    Change Log:Version: Date: Comment:

    1 2013-09-03 First release.

    1

  • 8/19/2019 MATH 2020 B Solution

    2/45

    MATH2020B Tutorial 1

    By John, Lam Yi Chun

    (1) Review:

    (a) Give a parametrization for the following surfaces:

    Sphere, cylinder, cone, ellipsoid and paraboloid.

    (b) Parametrize the surfaces given by the equations

    (i)   x2

    a2 +   y

    2

    b2 −   z

    2

    c2  = 1 (Hyperboloid of one sheet)

    (ii)   x2

    a2 −   y

    2

    b2 −   z

    2

    c2  = 1 (Hyperboloid of two sheets)

    (c) Determine the surface given by the parametrization

    P (u, v) = (u + v, u − v,uv), 0 < u, v

  • 8/19/2019 MATH 2020 B Solution

    3/45

    MATH2020B Advanced Calculus II

    Tutorial 1 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1.   Google  yourself.

    2. The region ∆ can be parameterized to be0 ≤  y  ≤  x,   0 ≤  x  ≤  1

    0 ≤  y  ≤  2 − x,   1 ≤  x  ≤  2.

    Therefore,

     ∆

    xeydA =    1

    0   x

    0

    xeydydx+   2

    1   2−x

    0

    xeydydx =    1

    0

    x(ex−1)dx+   2

    1

    x(e2−x−1)dx = 2e−4.

    3.    10

       10

    xmax{x, y}dydx =

       10

       x0

    xmax{x, y}dy +

       1x

    xmax{x, y}dy

    dx

    =

       10

       x0

    x2dy +

       1x

    xydy

    dx

    =

       10

    x3dx + 1

    2

       10

    x(1 − x2)dx

    = 3

    8.

    4. (a) Interchanging the order of integration,

       60

       2x/3

    ey2

    dydx =

       20

       3y0

    ey2

    dxdy = 3

       20

    yey2

    dy  = 3

    2e4 −

     3

    2.

    (b) Interchanging the order of integration,

       40

     √ yy/2

    eyxdxdy =  −

       40

       y/2√ y

    eyxdydx =  −

       20

       2xx2

    eyxdydx =  −

       20

    (xe2−xex)dx = 1−e2.

    5. (a) By a change of variable u =  x + y,   10

       10

    x − y

    (x + y)3dydx =

       10

       1+xx

    2x − u

    u3  dudx =

       10

       1+xx

    2x

    u3 −

      1

    u2

    dudx =

     1

    2.

    (b) By a change of variable v =  x + y,

       10

       10

    x − y

    (x + y)3dxdy =

       10

       1+yy

    v − 2y

    v3  dvdy  =

       10

       1+yy

     1

    v2 −

     2y

    v3

    dvdy =  −

    1

    2.

    1

  • 8/19/2019 MATH 2020 B Solution

    4/45

    6. In polar coordinates, the region   can be parameterized to be

    0 ≤  r  ≤  sec(θ),   0 ≤  θ  ≤ π

    4

    0 ≤  r  ≤  secπ

    2 − θ

    ,

      π

    4 ≤ θ  ≤

     π

    2.

    Therefore,  

    (x2 + y2)dA =

     π4

    0

       sec(θ)0

    r2 · rdrdθ +

     π2

    π2

       secπ2−θ

    0r2 · rdrdθ

    = 1

    4

     π4

    0sec4(θ)dθ +

     1

    4

     π2

    π2

    sec4π

    2 − θ

    = 1

    2

     π4

    0sec4(θ)dθ

    = 2

    3

    .

    2

  • 8/19/2019 MATH 2020 B Solution

    5/45

    MATH2020B Tutorial 2

    Review on Section 13.1 - 13.5

    (1) Evaluate

     R

    f , where   f (x, y) =   xy   and   R   is the first-quadrant circle bounded by

    x2 + y2 = 1 and the coordinate axes.

    (2) Evaluate

       1

    0

       1

    y

    1

    1 + x4dxdy.

    (3) Using double integration, verify the formula for the volume of a sphere of radius  r.

    (4) Find the volume of the first octant part of the solid bounded by the cylindersx2 + y2 = 1 and  y2 + z 2 = 1.

    (5) Evaluate

       2

    1

     √ 2x−x2

    0

    dydx x2 + y2

    .

    (6) Find the volume of the solid bounded by  x2 + y2 + z 2 = a2 and  z  = 

    x2 + y2.

    (7) Find the volume and surface area of the solid torus obtained by revolving the disk

    r ≤  a  around the line  x  =  b > a.

    (8) Find the mass and centroid of the following region: The region inside  r  = 2sin θ

    and outside  r = 1 with density  ρ(x, y) = y.

    (9) A uniform rectangular plate with base length  a, height  b, and mass  m   is centered

    at the origin. Show that is polar moment of inertia is  I 0 =  1

    12m(a2 + b2).

    (10) (Extra) Using polar coordinates, evaluate

     

    f dA, where   f (x, y) =   x2 + y2 and

    = {(x, y) ∈ R2 : 0 ≤  x, y ≤  1}.

    (11) (Extra) Let  α > 0 and 0 < <   12

    . Evaluate S 

    gdA, where

    g(x, y) = (x2 + y2)−α

    log

      1 x2 + y2

    2

    and

    S   =

    (x, y) ∈ R2 :   ≤

     x2 + y2 ≤

     1

    2

    .

    Determine for what values of  α does lim→0 S 

    gdA  exists.

    1

  • 8/19/2019 MATH 2020 B Solution

    6/45

    MATH2020B Advanced Calculus II

    Tutorial 2 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. In polar coordinates, the region R  can be parameterized to be

    0 ≤ r ≤ 1,   0 ≤ θ ≤ π2

    .

    Therefore, R

    xydA =

     π2

    0

       10

    r cos(θ)r sin(θ) · rdrdθ  = π

    2

    0cos(θ)sin(θ)

       10

    r3drdθ =  1

    8.

    2. Interchanging the order of integration,

       10

       y1

    dxdy

    1 + x4   =   10

       x0

    dydx

    1 + x4   =   10

    x

    1 + x4 dx =  1

    2   10

    d(x2)

    1 + (x2)2   = π

    8 .

    3. Consider the sphere given by {(x,y ,z) ∈   R3 :   x2 + y2 + z2 =   ρ2}, where   ρ >   0. LetD ≡ {(x, y) ∈ R2 : x2 + y2 = ρ2}. Then the volume of the sphere is given by, with the useof polar coordinate,

    V   =

     D

     ρ2 − x2 − y2dA =

       2π0

       r0

     ρ2 − r2 · rdrdθ  = 2π ·  2

    3ρ3 =

     4

    3πρ3.

    4. Choose the base to be   R ≡ {(x, y) ∈  R2 :  x2 + y2 = 1, 0 ≤  x, y ≤  1}   together with theheight function (z =)f (x, y) =  1 −

    y2 on  R. The volume is then given by

    V   =

     D

    f (x, y)dA =

       10

     √ 1−y20

     1 − y2dxdy =

       10

    (1 − y2)dy =  23

    .

    5. In polar coordinates, the region can be parameterized to be

    sec θ ≤ r ≤ 2cos(θ),   0 ≤ θ ≤  π4

    .

    Therefore,   21

     √ 2x−x20

    dydx

     x2 + y2=

     π4

    0

       2cos(θ)sec(θ)

    rdrdθ

    r  =

     π4

    0 2cos(θ)−sec(θ)

    dθ =

    √ 2−log(

    √ 2+1).

    6. For the choice of the base, we solve the equationsx2 + y2 + z2 = a2

    z = 

    x2 + y2.

    Therefore, we choose the base to be   R ≡ {(x, y) ∈   R2 :   x2 + y2 =   a2/2}   together withthe height function (z =)f (x, y) =

     a2 − x2 − y2 −

     x2 + y2 on  R. With the help of the

    polar coordinate, the volume is then given by

    V   =  D f (x, y)dA =    2π

    0  a√ 2

    0( a

    2 − r2 − r) · rdrdθ  =  (2 −√ 

    2)

    3  πa3.

    1

  • 8/19/2019 MATH 2020 B Solution

    7/45

    7. Observe that the differential volume is given by dV   = 2π(b − x)dA. With the help of thepolar coordinate, the volume is then given by

    V   =

       2π0

       a0

    b − r cos(θ) · rdrdθ  =    2π0

    πa2b −  2

    3πr3 cos(θ)

    · rdrdθ  = 2π2a2b.By Pappus’s second (centroid) theorem, the surface area is given by

    A = 2πa · 2πb  = 4πab.

    8. For the range of the region, we solve the equationsr = 2sin(θ)

    r = 1.

    Therefore, the region is  R ≡

    r cos(θ), r sin(θ)

     : 1 ≤ r ≤ 2sin(θ), π/6 ≤ θ ≤ 5π/6

    . The

    mass is given by

    M   = 

    RδdA  =

     5π6π6

       2 sin(θ)1

    r sin(θ) · rdrdθ  = 8π + 3

    √ 3

    12   .

    Also,

    M x =

     R

    y · δdA  = 5π

    6

    π6

       2sin(θ)1

    r3 sin2(θ)drdθ = 12π + 11

    √ 3

    16  ,

    M y  =

     R

    x · δdA  = 5π

    6

    π6

       2 sin(θ)1

    r3 sin2(θ) cos(θ)drdθ = 0.

    The centroid is then given by 0, 36π + 33

    √ 3

    32π + 12

    √ 3.

    9. Since the rectangular plate is uniform, the density is uniformly given by   δ   =   m/(ab).Hence,

    I y  =

     a2

    −a2

     b2

    − b2x2 · δdydx =  δ 

     a2

    −a2bx2dx =

      1

    12δa3b =

      1

    12ma2.

    Similarly,  I x =  1

    12mb2.

    10. See Tutorial 1, Q.6.

    11. In polar coordinates, the region S ε  can be parameterized to be

    ε ≤ r ≤  12

    ,   0 ≤ θ ≤ 2π.

    Therefore, using the polar coordinates,

     S ε

    gdA  =

       2π0

     12

    ε

    r−2α

    log

    1

    r

    2· rdrdθ

    = 2π

     12

    ε

    r1−2α log2(r)dr

    =  −π

    4(α − 1)3 r2−2α 2(α −

    1) log(r) + 12 + 112

    ε

    .

    2

  • 8/19/2019 MATH 2020 B Solution

    8/45

    Therefore, S ε

    gdA  =  π

    4(α − 1)3

    ε2−2α

    2(α−1) log(ε)+12+1−22α−21−2(α−1) log(2)2+1.For the existence of the limit lim

    ε→

    0 S ε

    gdA, it suffices to consider the limit

    limε→0

    ε2−2α

    2(α − 1) log(ε) + 12 + 1.The limit exists if 0 < α

  • 8/19/2019 MATH 2020 B Solution

    9/45

    MATH2020B Tutorial 3

    By John, Lam Yi Chun

    (1) (Continue)Double Integrals

    (a) Using polar coordinates, evaluate

     

    f dA, where   f (x, y) =   x2 + y2 and    =

    {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}.

    (b) Evaluate

     D

    dxdy

    (x2 + y2)2, where  D = {(x, y) ∈ R2 : |x| + |y| ≥ 1}.

    (c) Show that    ∞

    0

    e−x2

    dx =

    √ π

    2  .

    (d) Evaluate

       ∞

    0

    tan−1(πx) − tan−1 xx

      dx.

    (Remark: This is an example of Frullani integral.)

    (2) Triple Integrals and Volumes

    (a) Find the volume of the solid bounded by the plane z  =  y +4 and the paraboloid

    z  =  x2 + y2 + y.

    (b) Find the volume of the solid bounded by the spheres  x2

    + y2

    + z 2

    = 4 and(x − 1)2 + y2 + z 2 = 4.

    (c) Let  a > 0. Find the volume of solid bounded by the sphere  x2 + y2 + z 2 =  a2

    and excluding the solid bounded by the surface  x2 + y2 = a|x|.(d) (Extra Question):

    Let   V n(R) be the volume of the   n   dimensional ball of radius   R   (i.e. the set

    {(x1,...,xn) ∈   Rn :   x21  + ...  +  x2n ≤   R2}). Show that   V 2n(R) =   πn

    n! R2n and

    V 2n−1(R) =  4nπn−1n!

    (2n)!  R2n−1.

    (3) Change of Variable Formula

    (a) Evaluate B

     e−ρ3

    dV  , where  B   is the ball centered at the origin with radius  R

    and  ρ = 

    x2 + y2 + z 2.

    (b) Evaluate R

     x2 + y2 + z 2dV  , where R   is the region bounded by the plane

    z  = 3 and the cone  z  = 

    x2 + y2.

    (c) Evaluate R

    (√ 

    x +√ 

    y)1

    2 dA, where R is the region in the first quadrant which

    is bounded by the coordinate axes and the curve √ x + √ y = 1.

    1

  • 8/19/2019 MATH 2020 B Solution

    10/45

    MATH2020B Advanced Calculus II

    Tutorial 3 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. (a) See Tutorial 1, Q.6.

    (b) By the symmetry of the region and the integrant, it suffices to consider the regionD ≡   D ∩ {(x, y) ∈  R2, x , y ≥   0}. In polar coordinates, this new region  D  can beparameterized to be

    1

    cos(θ) + sin(θ) ≤ r < ∞,   0 ≤ θ ≤  π

    2.

    Therefore, using the polar coordinates,

     D

    dxdy

    (x2 + y2)2   = 4 

    D

    dxdy

    (x2 + y2)2   = 4 π20

      ∞1

    cos(θ)+sin(θ)

    rdrdθ

    r4   = π + 2.

    (c) Let I  ≡  ∞0

    e−x2

    dx > 0. Then by the polar coordinates,

    I 2 =

      ∞0

      ∞0

    e−x2−y2dxdy  =

     π2

    0

      ∞0

    e−r2 · rdrdθ  =   π

    4.

    So  I  =√ 

    π/2.

    (d) Instead of evaluating the integral, we show the following result:

      ∞0

    f (bx) − f (ax)x

      dx =

     limx→∞ f (x) −  limx→0 f (x)

    log

    ba

    ,

    where 0 < a ≤ b  and  f   : (0, ∞) → R   is a continuously differentiable function.

    To see this,   ∞0

    f (bx) − f (ax)x

      dx =

      ∞0

       ba

    f (yx)dydx

    =

       ba

      ∞0

    f (yx)dxdy

    =   b

    a

     limx→∞ f (x) − limx→0 f (x)

     1y

    dy

    =

     limx→∞ f (x) −  limx→0 f (x)

    log

    b

    a

    .

    In particular,

      ∞0

    arctan(πx) − arctan(x)x

      dx = 1

    2π log(π).

    2. (a) For the choice of the base, we solve the equations

    z =  x2 + y2 + y

    z =  y  + 4.

    1

  • 8/19/2019 MATH 2020 B Solution

    11/45

    Therefore, we choose the base to be  R ≡ {(x, y) ∈  R2 :  x2 + y2 = 4}. the volume isthen given by

    V   =

     R

       y+4x2+y2+y

    dzdxdy =

       2π0

       20

    (4 − r2)rdrdθ  = 8π.

    (b) For the choice of the base, we solve the equations  x2 + y2 + z2 = 4

    (x − 1)2 + y2 + z2 = 4.

    Therefore, we choose the base to be  R ≡ {(y, z) ∈ R3 : y2 + z2 = 15/4}. The volumeis then given by

    V   =

     R

     √ 4−y2−z21−

    √ 4−y2−z2

    dxdydz =

       2π0

     √ 152

    0(2 

    4 − r2 − 1)rdrdθ  =  274

     π.

    (c) For the choice of the base, note that the base is always the projection of the solidonto some planes, we solve the equations (here we choose the plane  z  = 0)x2 + y2 = a2

    x2 + y2 = a|x|.Therefore, we choose the base to be

    R ≡

    r cos(θ), r sin(θ)

     :  a| cos(θ)| ≤ r ≤ a, 0 ≤ θ ≤ 2π

    .

    By the symmetry of the region and the integrant, the volume is then given by

    V   = 

    R

     √ a2−r2−√ a2−r2

    rdzdrdθ  = 4 π

    2

    0

       a

    a| cos(θ)|2r 

    a2 − r2drdθ =  83

    a3 π

    2

    0sin3(θ)dθ =  16

    9 a3.

    (d) Observe that the formula for V  j(R) is given by

    V  j(R) =

       R−R

     √ R2−x21

    −√ 

    R2−x21

    · · · √ R2−x2

    1−...−x2

    n−1

    −√ 

    R2−x21−...−x2

    n−1

    dxn . . . dx2dx1,

    then the result follows from an induction on  j ∈ N.3. (a) Using spherical coordinates, that is,

    x =  ρ cos(θ)sin(φ), y =  ρ sin(θ) sin(φ), z  =  ρ cos(φ),

    where  ρ > 0, 0 ≤ θ ≤ 2π  and 0 ≤ φ ≤ π, we have

    ∂ (x,y ,z)

    ∂ (ρ,θ,φ) =

    cos(θ) sin(φ)   − sin(θ)sin(φ) cos(θ)cos(φ)sin(θ)sin(φ) cos(θ)cos(φ) sin(θ) cos(φ)

    cos(φ) 0 sin(φ)

    = ρ2 sin(φ).Therefore,

     B e−ρ3dV   =  

      π

    0    2π

    0    R

    0e−ρ

    3 · ρ2 sin(φ)dρdθdφ =  43

    π(1 − e−R3).

    2

  • 8/19/2019 MATH 2020 B Solution

    12/45

    (b) Using cylindrical coordinates, that is,

    x =  r cos(θ), y =  r sin(θ), z  =  z,

    where  r > 0 and 0 ≤ θ ≤ 2π, we have

    ∂ (x,y ,z)∂ (r,θ,z)

      =cos(θ)

      −r sin(θ) 0

    sin(θ)   r cos(θ) 00 0 1

    = r.The region R can be parameterized to be

    0 ≤ r ≤ z,   0 ≤ z ≤ 3,   0 ≤ θ ≤ 2π.

    Therefore, R

     x2 + y2 + z2dV   =

       30

       2π0

       z0

     r2 + z2 · rdrdθdz  =  27

    3 (2

    √ 2 − 1)π.

    (c) From the change of variableu =

    √ x, v =

    √ y,

    we have∂ (x, y)

    ∂ (u, v)  =

    2u   00 2v = 4uv

    and the region R can be parameterized to be

    0 ≤ u ≤ 1 − v,   0 ≤ v ≤ 1.

    Therefore, R

    (√ 

    x +√ 

    y)12 dA =

       1

    0

       1−v

    0(u + v)

    12 · 4uvdudv

    = 4

       10

       1−v0

    v(u + v)

    32 − v2(u + v)12 dudv

    = 4

       10

    2

    5v(1 − v 52 ) − 2

    3v2(1 − v 32 )

    dv

    =  4

    27.

    3

  • 8/19/2019 MATH 2020 B Solution

    13/45

    MATH2020B Tutorial 4

    Change of Variable Formula

    (1) Evaluate B e−ρ

    3

    dV  , where  B   is the ball centered at the origin with radius  R  and

    ρ = 

    x2 + y2 + z 2.

    (2) Evaluate R

     x2 + y2 + z 2dV  , where R  is the region bounded by the plane  z  = 3

    and the cone  z  = 

    x2 + y2.

    (3) Evaluate R

    (√ x +

    √ y)

    1

    2dA, where R is the region in the first quadrant which is

    bounded by the coordinate axes and the curve √ x +√ y = 1.(4) Evaluate

     R

    (x2 +y2)dA, where R is the region in the first quadrant that is boundedby the hyperbolas  xy = 1, xy = 3, x2 − y2 = 1, and  x2 − y2 = 4.

    (5) Evaluate

     A

    ex−y

    x+y dxdy, where   A   is the first quadrant region bounded by the

    coordinate axes and the line  x + y  = 1.

    (6) Using the transformation  u  =   2xx2+y2

    ,  v  =   2yx2+y2

    , evaluate

     A

    dxdy

    (x2 + y2)2, where  A

    is the region in the first quadrant of the  xy-plane which is bounded by the circlesx2 + y2 = 6x, x2 + y2 = 4x, x2 + y2 = 8y, x2 + y2 = 2y.

    (7) Using the transformation

    x =  r

    t cos θ, y =

      r

    t sin θ, z  =  r2,

    find the volume of the region bounded by the paraboloids  z  =  x2+y2, z  = 4(x2+y2)

    and also between the planes  z  = 1 and  z  = 4.

    (8) (Extra Question) Let  A  be an n×n symmetric positive definite matrix, and q (x) =xt

    Ax. Show that  Rn

    e−q(x)dV   =  π

    n

    2

    (detA)1

    2

    .

    1

  • 8/19/2019 MATH 2020 B Solution

    14/45

    MATH2020B Advanced Calculus II

    Tutorial 4 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. See Tutorial 3, Q.3(a).

    2. See Tutorial 3, Q.3(b).

    3. See Tutorial 3, Q.3(c).

    4. From the change of variableu =  xy, v =  x2 − y2,

    we have

    ∂ (x, y)

    ∂ (u, v)   =

      ∂ (u, v)

    ∂ (x, y)

    −1

    = y x2x   −2y

    −1

    =

      1

    2(x2 + y2)   =

      1

    2√ v2 + 4u2 ,and the region R  can be parameterized to be

    1 ≤ u ≤ 3,   1 ≤ v ≤ 4.

    Therefore,

     R

    (x2 + y2)dA =

       4

    1

       3

    1

     v2 + 4u2 ·   1

    2√ 

    v2 + 4u2dudv =

      1

    2

       4

    1

       3

    1

    dudv = 3.

    5. From the change of variable

    u =  x − y, v =  x + y,we have

    ∂ (x, y)

    ∂ (u, v) =

      ∂ (u, v)

    ∂ (x, y)

    −1

    =

    1   −11 1−1

    = 1

    2,

    and the region  A can be parameterized to be

    −v ≤ u ≤ v,   0 ≤ v ≤ 1.

    Therefore,

     A

    ex−yx+y dxdy  =  

      1

    0   v

    −v

    euv

     · 1

    2dudv =

      1

    2   1

    0

    v(e−

    e−1)dudv = 1

    4(e−

    e−1).

    6. From the change of variable

    u =  2x

    x2 + y2, v =

      2y

    x2 + y2,

    we have

    ∂ (x, y)

    ∂ (u, v) =

      ∂ (u, v)

    ∂ (x, y)

    −1

    =

    −2(x2 − y2)

    (x2 + y2)2  −   4xy

    (x2 + y2)2

      4xy

    (x2

    + y2

    )2

    2(x2 − y2)

    (x2

    + y2

    )2

    −1

    = 1

    4(x2 + y2)2,

    1

  • 8/19/2019 MATH 2020 B Solution

    15/45

    and the region  A can be parameterized to be

    1

    3 ≤ u ≤  1

    2,

      1

    4 ≤ v ≤ 1.

    Therefore,

     A

    dxdy

    (x2 + y2)2  =

      1

    4   1

    14

     1

    2

    13

    dudv  =  1

    32.

    7. From the change of variable

    x =  r cos(θ)

    t  , y =

     r sin(θ)

    t  , z =  r2,

    where  r > 0,  t > 0 and 0 ≤ θ ≤ 2π, we have

    ∂ (x, y , z)

    ∂ (r,θ,t)  =

    cos(θ)

    t  −r cos(θ)

    t2  −r sin(θ)

    tsin(θ)

    t  −r sin(θ)

    t2r cos(θ)

    t2r   0 0

    = 2r3

    t3

    and the region is transformed to be

    1 ≤ r ≤ 2,   0 ≤ θ ≤ 2π,   1 ≤ t ≤ 2.Therefore, the volume is given by

    V    =

       2

    1

       2π

    0

       2

    1

    2r3

    t3  drdθdt =

     45

    8 π.

    8. Since  A   is a symmetric positive definite matrix, there is some orthogonal matrix  Q  suchthat  QT AQ =  D, where

    D =

    λ1   0 00   . . .   00 0   λn

    is a diagonal matrix whose diagonal entries are the eigenvalues  λ1, . . . , λn(>  0) of  A. In

    particular, det(A) =n

     j=1

    λ j . Form the change of variable

    x =  Qu,

    we have∂ (x1, . . . , xn)

    ∂ (u1, . . . , un)

     = Q = 1and the transformed region is still  Rn. Therefore, Rn

    e−xT Axdx =

     Rn

    e−uT Du·1du =

     Rn

    e−n

    j=1 λju2

    j du =

       ∞

    −∞

    e−λ1u2

    1 · · ·   ∞

    −∞

    e−λnu2ndun . . . du1.

    By Tutorial 3, Q.1(c),

       ∞

    0

    e−t2

    dt =√ 

    π. So,

     Rn

    e−xT Axdx =

    n j=1

       ∞

    −∞

    e−λju2

    j du j  =n

     j=1

      π

    λ j  =

      πn2 

    det(A).

    2

  • 8/19/2019 MATH 2020 B Solution

    16/45

    MATH2020B Tutorial 5

    Surface Area

    (1) Find the surface areas of a torus and a ball of radius  R  in  R3.

    (2) Find the surface area of an Enneper’s surface.

    (3) Let  S  be the graph of the differentiable function   f   :  D →  R, where  D ⊂  R2 is adomain. Show that

    Area(S ) =

     D

     1 +

    ∂f 

    ∂x

    2+

    ∂f 

    ∂y

    2dxdy.

    (4) Let   f   : [a, b] →  R+ be differentiable. Let   S  be the surface obtained by revolvingthe graph of  y =  f (x) about the  x-axis. Show that

    Area(S ) = 2π

       ba

    f (x) 

    1 + (f (x))2dx.

    (5) Let   r(u, v) be a regular surface defined on a domain  D ⊂ R2. Show that its surfacearea is given by

     D√ 

    EG − F 2dudv,

    where E F 

    F G

    =

    ∂ r∂u ·   ∂ r∂u ∂ r∂u ·   ∂ r∂v

    ∂ r∂u ·   ∂ r

    ∂v∂ r∂v ·   ∂ r

    ∂v

    .

    (6) Find the surface area of the part of the plane  x + y  +  z  = 1 that lies in the first

    octant.

    (7) Find the surface area of the part of   z   =   xy   that lies in the cylinder given by

    x2 + y2 = 1.

    (8) Find the area of the surface obtained by revolving the graph of  y = cosh(x) about

    the  x-axis for 0 ≤ x ≤ 1.

    (9) Find the surface area of the region common to the intersecting cylinders  x2+y2 = a2

    and  x2 + z 2 = a2.

    (10) Find the surface area of the ellipsoid   x2

    a2 +   y

    2

    a2 +   z

    2

    b2 = 1, where  a > b > 0.

    1

  • 8/19/2019 MATH 2020 B Solution

    17/45

    MATH2020B Advanced Calculus II

    Tutorial 5 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. (a) Consider the surface of a ball given by  S  ≡ {(x,y,z) ∈  R3 : x2 + y2 + z2 = R2}  andparameterize it by the function Φ given by

    Φ(θ, φ) ≡ R cos(θ)sin(φ), R sin(θ) sin(φ), R cos(φ)for any (θ, φ) ∈ D ≡ [0, 2π] × [0, π]. Then

    Φθ × Φφ =

    e1   e2   e3−R sin(θ)sin(φ)   R cos(θ) sin(φ) 0R cos(θ)cos(φ)   R sin(θ)cos(φ)   −R sin(φ)

    = −R2 sin(φ) · cos(θ) sin(φ), sin(θ)sin(φ), cos(φ)

    and so Φθ × Φφ =  R2 sin(φ) in  D . The surface area of  S  is given by

    A =

     S 

    dS  =

     D

    Φθ × Φφdθdφ =   π0

       2π0

    R2 sin(φ)dθdφ = 4πR2.

    (b) Consider the surface of a torus, with major radius R  and minor radius  r   respectively,

    given by S  ≡ {(x,y,z) ∈ R3 : (R− x2 + y2)2 + z2 = r2} and parameterize it by the

    function Φ given by

    Φ(θ, φ) ≡R + r cos(φ)

    cos(θ),

    R + r cos(φ)

    sin(θ), r sin(φ)

    for any (θ, φ) ∈ D ≡ [0, 2π] × [0, 2π]. Then

    Φθ × Φφ =

    e1   e2   e3−R + r cos(φ) sin(θ) R + r cos(φ) cos(θ) 0

    −r sin(φ)cos(θ)   −r sin(φ)sin(θ)   −r cos(φ)

    = −rR + r cos(φ) · cos(φ)cos(θ), cos(φ) sin(θ), sin(φ)

    and so Φθ × Φφ =  rR + r cos(φ)

     in  D. The surface area of  S  is given by

    A =

     S 

    dS  =

     D

    Φθ × Φφdθdφ =   2π0

       2π0

    rR + r cos(φ)

    dθdφ = 4π2rR.

    (This verifies the Pappus’s second (centroid) theorem.)

    2. Note that an Enneper’s surface  S  can be parameterized by the function Φ given by

    Φ(u, v) ≡u

    3

    1 −  u

    2

    3  + v2

    ,−v

    3

    1 −  v

    2

    3  + u2

    , 1

    3(u2 − v2)

    for any (u, v) ∈ D ≡ [−1, 1] × [−1, 1]. Then

    Φu × Φv  =

    e1   e2   e3

    1

    3(1 − u2 + v2)   −2

    3uv

      2

    3u

    2

    3vu   −1

    3(1 − v2 + u2)   −2

    3v

    =

    2

    9

    u(u2 + v2 + 1), 2

    9

    v(u2 + v2 + 1), 1

    9(u2 + v2)2 −

    11

  • 8/19/2019 MATH 2020 B Solution

    18/45

    and so Φu × Φv = (1 + u2 + v2)2/9 in  D . The surface area of  S  is given by

    A =

     S 

    dS  =

     D

    Φu × Φvdudv =   1−1

       1−1

    1

    9(1 + u2 + v2)2dudv =

     532

    405.

    3. Note that   S   = {(x,y,f  (x, y) ∈   R3 : (x, y) ∈  D)}   and it can be parameterized by thefunction Φ given by

    Φ(u, v) ≡ u,v,f  (u, v)for any (u, v) ∈ D. Then

    Φu × Φv  =e1   e2   e31 0   f u0 1   f v

    = (−f u,−f v, 1)and so Φu × Φv =

     1 + f 2u +  f 

    2v   in  D. The surface area of  S  is given by

    A =  S 

    dS  =  D

    Φu ×

    Φvdudv =  

    D 1 + f 2u + f 2v dudv.

    4. Note that S  can be parameterized by the function Φ given by

    Φ(u, v) ≡ u, f (u)cos(v), f (u) sin(v)for any (u, v) ∈ D ≡ [a, b] × [0, 2π]. Then

    Φu × Φv  =

    e1   e2   e31   f  cos(v)   f  sin(v)0   −f  sin(v)   f  cos(v)

    =ff ,−f  cos(v),−f  sin(v)

    and so Φu × Φv = |f | 1 + (f )2 in  D . The surface area of  S  is given byA =

     S 

    dS  =

     D

    Φu × Φvdudv = 2π   ba

    |f (u)| 

    1 +f (u)

    2du.

    5. For every (u, v) ∈ D, denote by  θ  the angle between  ru  and  rv. Note that

    ru×rv2 = ru2rv2 sin2(θ) = ru2rv2−ru2rv2 cos2(θ) = ru2rv2−ru, rv2 .

    in  D . The surface area is given by

     r(D)

    dS  =  D

    ru ×

    rvdudv =  

    D EG − F 2dudv.

    6. (Method I):By some simple coordinate geometry, the surface area can be found to be

    A = 1

    2 ·

    √ 2 ·

    √ 2 · sin

    π3

    =

    √ 3

    2  .

    (Method II):The surface  S  ≡ {(x,y,z) ∈  R3 : x  + y + z  = 1}  can be parameterized by the function Φgiven by

    Φ(u, v) ≡

     (u,v, 1−u

    −v)

    2

  • 8/19/2019 MATH 2020 B Solution

    19/45

    for any (u, v) ∈ D ≡ {(x, y) ∈ R2 : x + y ≤ 1,x,y ≥ 0}. Then

    Φu × Φv  =e1   e2   e31 0   −10 1   −1

    = (1, 1, 1)and so

     Φu

     ×Φv

     =

    √ 3 in  D . The surface area of  S  is given by

    A =

     S 

    dS  =

     D

    Φu × Φvdudv =√ 

    3

     D

    dudv =√ 3

    2  .

    (Method III):Let f (x, y) ≡ 1 − x− y   in  D ≡ {(x, y) ∈ R2 : x + y ≤ 1,x,y ≥ 0}. By Q.3 the surface areais given by

    A =

     D

    √ 3dxdy =

    √ 3

    2  .

    7. Let  f (x, y) ≡ xy   in  D ≡ {(x, y) ∈ R2 : x2 + y2 ≤ 1}. By Q.3 the surface area is given by

    A = 

    D

     1 + y2 + x2dxdy  =

       2π0

       10

     1 + r2rdrdθ  =

      2(2√ 

    2−

    1)

    3   π.

    8. Let  f (x) ≡ cosh(x) in [0, 1]. By Q.4 the surface area is given by

    A = 2π

       10

    cosh(x)

     1 + sinh2(x)dx = 2π

       10

    cosh2(x)dx =  π

       10

    1+cosh(2x)

    dx =

    1 +

     sinh(2)

    2

    π.

    9. Denote the surface by   S . By the symmetry of the surface, it suffices to consider the

    surface  S  ≡  S  ∩ {(x,y,z) ∈  R3 :  x, y, z ≥  0}. Let  f (x, y) ≡ a2 − x2 in  D ≡ {(x, y) ∈

    R2 : x2 + y2 ≤ 1,x,y ≥ 0}. By Q.3 the surface area is given by

    A = 16 

    D

     1 +   x

    2

    a2 − x2dxdy = 16a π

    2

    0

       a0

    r a2 − r2 cos2(θ)drdθ = 16a

    2.

    10. Denote the surface by  S  and parameterize it by the function Φ given by

    Φ(θ, φ) ≡ a cos(θ)sin(φ), a sin(θ)sin(φ), b cos(φ)for any (θ, φ) ∈ D ≡ [0, 2π] × [0, π]. Then

    Φθ × Φφ =

    e1   e2   e3−a sin(θ)sin(φ)   a cos(θ)sin(φ) 0a cos(θ)cos(φ)   a sin(θ)cos(φ)   −b sin(φ)

    = −ab cos(θ)sin2(φ), ab sin(θ)sin2(φ), a2 sin(φ)cos(φ)and so Φθ × Φφ =  a sin(φ)

     a2 cos2(φ) + b2 sin2(φ) in  D . The surface area of  S   is given

    by

    A =

     S 

    dS  =

       π0

       2π0

    a| sin(φ)| a2 cos2(φ) + b2 sin2(φ)dθdφ.

    By a change of variable  t  = a2/b2 − 1cos(φ) and symmetry, we have

    A =  4πab2√ a2 − b2

      a2b2

     −1

    0

     1 + t2dt = 2π

    a +

      ab2√ a2 − b2  log

    a +

    √ a2 − b2b

    .

    3

  • 8/19/2019 MATH 2020 B Solution

    20/45

    MATH2020B Tutorial 6

    Line Integrals

    (1) Let  U  ⊂ R3 be an open set. Let  f, g :  U  → R be smooth functions,   F, G :  U  → R3

    be smooth vector fields. Show the following formulae:

    (a)  ∇(fg) = f ∇g + g∇f 

    (b)  ∇ · (f F) = ∇f   · F + f ∇ · F

    (c)  ∇ · (F × G) = ∇× F · G − F · ∇ × G

    (d)  ∇ ×∇f  =  0

    (e)  ∇ · ∇ × F = 0

    (2) Suppose  U   ⊂  R3 is a convex open set and   F   :  U  →   R3 is a smooth vector field.

    Show that if  ∇ × F = 0, then   F = ∇u for some smooth function  u.

    (3) Evaluate

     C 

    xy2ds, where  C  is the right half of the circle  x2 + y2 = 16.

    (4) Evaluate

     C 

    4x3ds, where  C  is the line segment from (−2,−1) to (1, 2).

    (5) Evaluate  C 

    4xds, where  C  is the curve consisting of two parts:

    C 1  :  y  = −1 from (−2,−1) to (0,−1), and

    C 2  :  y  =  x3 − 1 from (0,−1) to (1, 0).

    (6) Evaluate

     C 

    xyzds, where  C   is the helix given by   r(t) = (cos(t), sin(t), t), where

    t ∈ [0, 1].

    (7) Evaluate

     ∆

    (2x− y + 4)dx + (5y + 3x− 6)dy, where ∆ is a triangle in the  xy-plane

    with vertices at (0, 0), (3, 0) and (3, 2) with counterclockwise orientation.

    (8) Evaluate  1

    2

     C 

    xdy − ydx, where  C  is the ellipse   x2

    a2 +   y

    2

    b2 = 1 oriented counterclock-

    wisely.

    (9) Show that

     C 

    ∇f   · dr   =   f (r(b)) − f (r(a)), where  C   is a smooth curve given by

    r(t), a ≤ t ≤ b and  f  is a smooth scalar function on  C .

    1

  • 8/19/2019 MATH 2020 B Solution

    21/45

    MATH2020B Advanced Calculus II

    Tutorial 6 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1.   Google  yourself.

    2. Let (x0, y0, z0) ∈ U  and write  F = (F 1, F 2, F 3). Define a function  u  :  U  → R by

    u(x,y,z) ≡   xx0

    F 1(t, y0, z0)dt +

       yy0

    F 2(x0, t ,z0)dt +

       zz0

    F 3(x0, y0, t)dt

    for any (x,y,z) ∈ U . Since ∇ × F = 0,  u   is well defined. One can check that F = ∇u   inU .

    3. Parameterize  C  by the function  γ  given by

    γ (t) ≡ 4cos(t), 4sin(t)for any  t ∈ [−π/2, π/2]. Then γ (t) = 4 and so

     C 

    xy2ds =

     π2

    −π2

    4cos(t)

    4sin(t)

    2 · 4dt =  5123  .

    4. Parameterize  C  by the function  γ  given by

    γ (t) ≡ (−2 + 3t,−1 + 3t)

    for any  t ∈ [0, 1]. Then γ (t) = 3√ 2 and so C 

    4x3ds =

       1

    0

    4(−2 + 3t)3 · 3√ 

    2dt = −15√ 

    2.

    5. Parameterize  C 1  by the function  γ 1  given by

    γ 1(t) ≡ (t,−1)

    for any  t ∈ [−2, 0]. Then γ 1(t) = 1.Parameterize C 2  by the function  γ 2  given by

    γ 2(t) ≡ (t, t3 − 1)

    for any  t ∈ [0, 1]. Then γ 2(t) = 

    1 + 9t4. So

     C 

    4xds =

     C 1

    +

     C 2

    4xds =

       0

    −2

    4(t)·1dt+   1

    0

    4(t)· 

    1 + 9t4dt = −8+√ 

    10+1

    3 log(3+

    √ 10).

    6. Since r(t) =√ 

    2, we have

     C 

    xyzds =

       1

    0 cos(t)

    sin(t)

    (t) ·

    √ 2ds =

    √ 2

    8 sin(2) − 2 cos(2)

    .

    1

  • 8/19/2019 MATH 2020 B Solution

    22/45

    7. Denote the straight from (0, 0) to (3, 0) by  C 1, the straight from (3, 0) to (3, 2) by C 2  andthe straight from (3, 2) to (0, 0) by  C 3. So ∆ = C 1 ∪ C 2 ∪ C 3.Parameterize C 1  by the function  γ 1  given by

    γ 1(t) ≡ (t, 0)

    for any  t ∈ [0, 3].Parameterize C 2  by the function  γ 2  given by

    γ 2(t) ≡ (3, t)

    for any  t ∈ [0, 2].Parameterize C 3  by the function  γ 3  given by

    γ 3(t) ≡ (3 − 3t, 2 − 2t)

    for any  t ∈ [0, 1]. Therefore,

     ∆

    (2x− y + 4)dx + (5y + 3x− 6)dy

    =

     C 1

    +

     C 2

    +

     C 3

    (2x− y + 4)dx + (5y + 3x− 6)dy

    =

       3

    0

    (2t− 0 + 4) · 1 + (0 + 3t− 6) · 0dt +

       2

    0

    (6 − t + 4) · 0 + (5t + 9 − 6) · 1dt

    +

       1

    0

    2(3 − 3t) − (2 − 2t) + 4 · (−3) + 5(2 − 2t) + 3(3 − 3t) − 6 · (−2)dt

    = 12.

    8. Parameterize  C  by the function  γ  given by

    γ  ≡ a cos(t), b sin(t)

    for any  t ∈ [0, 2π]. Then1

    2

     C 

    xdy − ydx  =  12

     C 

    a cos(t) · b cos(t) − b sin(t) · − a sin(t)dt =  πab.

    9. For every  t ∈ [a, b], write  r(t) = x(t), y(t), z(t). Then by chain rule,

     C  ∇

    f, dr

     =    b

    a∂f ∂x ·

     dx

    dt  +

     ∂f 

    ∂y · dy

    dt  +

     ∂f 

    ∂z · dz

    dt dt =  

      b

    a

    d

    dtf r(t)dt =  f r(b)−f r(a).

    2

  • 8/19/2019 MATH 2020 B Solution

    23/45

    MATH2020B Tutorial 7

    Line Integral for Vector Fields and Conservative Vector Fields

    (1) Let   F   :   R3 →   R3 be a smooth vector field. Suppose   C r   is a circle of radius   r

    centered at the origin with unit normal vector  n. Show that

    (∇ × F) (0, 0, 0) · n = limr→0

    1

    πr2

     C r

    F · dr.

    (2) Evaluate

       (2x − y + 4)dx + (5y + 3x − 6)dy  around a triangle in the  xy -plane with

    vertices at (0,0), (3,0) and (3,2) transversed in a counterclockwise direction.

    (3) Let  F = (3x − 2y)i + (y + 2z ) j − x2k. Evaluate

     C 

    F · dr  from (0, 0, 0) to (1, 1, 1),

    where C  is the curve  x =  t, y =  t, z  =  t3.

    (4) Let  F :  R2 \ {0} →  R2 be defined by

    F(x, y) =

      −y

    x2 + y2,

      x

    x2 + y2

    .

    (a) Let  C  be a parametric curve be defined by  r : [0, 2π] →  R2

    , where

    r(t) = (cos nt, sin nt) and  n ∈  Z.

    Find

     C 

    F · dr.

    (b) Let  C  be the ellipse defined by  r : [0, 2π] →  R2, where

    r(t) = (cos t, 2sin t).

    Find  C 

    F · dr.

    (c) Does there exist a smooth function  f   :  R2 \ {0} →  R  such that  F =  ∇f ?

    (5) Let F  be a continuously differentiable vector field on a domain D  in R2 or R3. Show

    that the following statements are equivalent:

    (a)

     C 

    F · dr  is independent of path.

    (b)   F  is conservative.

    (c) C 

    F · dr = 0 for all closed curves  C  contained in  D.

    1

  • 8/19/2019 MATH 2020 B Solution

    24/45

    MATH2020B Advanced Calculus II

    Tutorial 7 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. Parameterize  C r  by the function  r  given by

    r(t) ≡

    r cos(t), r sin(t), 0

    for any  t  ∈  [0, 2π]. Then for every  r > 0,

    1

    πr2

     C r

    F, dr =  1

    πr

       2π

    0

    −F 1

    r cos(t), r sin(t), 0

    sin(t)+F 2

    r cos(t), r sin(t), 0

    cos(t)

    dt.

    Fix t ∈  (0, 2π). By the mean value theorem, for every r > 0 there are some 0  < δ 1,r, δ 2,r  < r

    such thatF 1

    r cos(t), r sin(t), 0

     =  F 1(0, 0, 0) +

    ∇F 1

    δ 1,r cos(t), δ 1,r sin(t), 0

    ,

    cos(t), sin(t), 0

    · r,

    F 2

    r cos(t), r sin(t), 0

     =  F 2(0, 0, 0) +

    ∇F 2

    δ 2,r cos(t), δ 2,r sin(t), 0

    ,

    cos(t), sin(t), 0

    · r.

    Therefore, for every r > 0,

    1

    πr2

     C r

    F, dr

    = −  1

    πr

       2π

    0

    F 1(0, 0, 0) sin(t) +

     ∂ F 1∂x

    δ 1,r cos(t), δ 1,r sin(t), 0

    cos(t)sin(t) · r

    +  ∂F 1

    ∂y δ 1,r cos(t), δ 1,r sin(t), 0 sin2(t) · r dt+

      1

    πr

       2π

    0

    F 2(0, 0, 0) cos(t) +

     ∂ F 2∂x

    δ 1,r cos(t), δ 1,r sin(t), 0

    cos2(t) · r

    +  ∂F 2

    ∂y

    δ 1,r cos(t), δ 1,r sin(t), 0

    sin(t)cos(t) · r

    dt

    = −1

    π

       2π

    0

    ∂F 1∂x

    δ 1,r cos(t), δ 1,r sin(t), 0

    cos(t) sin(t) +

     ∂ F 1∂y

    δ 1,r cos(t), δ 1,r sin(t), 0

    sin2(t)

    dt

    + 1

    π

       2π

    0

    ∂F 2∂x

    δ 1,r cos(t), δ 1,r sin(t), 0

    cos2(t) +

     ∂ F 2∂y

    δ 1,r cos(t), δ 1,r sin(t), 0

    sin(t) cos(t)

    dt.

    1

  • 8/19/2019 MATH 2020 B Solution

    25/45

    Since  F  is smooth, we have

    limr→0

    1

    πr2

     C r

    F, dr

    = limr→0

    1

    π

       2π

    0

    ∂F 1∂x

    δ 1,r cos(t), δ 1,r sin(t), 0

    cos(t)sin(t) +

     ∂ F 1∂y

    δ 1,r cos(t), δ 1,r sin(t), 0

    sin2(t)

    dt

    +   1π   2π0

    ∂F 2∂x

    δ 1,r cos(t), δ 1,r sin(t), 0 cos2(t) +  ∂ F 2∂y

    δ 1,r cos(t), δ 1,r sin(t), 0 sin(t) cos(t) dt= −

    1

    π

       2π

    0

    ∂F 1∂x

      (0, 0, 0) cos(t) sin(t) + ∂ F 1

    ∂y  (0, 0, 0)sin2(t)

    dt

    + 1

    π

       2π

    0

    ∂F 2∂x

     (0, 0, 0)cos2(t) + ∂ F 2

    ∂y  (0, 0, 0) sin(t)cos(t)

    dt

    =  ∂F 2

    ∂x (0, 0, 0) −

     ∂ F 1∂y

      (0, 0, 0)

    = (∇ × F)(0, 0, 0), n .

    2. See Tutorial 6, Q.7.

    3. Parameterize  C  by thew function  r given by

    r(t) ≡  (t,t,t3)

    for any  t  ∈  [0, 1]. Then C 

    F, dr =

       1

    0

    (3t − 2t) · 1 + (t + 2t3) · 1 + (−t2) · 3t2

    dt =

      9

    10.

    4. (a) By direction computation, C 

    F, dr =

       2π

    0

      − sin(nt)

    cos2(nt) + sin2(nt) ·

    − n sin(nt)

     +  cos(nt)

    cos2(nt) + sin2(nt)  · n cos(nt)

    dt = 2nπ.

    (b) By direction computation, C 

    F, dr =

       2π

    0

      −2sin(t)

    cos2(t) + 4 sin2(t) ·

    − sin(t)

     +  cos(t)

    cos2(t) + 4 sin2(t) · 2cos(t)

    dt = 2π.

    (c) There is no such function   f . Suppose on the contrary there were such a functionf   : R2 \ {0} → R. Then let  C  be the curve defined in (a), we have

     C 

    F, dr = C 

    ∇f, dr =  f 

    r(2π)

    − f 

    r(0)

     = 0,

    which is impossible.

    5. Suppose D  ⊂ R2.(a) ⇒  (b)

    Let (x0, y0) ∈  D. Define a function  f   : D  → R by

    f (x, y) ≡

     C 

    F, dr

    2

  • 8/19/2019 MATH 2020 B Solution

    26/45

    for any (x, y) ∈  D, where  C  is a path joining (x, y) and (x0, y0).   f   is well-defined becausethe integral is independent of path. Let (x, y)   ∈   D,   h >  0 (be small enough) so that(x + h, y) ∈  D  and C  be the straight line joining (x, y) and (x + h, y). Then

    f (x + h, y) − f (x, y)

    h  =

      1

    h

     C 

    F, dr =  1

    h

       h0

    F 1(x + h, y)dt

    By the fundamental theorem of Calculus,

    ∂f 

    ∂x(x, y) = lim

    h→0

    f (x + h, y) − f (x, y)

    h  = lim

    h→0

    1

    h

       h0

    F 1(x + h, y)dt =  F 1(x, y).

    Similarly, (∂f/∂y)(x, y) = F 2(x, y) and so  F   = ∇f .

    (b) ⇒  (c)

    Since there is a function  f   :  D  →  R  such that  F   =  ∇f , suppose   C   is parameterized byr : [a, b] →  D, then by the fundamental theorem of Calculus (see See Tutorial 6, Q.9.),

     C 

    F, dr =  C 

    ∇f, dr =  f r(b) − f r(a) = 0.

    (c) ⇒  (a)

    Let (x, y), (x0, y0) ∈  D  and  C ,  C  be paths in  D   joining (x, y) and (x0, y0). Then  C  − C 

    forms a closed curve and so C 

    F, dr −

     C 

    F, dr =

     C −C 

    F, dr = 0.

    Hence

     C F, dr =

     C F, dr and the integral is independent of path.

    3

  • 8/19/2019 MATH 2020 B Solution

    27/45

    MATH2020B Tutorial 8

    Review on Sections 13.6 − 14.2

    (1) Find the volume of the solid bounded above by the sphere   ρ   =   a  and below by

    φ =   π3

    .

    (2) Find the moment of inertia around the z −axis of a solid sphere of radius  a  centered

    at the origin with constant density  δ .

    (3) Find the mass of the solid ellipsoid   x2

    a2 +  y

    2

    b2 +  z

    2

    c2  ≤ 1, where its density at each point

    (x,y,z  ) is given by  δ (x,y,z  ) = 1 −   x2

    a2 −   y

    2

    b2 −   z

    2

    c2.

    (4) Find the surface area of the sphere  x2 + y2 + z 2 = 4 that lies between the planes

    x + y + z  = 1 and  x + y + z  =  −1.

    (5) Evaluate

       1

    0

       1

    0

    1

    1 − x2y2dxdy  using the substitution  x  =   sinu

    cosv, y  =   sinv

    cosu. Use this

    result to evaluate

       1

    0

       1

    0

    dxdy

    1 − xy.

    (6) Find the average distance   D   =  1

    s

     C 

    D(x, y)ds   from the origin to the spiral   C 

    parametrized by   x  =   e−t

    cos t, y   =   e−t

    sin t   from   t   = 0 to infinity, where   s   is thelength of  C   and  D(x, y) is the distance from the origin to the point (x, y) on the

    spiral  C .

    (7) Let   F : R2 \ {0} → R2 be defined by

    F(x, y) =

      −y

    x2 + y2,

      x

    x2 + y2

    .

    (a) Does there exist a smooth function  f   : R2 \ {0} → R  such that   F =  ∇f ?

    (b) Does there exist a smooth scalar function   f   defined on the upper-half plane

    such that   F =  ∇f  on the upper-half plane?

    (c) Does there exist a smooth scalar function f  defined on the right-half plane such

    that   F =  ∇f  on the right-half plane?

    (d) Show that

     C a,b

    F  ·  dr   = 2π, where   C a,b   is the ellipse defined by   x(t) =

    a cos t, y(t) = b sin t, 0 ≤  t  ≤  2π.

    1

  • 8/19/2019 MATH 2020 B Solution

    28/45

    MATH2020B Advanced Calculus II

    Tutorial 8 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. In spherical coordinates, the region is parameterized to be(ρ,θ,φ) : 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

    3

    .

    Then the volume is given by

    V   =

       π3

    0

       2π

    0

       a0

    ρ2 sin(φ)dρdθdφ = 1

    3πa3.

    2. In spherical coordinates, the region is parameterized to be

    R ≡ {(ρ,θ,φ) : 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} .The mass is given by  M   = 4/3 · πa3δ . Then the moment of inertia around the  z-axis isgiven by

    I z  =

     R

    (x2+y2)·δdxdydz =  δ    π0

       2π

    0

       a0

    ρ2 sin2(φ)·ρ2 sin(φ)dρdθdφ =  25

    4

    3πa3δ 

    a2 =

     2

    5ma2.

    3. From the change of variable

    x =  aρ cos(θ)sin(φ)   y =  bρ sin(θ)sin(φ), z  =  cρ cos(φ),

    we have

    ∂ (x,y ,z)

    ∂ (ρ,θ,φ) =a cos(θ) sin(φ)   −aρ sin(θ) sin(φ)   aρ cos(θ)cos(φ)b sin(θ)sin(φ)   bρ cos(θ) sin(φ)   bρ sin(θ)cos(φ)

    c cos(φ) 0   −cρ sin(φ)

    = abcρ2 sin(φ),and the region can be parameterized to be

    0 ≤ ρ ≤ 1,   0 ≤ θ ≤ 2π,   0 ≤ φ ≤ π.Therefore, the mass is given by

    M  =

       π0

       2π

    0

       1

    0

    δ ·abcρ2 sin(φ)dρdθdφ =   π0

       2π

    0

       1

    0

    (1−ρ2)·abcρ2 sin(φ)dρdθdφ =   815

    πabc.

    4. Through a rotation   Q   (which is an orthogonal matrix and |Q|   = 1), the two planesare transformed to be   z   = 1/

    √ 3 and   z   = −1/

    √ 3 respectively while the sphere remains

    unchanged. The region is then parameterized to be(ρ,θ,φ) : 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π, − arccos

      1

    2√ 

    3

     ≤ φ ≤ arccos

      1

    2√ 

    3

    .

    By Tutorial 5, Q.1(a), the surface area is given by

    A =

       − arccos   12√ 3

    − arccos

      1

    2√ 3

       2π

    0

    (2)2 sin(φ)dθdφ =  8√ 

    3π.

    1

  • 8/19/2019 MATH 2020 B Solution

    29/45

    5. From the change of variable

    x =  sin(u)

    cos(v), y  =

      sin(v)

    cos(u),

    we have

    ∂ (x, y)

    ∂ (u, v) =

    cos(u)cos(v)

      sin(u) sec(v)tan(v)

    sin(v) sec(u)tan(u)  cos(v)

    cos(u)

    = 1 − tan2(u)tan2(v)

    and the region [0, 1] × [0, 1] can be parameterized to be

    0 ≤ u ≤ π2 − v,   0 ≤ v ≤   π

    2.

    Therefore,

       10   10

    1

    1 − x2y2dxdy  =    π2

      π2−v

    0

    1

    1 − tan2(u)tan2(v) · 1 − tan2(u)tan2(v)dudv =   π2

    8   .

    Let I  ≡   1

    0

       1

    0

    1

    1 − xy dxdy. Then by changing variables,   1

    0

       1

    0

      1

    1 − xy −  1

    1 + xy

    dxdy =

       1

    0

       1

    0

    2xy

    1 − x2y2dxdy  = 1

    2

       1

    0

       1

    0

    1

    1 − x2y2 d(x2)d(y2) =

     I 

    2.

    Also,

       1

    0    1

    0

    1

    1 + xy

    dxdy  =    1

    0    1

    0

    1 − xy1 − x

    2

    y2

    dxdy =    1

    0    1

    0

    1

    1 − x2

    y2

    dxdy

    −   1

    0    1

    0

    xy

    1 − x2

    y2

    dxdy =  π2

    8 −I 

    4

    .

    Therefore,

    I  =  I 

    2 −

    π2

    8 −  I 

    4

    ,

    and so  I  = π2/6.Actually, due to the uniform convergence of the power series, we have

    π2

    6  =

       1

    0

       1

    0

    1

    1 − xy dxdy =   1

    0

       1

    0

    ∞n=0

    xnyndxdy  =∞n=0

       1

    0

       1

    0

    xnyndxdy =∞n=1

    1

    n2.

    The result also follows from the fact that  ζ (2) = π2/6.

    6. Since

    s =

      ∞0

     x2t  + y

    2t dt =

      ∞0

     e−2t

    cos(t) + sin(t)

    2+ e−2t

    cos(t) − sin(t)2dt =   ∞

    0

    √ 2e−tdt =

    √ 2,

    D =  1

    s

     C 

    D(x, y)ds =

      ∞0

     e−t cos(t)

    2+

    e−t sin(t)2·√ 2e−tdt =   1√ 

    2

      ∞0

    √ 2e−2tdt =

     1

    2.

    7. (a) See Tutorial 7, Q.4(c).

    2

  • 8/19/2019 MATH 2020 B Solution

    30/45

    (b) Observe the function f   : {(x, y) ∈R2 : y > 0} →R given by

    f (x, y) ≡ − arctan

    x

    y

    is well defined and has the property that  F   = ∇f   in {(x, y) ∈R2 : y > 0}  (as well as

    {(x, y) ∈R2

    : y   0. The function f   :

    {(x, y) ∈ R2 : x

  • 8/19/2019 MATH 2020 B Solution

    31/45

    MATH2020B Tutorial 9

    (A) Path Independence

    (1) Let   F   be a smooth vector field on a domain   D   in   R2 or   R3. Show that the

    following statements are equivalent:

    (a)

     C 

    F · dr  is independent of path.

    (b)   F  is conservative.

    (c)

     C 

    F · dr = 0 for all closed curves  C  contained in  D.

    (2) Let  F : R2 \ {0} → R2 be defined by

    F(x, y) =

      −y

    x2 + y2,

      x

    x2 + y2

    .

    (a) Show that  F  is conservative on the right-half plane and upper-half plane.

    (b) Show that

     C a,b

    F · dr = 2π, where  C a,b  is the ellipse defined by

    x(t) = a cos t, y(t) = b sin t,  0 ≤  t  ≤  2π.

    (B) Potential Functions and Conservative Vector Fields

    (1) Find a potential function for the following vector fields:

    (a)   F : R2 → R2 defined by  F(x, y) = (y cos x + y2, sin x + 2xy − 2y).

    (b)   G : R3 → R3 defined by  G(x,y,z ) = 2xy3z 4i + 3x2y2z 4 j + 4x2y3z 3k.

    (c)   H : R3 → R3 defined by H(x,y,z ) = (2x cos y−2z 3)i+(3+2yez−x2 sin y) j+

    (y2ez − 6xz 2)k.

    (2) Evaluate C (2x log y − yz )dx +

    x2y   − xz 

    dy − xydz , where  C  is a curve from

    (1, 2, 1) to (2, 1, 1) in the first octant.

    (3) Evaluate

     C 

    2xdx + 2ydy + 2zdz 

    x2 + y2 + z 2  , where   C   is a curve from (−2, −2, −2) to

    (2, 2, 2) not passing through the origin.

    1

  • 8/19/2019 MATH 2020 B Solution

    32/45

    MATH2020B Advanced Calculus II

    Tutorial 9 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. See Tutorial 7, Q.5.

    2. See Tutorial 8, Q.7.

    3. Recall that a necessary condition for a vector field   F   to have a potential function   f   is∇ × F = (∇ × ∇f ) = 0. So, one should always check whether  ∇ × F  = 0 before “finding”a potential function.

    (a) Suppose  f   : R2 → R is a function such that  F =  ∇f . Then we have

    f x  =  y cos(x) + y2, f y  = sin(x) + 2xy − 2y.

    Therefore,  f (x, y) = −y sin(x) + xy2 + g(y) and so

    − sin(x) + 2xy + g(y) = f y  = sin(x) + 2xy − 2y.

    Hence,  g(y) = −y2 + C   and  f (x, y) = −y sin(x) + xy2 − y2 + C   in  R2.

    (b) Suppose  f   : R3 → R is a function such that  G =  ∇f . Then we have

    f x  = 2xy3z4, f y  = 3x

    2y2z4, f z  = 4x2y3z3.

    Therefore,  f (x,y,z) = x2y3z4 + g1(y, z) and so

    3x2y2z4 + (g1)y(y, z) = f y  = 3x2y2z4.

    Hence,  g1(y, z) = g2(z) + C  and so

    4x2y3z3 + g2(z) = f z  = 4x2y3z3.

    Thus,  g2(z) ≡  C   and  f (x , y , z) = x2y3z4 + C   in  R3.

    (c) Suppose  f   : R3 → R is a function such that  H =  ∇f . Then we have

    f x  = 2x cos(y) − 2z3, f y  = 3 + 2ye

    z − x2 sin(y), f z  = y2ez − 6xz2.

    Therefore,  f (x,y,z) = x2

    cos(y) − 2xz3

    + g1(y, z) and so

    −x2 sin(y) + (g1)y(y, z) = f y  = 3 + 2yez − x2 sin(y).

    Hence,  g1(y, z) = 3y + y2ez + g2(z) and so

    −6xz2 + y2ez + g 2(z) = f z  = y2ez − 6xz2.

    Thus,  g2(z) ≡  C   and  f (x , y , z) = x2 cos(y) − 2xz3 + 3y + y2ez + C   in  R3.

    1

  • 8/19/2019 MATH 2020 B Solution

    33/45

    4. Let  F : R3 \ {(0, 0, 0)} → R3 be a vector field given by

    F(x,y,z) ≡

    2x log(y) − yz,

     x2

    y  − xz, −xy

    for any (x , y , z)   ∈   R3 \ {(0, 0, 0)}. Then   ∇ × F   = 0 in   R3 \ {(0, 0, 0)}. Suppose   f   :R3

    \ {(0, 0, 0)} →R

     is a function such that  F =  ∇f . Then we have

    f x = 2x log(y) − yz, f  y  =  x2

    y  − xz, f  z  = −xy.

    Therefore,  f (x,y,z) = x2 log(y) − xyz  + g1(y, z) and so

    x2

    y  − xz + (g1)y(y, z) = f y  =

      x2

    y  − xz.

    Hence,  g1(y, z) = g2(z) and so

    −xy + g2

    (z) = f z

     = −xy.

    Thus,  g2(z) ≡  C   and  f (x,y,z) = x2 log(y) − xyz  +  C   in  R3 \ {(0, 0, 0)}. Therefore,

     C 

    2x log(y)−yz

    dx+

    x2

    y  − xz

    dy−xydz =

    22 log(1)−2·1·1

    12 log(2)−1·2·1

     =  − log(2).

    5. It is easy to see that a potential function  f  of the vector field

    F   =

      2x

    x2 + y2 + z2,

      2y

    x2 + y2 + z2,

      2z

    x2 + y2 + z2

    is given by  f (x,y,z) = log(x2

    + y2

    + z2

    ) in  R3

    \ {(0, 0, 0)} Therefore, C 

    2xdx + 2ydy  + 2zdz

    x2 + y2 + z2

     C 

    ∇f, dr = log(12) − log(12) = 0.

    2

  • 8/19/2019 MATH 2020 B Solution

    34/45

    MATH2020B Tutorial 10

    Green’s Theorem

    (1) Let D ⊂ R2 be the region bounded by a piecewise smooth simple closed curve C  withpositive orientation. Show that Area(D) =

     1

    2

     C 

    xdy − ydx  = C 

    xdy = − C 

    ydx.

    (2) Evaluate the following integrals:

    (a)

     C 

    x2ydx−y2xdy, counterclockwise around the region bounded by y  = √ a2 − x2

    and  y = 0.

    (b) C 

    ex sin ydx  +  ex cos ydy, where   C   is any smooth simple closed curve with

    positive orientation.

    (c)

     C 

    −ydx + xdyx2 + y2

      , where C  is any smooth simple closed curve not passing through

    the origin with positive orientation.

    (3) Let   f   :  D →  R  be a   C 2 function, where   D ⊂  R2 is open. Show that C 

    ∂f 

    ∂xdy −

    ∂f 

    ∂ydx = 0 for all simple closed curves  C   in  D  if and only if  f  is harmonic in  D.

    (4) Let   D ⊂   R2 be the region bounded by a smooth simple closed curve   C . Define∂f 

    ∂n  = ∇f  · N   to be the normal derivative of  f , where   N   is the unit outer normal

    vector to  ∂D. Show that

    (a)

     D

    (f ∆g + ∇f  · ∇g)dxdy = ∂D

    f  ∂g

    ∂nds.

    (b)

     D

    (f ∆g − g∆f )dxdy = ∂D

     ∂g

    ∂n − g ∂f 

    ∂n

    ds.

    (5) Let   f   :   B(0, 1) →   R   be a harmonic function. Show that for any   B(0, R) with0 < R

  • 8/19/2019 MATH 2020 B Solution

    35/45

    MATH2020B Advanced Calculus II

    Tutorial 10 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. By Green’s theorem, we have

    Area(D) =

     D

    dxdy =

    1

    2

     D

    ∂x

    ∂x −

     ∂ (−y)

    ∂y

    dxdy  =

     1

    2

     C 

    xdy − ydx; D

    ∂x

    ∂x −

     ∂ (0)

    ∂y

    dxdy  =

     C 

    xdy; D

    ∂ (0)

    ∂x  −

     ∂ (−y)

    ∂y

    dxdy  =  −

     C 

    ydx.

    2. (a) Let D  be the region bounded by  C . By Green’s theorem, C 

    x2ydx − y2xdy  =

     D

    (−y2 − x2)dxdy =

       π0

       a0

    (−r2) · rdrdθ  =  −1

    4πa4.

    (b) Let D  be the region bounded by  C . By Green’s theorem, C 

    ex sin(y)dx + ex cos(y)dy =

     D

    ex cos(y) − ex cos(y)

    dxdy = 0.

    (c) Let D  be the region bounded by  C . By Green’s theorem,

     C −ydx + xdyx2 + y2   =

     D

    y

    2

    − x

    2

    x2 + y2  +  x

    2

    − y

    2

    x2 + y2

    dxdy  = 0.

    (Direct computation is possible because the region does NOT include the origin.)

    3. Suppose f   is harmonic in  D. Then by Green’s theorem, for every simple closed curves  C in  D , with  R  denoting the region bounded by  C , we have 

    ∂f 

    ∂xdy −

     ∂ f 

    ∂ydx =

     R

    ∂ 2f 

    ∂x2 +

     ∂ 2f 

    ∂y2

    dxdy  =

     R

    0 · dxdy = 0.

    Suppose now for every simple closed curves  C   in  D , with  R  denoting the region boundedby C , we have  

    ∂f 

    ∂xdy −

     ∂ f 

    ∂ydx = 0.

    If  f   were not harmonic, then there is some point  p  ∈  D  such that ∆f ( p)  = 0. Withoutloss of generality, we may assume ∆f ( p)  >   0. By continuity, there is a ball  B( p, r) in  Dsuch that ∆f > 0 in  B ( p, r). Then by Green’s theorem,

    0 =

     ∂B( p,r)

    ∂f 

    ∂xdy −

     ∂ f 

    ∂ydx =

     B( p,r)

    ∂ 2f 

    ∂x2 +

     ∂ 2f 

    ∂y2

    dxdy > 0,

    which is impossible. Therefore,  f   is harmonic in  D .

    1

  • 8/19/2019 MATH 2020 B Solution

    36/45

    4. (a) Suppose C  is given by C (t) ≡

    x(t), y(t)

    for any t ∈  [a, b]. Then N(t) =

    y(t),−x(t)

    /C (t)and so by Green’s theorem 

    ∂D

    f  · ∂g

    ∂nds =

       ba

    f  ·

     ∂g

    ∂x, f  ·

     ∂ g

    ∂y

    ,

    y(t),−x(t)

    C (t)

    · C (t)dt

    =    ba−f  ·  ∂ g

    ∂y  · x(t) + f  ·

     ∂g

    ∂x · y(t) dt

    =

     ∂D

    −f  · ∂ g

    ∂ydx + f  ·

     ∂g

    ∂xdy

    =

     D

     ∂ 

    ∂x

    f  ·

     ∂g

    ∂x

      ∂ 

    ∂y

    −f  ·

     ∂ g

    ∂y

    dxdy

    =

     D

    f  · ∆g + ∇f, ∇g

    dxdy.

    (b) By Q.4(a), we have

     D f  · ∆g + ∇f, ∇g dxdy =  ∂D f  · ∂g

    ∂nds 

    D

    g · ∆f  + ∇g, ∇f 

    dxdy =

     ∂D

    g · ∂ f 

    ∂nds,

    so    D

    (f  · ∆g − g · ∆f )dxdy  =

     ∂D

    f  ·

     ∂g

    ∂n − g ·

     ∂ f 

    ∂n

    ds.

    5. (a) By Q.4(a), we have

    0 =

     B(0,R)

    ∆fdxdy  =

     ∂B(0,R)

    ∂f 

    ∂nds.

    Note that

    ∂ 

    ∂r   2π

    0f 

    r cos(θ), r sin(θ)

    =   2π0

    ∇f 

    r cos(θ), r sin(θ)

    ,

    cos(θ), sin(θ)

    =

       2π0

    ∂f 

    ∂n

    r cos(θ), r sin(θ)

    = 1

    r

     ∂B(0,r)

    ∂f 

    ∂nds

    = 0.

    Hence,

    1

    2πR

     ∂B(0,R)

    f ds =  1

       2π0

    R cos(θ), R sin(θ)

    dθ =

      1

       2π0

    f (0, 0)dθ =  f (0, 0).

    (b) By Q.5(a), we have

     ∂B(0,r)

    f ds = 2πr · f (0, 0) for every 0 < r

  • 8/19/2019 MATH 2020 B Solution

    37/45

    MATH2020B Tutorial 11

    Surface Integral of Vector Fields and Divergence Theorem

    (1) Evaluate

     S 

    (x,y,z ) · ndA, where  S  is the surface of the solid cylinder  x2 + y2 ≤

    1, 0 ≤  z  ≤  1 with outward pointing normal.

    (2) Evaluate

     S 

    xdy ∧ dz  + ydz ∧ dx + zdx ∧ dy

    (x2 + y2 + z 2)3

    2

    , where S  is a sphere centered at the

    origin with outward pointing normal.

    (3) Evaluate  

    S (0, y,−z ) · ndA, where  S  is the surface given by the paraboloid  y  =

    x2 + z 2, 0 ≤  y  ≤  1 and the disk x2 + z 2 ≤ 1 at y  = 1 with outward pointing normal.

    (4) Evaluate

     S 

     2

    y3,−6xy2,

     2z 3

    x3

    · ndA, where  S   is the graph of  f (u, v) =  uv3,

    (u, v) ∈  [1, 2]× [1, 2] and the parametrization φ(u, v) = (u,v,uv3) is consistent with

    the orientation.

    (5) Find a function  g(ρ) such that, if   F(x,y,z ) = g(ρ)(x,y,z ), then ∇ · F =  ρm, where

    m ≥  0 and  ρ = (x2 + y2 + z 2)1

    2 . Prove that

     V  

    ρmdxdydz  =  1

    m + 3

     ∂V  

    ρm(x,y,z ) · ndA,

    where V  is a nice solid with boundary.

    (6) Let   F =

    2x− y

    r3  , x + 2y

    r3  ,

     2z 

    r3

     be a vector field on  R3 \ {0}.

    (a) Find

     S 

    F · ndA, where  S  =  {(x,y,z ) : x2 + y2 + z 2 = 4}.

    (b) Show that  ∇ · F = 0.

    (c) Find

     ∂V  

    F · ndA, where  ∂V  is the boundary of the following V:

    (i)  V   = {(x,y,z ) : 1 ≤  z  ≤  7 − x2 − y4}

    (ii)  V   = {(x,y,z ) : −1 ≤  z  ≤  7 − x2 − y4}

    1

  • 8/19/2019 MATH 2020 B Solution

    38/45

    MATH2020B Advanced Calculus II

    Tutorial 11 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. Let   S 1   ≡ {(x,y, 0)   ∈   R3 :   x2 + y2 = 1},   S 2   ≡ {(x,y, 1)   ∈   R

    3 :   x2 + y2 = 1}   andS 3 ≡ {(x,y ,z) ∈ R

    3 : x2 + y2 = 1, 0 ≤  z  ≤  1}. Then  S  =  S 1 ∪ S 2 ∪ S 3. Note that S 1

    (x,y ,z), n dS  =

     S 1

    (x,y, 0), (0, 0, −1) dS  = 0,

     S 2

    (x,y ,z), n dS  =

     S 2

    (x,y, 1), (0, 0, 1) dS  = 2π.

    In cylindrical coordinates,  S 3   is parameterized to be  {(1, u , v) : 0  ≤  u  ≤  2π, 0  ≤  v  ≤  1}.So  

    S 3

    (x,y ,z), n dS  =

       1

    0

       2π

    0

    cos(u) sin(u)   v

    − sin(u) cos(u) 00 0 1

    dudv = 2π.

    Recall that  a, b × c =

    a1   a2   a3b1   b2   b3c1   c2   c3

    .

     Therefore,

     S 

    (x,y ,z), n dS  =

     S 1

    (x,y ,z), n dS +

     S 2

    (x,y ,z), n dS +

     S 3

    (x,y ,z), n dS  = 3π.

    2. Consider the sphere   S   given by  {(x,y ,z)   ∈  R

    3

    :   x2

    + y2

    + z2

    =   R2

    }. It is easy to seethat the unit outward normal  n at a point (x,y ,z) on  S   is given by  n = (x/R,y/R,z/R).Therefore,

     S 

    xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

    (x2 + y2 + z2)3

    2

    =

     S 

      xR3

    ,  y

    R3,

      z

    R3

    , n

    dS 

    =

     S 

      xR3

    ,  y

    R3,

      z

    R3

    , x

    R,  y

    R,  z

    R

    dS 

    =

     S 

    1

    R2dS 

    = 4π.

    (Note that the value is independent of  R.)

    3. Let  S 1 ≡ {(x, 1, z) ∈ R3 : x2 + z2 = 1}  and  S 2  =  S  \ S 1. Then  S  =  S 1 ∪ S 2  and

    S 2  =

    u cos(v), u2, u sin(v)

     : 0 ≤  u  ≤  1, 0 ≤  v  ≤  2π

    .

    Note that  S 1

    (0, y, −z), n dS  =

     S 1

    (0, 1, −z), (0, 1, 0) dS  =

     S 1

    dS  = π

    1

  • 8/19/2019 MATH 2020 B Solution

    39/45

    and  S 2

    (0, y, −z), n dS  =

       2π

    0

       1

    0

    0   u2 −u sin(v)

    cos(v) 2u   sin(v)−u sin(v) 0   u cos(v)

    dudv

    =

       2π

    0

       1

    0 − u3 cos2(v) − 3u3 sin2(v)

    dudv

    = −π.

    Therefore, S 

    (0, y, −z), n dS  =

     S 1

    (0, y, −z), n dS  +

     S 1

    (0, y, −z), n dS  = 0.

    4. By the given parametrization, we have

     S 

     2

    y3, −6xy2,

     2z3

    x3

    , n

    dS  =

       2

    1

       2

    1

    − 2

    v3  −6uv2 2v9

    1 0   v3

    0 1 3uv2

    dudv

    =   21

       21

    (2 + 18u2v4 + 2v9)dudv

    = 467.

    5. Note that

    ∇, F =

    g(ρ) + xg(ρ) ·

     x

    ρ

    +

    g(ρ) + yg (ρ) ·

     y

    ρ

    +

    g(ρ) + zg (ρ) ·

     z

    ρ

     = 3g(ρ)+ ρg(ρ).

    Then it becomes an ordinary differential equation:   ρm = 3g(ρ) + ρg(ρ),  ρ > 0. Now

    ρm+2 = 3ρ2g(ρ) + ρ3g(ρ) =

    ρ3g(ρ)

    .

    So a choice of the function   g   is   g(ρ) =   ρm

    /(m + 3) for any   ρ >   0. In particular, bydivergence theorem, V  

    ρmdxdydz =

     V  

    ∇, F dxdydz =

     ∂V  

    F, n dS  =  1

    m + 3

     ∂V  

    ρm(x,y ,z), n dS.

    6. (a) It is easy to see that the unit outward normal n  at a point (x,y ,z) on  S  is given byn = (x/r, y/r, z/r). Then 

    F, n dS  =

     S 

    2x − y

    r3  ,

     x + 2y

    r3  ,

     2z

    r3

    ,x

    r, y

    r, z

    r

    dS  =

     S 

    2

    r2dS  = 8π.

    (b)   ∇, F =  . . . = 0.

    (c) (i) Since  F   is smooth in  V  , by divergence theorem, ∂V  

    F, n dS  =

     V  

    ∇, F dS  = 0.

    (ii) Let ε >  0 be (small enough) so that   B   ≡  B(0, ε)  ⊂  V  . Then  F   is smooth inV   \ B  and so by divergence theorem,

    0 =

     V  \B

    ∇, F dV   =

     ∂V  

    F, n dS −

     ∂B

    F, n dS  =

     ∂V  

    F, n dS −8π.

    Therefore,

     ∂V  

    F, n dS  = 8π.

    2

  • 8/19/2019 MATH 2020 B Solution

    40/45

    MATH2020B Tutorial 12

    (A) (Continued) Surface Integrals and Divergence Theorem

    (1) Evaluate

     S 

     2

    y3,−6xy2,

     2z 3

    x3

    ·ndA, where S  is the graph of  f (u, v) = uv3,

    (u, v) ∈  [1, 2] × [1, 2] and the parametrization φ(u, v) = (u,v,uv3) is consistent

    with the orientation.

    (2) Let  S  be the union of truncated paraboloids   z  = 4 − x2 − y2, 0  ≤  z  ≤  4 and

    z  =  x2 + y2 − 4,−4 ≤  z  ≤  0 . Let  n  be its outward unit normal vector. Find

     S 

    (x + y2 + sin z, x + y2 + cos z, cosx + sin y + z ) · ndS 

    (3) Let  F = (2x−yr3  ,  x+2y

    r3  ,   2z

    r3) be a vector field on  R3 − 0.

    (a) Find

     S 

    F · ndA, where  S  = {(x,y,z ) : x2 + y2 + z 2 = 4}.

    (b) Show that  ∇ · F = 0.

    (c) Find

     ∂V  

    F · ndA, where  ∂V  is the boundary of the following  V  :

    (i)  V   = {(x,y,z ) : 1 ≤  z  ≤  7 − x

    2

    − y

    4

    }(ii)  V   = {(x,y,z ) : −1 ≤  z  ≤  7 − x2 − y4}

    (B) Stokes’ Theorem

    (1) Use Stokes’ Theorem to evaluate

     C 

    F ·  dr  where   F  =   z 2i +  y2 j +  xk   and  C 

    is the triangle with vertices (1,0,0), (0,1,0) and (0,0,1) with counter-clockwise

    rotation.

    (2) Let  C   be the intersection of the graphs   z   =  y3 and  x2 + y2 = 3, oriented in

    the clockwise direction when viewed from high up the positive  z -axis. Find theline integral  

    (ex + z )dx + xydy + zeydz 

    (3) Using Stokes’ Theorem, or otherwise, evaluate

     C 

    xzdx − ydy + x2ydz,

    where C  is the closed curve consisting of the three straight line segments con-

    necting (1,0,0), (0,1,0) to (0,0,1) (in this order).

    1

  • 8/19/2019 MATH 2020 B Solution

    41/45

    MATH2020B Advanced Calculus II

    Tutorial 12 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    1. See Tutorial 11, Q.4.

    2. Let   V    be the solid enclosed by   S ,   V 1  ≡ {(x,y,z) ∈   R3, 0  ≤   z  ≤   4 − x2 − y2}   andV 2 ≡ {(x,y,z) ∈ R3, x2 + y2 − 4 ≤ z ≤ 0}. Then by divergence theorem,

     S 

    x + y2 + sin(z), x + y2 + cos(z), cos(x) + sin(y) + z

    ,n

    dS 

    =

     V  

    (2 + 2y)dV 

    =  V  1

    (2 + 2y)dV   +  V  2

    (2 + 2y)dV 

    =

       2π

    0

       2

    0

       4−r2

    0

    2 + 2r sin(θ)

    rdzdrdθ +

       2π

    0

       2

    0

       0

    r2−4

    2 + 2r sin(θ)

    rdzdrdθ

    = 32π.

    3. See Tutorial 11, Q.6.

    4. Let S  be the surface enclosed by C . Then S  = {(u,v, 1−u−v) : 0 ≤ u, v ≤ 1} and the unitnormal (determined by the orientation of the curve) is given by  n = (1/

    √ 3, 1/

    √ 3, 1/

    √ 3).

    By Stokes’ theorem,

     C 

    (z2, y2, x), dr

     =

     S 

    ∇ × (z2, y2, x),n dS =

      1√ 3

     S 

    (0, 2z − 1, 0), (1, 1, 1) dS 

    =  1√ 

    3

       1

    0

       1−v

    0

    (1 − 2u − 2v) ·√ 

    3dudv

    = −16.

    5. Let  S  be the surface enclosed by  C . Then  S  ≡ {(x,y,y3) ∈  R3 :  x2 + y2 ≤ 3}  and it canbe parameterized by the function Φ given by

    Φ(u, v) ≡ (u,v,v3)

    for any (u, v) ∈ D ≡ {(x, y) ∈ R2 : x2 + y2 ≤ 3}. Then

    Φu × Φv  =e1   e2   e31 0 0

    0 1 3v2

    = (0,−3v2, 1)

    1

  • 8/19/2019 MATH 2020 B Solution

    42/45

    Note that C   is  negatively oriented, by Stokes’ theorem,

     C 

    (ex + z)dx + xydy + zeydz =

     S 

    ∇ × (ex + z,xy,zey),−n dS 

    = − 

    (zey, 1, y),n dS 

    = − D

    (v − 3v2)dudv

    = − 

      2π

    0

     √ 3

    0

    r sin(θ) − 3r2 sin2(θ) · rdrdθ

    = 27

    4 π.

    6. Let S  be the surface enclosed by C . Then S  ≡ {(u,v, 1−u−v) : 0 ≤ u, v ≤ 1} and the unitnormal (determined by the orientation of the curve) is given by  n = (1/

    √ 3, 1/

    √ 3, 1/

    √ 3).

    By Stokes’ theorem,

     C 

    xzdx − ydy  + x2ydz  =  S 

    ∇ × (xz,−y, x2y),n dS =

      1√ 3

     S 

    (x2, x − 2xy, 0), (1, 1, 1) dS 

    =  1√ 

    3

       1

    0

       1−v

    0

    (u2 + u − 2uv) ·√ 

    3dudv

    = 1

    6.

    2

  • 8/19/2019 MATH 2020 B Solution

    43/45

    MATH2020B Tutorial 13

    Revision

    (1) Let   F (x,y,z ) = (x +  z 2, 0,−z  −  3), where (x,y,z )  ∈  R3. Is it possible to find a

    C 2-function G : R3 → R3 such that curl  G =  F  ? If it is possible, find such  G.

    (2) (a) Using Stokes’ Theorem, compute

     Γ

    3ydx  −  xzdy  +  yz 2dz , where Γ is the

    curve defined by intersecting the plane  {(x,y,z )|z   = 2}   with the paraboloid

    {(x,y,z )|x2 + y2 = 2z }, where Γ rotates counterclockwise viewing from high

    above.

    (b) Compute the line integral in (a) directly by choosing a suitable parametrizationof Γ.

    (3) Let f   : R → R be a C 1 function, Γ be a piecewise C 1 curve in {(x, y)|y > 0} joining

    the point (a, b) with the point (c, d).

    Consider I  =

     Γ

    1

    y[1 + y2f (xy)]dx +

      x

    y2[y2f (xy) − 1]dy.

    (a) Show that  I   is path-independent.

    (b) Compute  I , assuming that  ab =  cd.

    (4) (a) Let   F(x,y,z ) = (2xz, 6yz,h(x,y,z )) be a vector field defined on   R3. Find

    h(x,y,z ) satisfying  h(0, 0, 0) = 0 such that   F  is irrotational.

    (b) Find a potential  φ =  φ(x,y,z ) satisfying

    ∇φ =  F.

    (5) (a) Evaluate the surface integral  

    (x + y + z )2dS,

    where S  = {(x,y,z )|x2 + y2 + z 2 = 1}.

    (b) Let S  be a smooth closed surface without boundary enclosing a region R  in R3.

    Show that the volume enclosed is given by

    1

    3

     S 

    r · ndS,

    where   r is the position vector of a point on  S .

    1

  • 8/19/2019 MATH 2020 B Solution

    44/45

    MATH2020B Advanced Calculus II

    Tutorial 13 Solution

    by Chan Chi Ming

    September 3, 2013

    *Please email to me if there are mistakes.

    Recall that a necessary condition for a vector field  F  to have a vector potential  G   is  ∇, F =(∇,∇× G) = 0. So, one should always check whether  ∇, F  = 0 before “finding” a vectorpotential. Suppose now such a vector potential  G = (G1, G2, G3) exists. Then observe that

    G −∇

       zz0

    G3(x,y ,t)dt = ( G1, G2, 0) and  ∇ × G −∇   zz0

    G3(x,y ,t)dt

     =  ∇ × G,

    we may assume  G  = (G1, G2, 0).

    1. By direction computation,   ∇, F   = 0. Suppose   G   :  R3 →  R3 is a vector potential suchthat  G = (G1, G2, 0) and ∇ × G =  F. Then we have

    −(G2)z  = x + z2,   (G1)z  = 0,   (G2)x − (G1)y  = −z − 3.

    Therefore,  G1(x,y ,z) = g1(x, y),  G2  =  −xz − z3/3 + h1(x, y) and so

    −z + (h1)x − (g1)y  = (G2)x − (G1)y  = −z − 3.

    Hence, we choose  g1(x, y) ≡  0 and  h1(x, y) = −3x  in  R2.

    So G(x,y ,z) = (0,−3x − xz − z3/3, 0) in  R3.

    2. (a) Let  S  be the surface enclosed by Γ. Then  S  = {(x,y, 2) ∈ R3 : x2 + y2 = 4}  and theunit normal (determined by the orientation of the curve) is given by  n = (0, 0, 1). 

    Γ

    3ydx − xzdy + yz2dz =

     S 

    ∇× (3y, −xz,yz2), n

    dS 

    =

     S 

    (x + z2, 0,−z − 3), (0, 0, 1)

    dS 

    = −5

     S 

    dS 

    = −20π.

    (b) Parameterize Γ by the function γ  given by

    γ (t) ≡ 2 cos(t), 2sin(t), 2for any  t  ∈  [0, 2π]. Then Γ

    3ydx−xzdy +yz2dz =

       2π

    0

    6sin(t)·

    −2sin(t)

    −4 cos(t)·2cos(t)+0

    dt =  −20π.

    3. (a) Since∂ 

    ∂x

     x

    y2

    y2f (xy) − 1

    −  ∂ 

    ∂y

    1

    y

    1 + y2f (xy)

     =  . . . = 0,

    by Green’s theorem,  I   is path-independent.

    1

  • 8/19/2019 MATH 2020 B Solution

    45/45

    (b) Let  η ≡  a/c  =  d/b  and assume  a ≤  c. Then choose Γ(t) ≡  (t, ab/t) for any  t ∈  [a, c].Therefore,

    I  =

       ca

      t

    ab

    1 +

    ab

    t

    2f (ab)

    · 1 +

      t3

    a2b2

    ab

    t

    2f (ab) − 1

    · −ab

    t2

    dt =

      c

    d −

     a

    b.

    4. (a) Recall that F is irrational if  ∇ × F = 0. Hence,

    hy − 6y = 0,   −hx + 2x = 0.

    Therefore,  h(x,y ,z) = 3y2 + h1(x, z) and so

    (h1)x =  hx = 2x.

    Hence,  h1(x, z) = x2 + g2(z). Since  h(0, 0, 0) = 0,  g2(z) ≡  0.

    Therefore,  h(x,y ,z) = x2 + 3y2 in  R3.

    (b) Suppose  φ  : R3 → R is a function such that  F =  ∇φ. Then we have

    φx = 2xz, φy  = 6yz, φz  = x2 + 3y2.

    Therefore,  φ(x,y ,z) = x2z + g1(y, z) and so

    (g1)y(y, z) = φy  = 6yz.

    Hence,  g1(y, z) = 3y2z + g2(z) and so

    x2 + 3y2 + g2

    (z) = φz  = x2 + 3y2.

    Thus,  g2(z) ≡  C   and  φ(x,y ,z) = x2z + 3y2z + C   in  R3.

    5. (a) Parameterize S  by the function Φ given by

    Φ(θ, φ) ≡

    cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)

    for any (θ, φ) ∈  D  ≡  [0, 2π] × [0, π]. Then

    Φθ × Φφ =

    e1   e2   e3

    − sin(θ)sin(φ) cos(θ) sin(φ) 0cos(θ)cos(φ) sin(θ)cos(φ)   − sin(φ)

    = − sin(φ) ·

    cos(θ)sin(φ), sin(θ) sin(φ), cos(φ)

    and so Φθ × Φφ = sin(φ) in  D . Therefore, D

    (x + y + z)2dS  =

     D

    cos(θ)sin(φ)+sin(θ) sin(φ)+cos(φ)

    2· sin(φ)dθdφ = 4π.

    (b) Note that  r(x,y ,z) = (x,y ,z). By divergence theorem,

    1

    3

     S 

    r, n dS  =  1

    3

     R

    ∇, r dV   = 1

    3

     R

    3dV   = Vol(R).