mathematics specialised - department of education · mathematics specialised course code: mts315109...

16
Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian Qualifications Authority Page 1 of 7 GENERAL COMMENTS On the whole, students performed reasonably well on this paper, but there remain too many instances of inappropriate use of CAS calculators. There were a couple of instances in this paper where a proof was required, and there were too many instances of proofs being very poorly set out. Students need to be reminded that they should not work on both sides of an equation simultaneously and hence arrive at a selfevident result such as 0 = 0, or something similar. SECTION A (SEQUENCES AND SERIES) Generally, students demonstrated a good level of understanding in this section. Many students made errors with algebraic manipulation. Question 1: Most students were not able to answer this 3 mark question completely. The numerator caused a lot of trouble as there was poor understanding of 1 !±! generating an oscillating sequence +1, 1, +1, 1 … also few students recognised the 2 ! . Question 2: Many students failed to recognise the significance of ! > 0 0 < ! < 2 only required x<2 Question 3: This question was reasonably well done although few students correctly justified any rigging, nor correctly saw the best method using ! + 1 > ! 1 . Most students made a successful finish. Question 4: This question was full of errors: Not reading the question correctly … terms 1, 2, 3 required. !"" !" Computational errors by students attempting to making the numerical calculations without a calculator

Upload: phungdiep

Post on 11-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Mathematics Specialised Course Code: MTS315109

2013 Assessment Report

Tasmanian  Qualifications  Authority   Page  1  of  7  

GENERAL  COMMENTS    On  the  whole,  students  performed  reasonably  well  on  this  paper,  but  there  remain  too  many  instances  of  inappropriate  use  of  CAS  calculators.  There  were  a  couple  of  instances  in  this  paper  where  a  proof  was  required,  and  there  were  too  many  instances  of  proofs  being  very  poorly  set  out.    Students  need  to  be  reminded  that  they  should  not  work  on  both  sides  of  an  equation  simultaneously  and  hence  arrive  at  a  self-­‐evident  result  such  as  0  =  0,  or  something  similar.      SECTION  A  (SEQUENCES  AND  SERIES)    Generally,  students  demonstrated  a  good  level  of  understanding  in  this  section.  Many  students  made  errors  with  algebraic  manipulation.      Question  1:    Most  students  were  not  able  to  answer  this  3  mark  question  completely.  The  numerator  caused  a  lot  of  trouble  as  there  was  poor  understanding  of   −1 !±!    generating  an  oscillating  sequence  +1,  -­‐1,  +1,  -­‐1  …  also  few  students  recognised  the   2𝑛 !.      Question  2:    Many  students  failed  to  recognise  the  significance  of  𝑒! > 0  ℎ𝑒𝑛𝑐𝑒  0 < 𝑒! < 2  only  required  x<𝑙𝑛2      Question  3:    This  question  was  reasonably  well  done  although  few  students  correctly  justified  any  rigging,  nor  correctly  saw  the  best  method  using  𝑛! + 1 > 𝑛! − 1  .  Most  students  made  a  successful  finish.      Question  4:    This  question  was  full  of  errors:      • Not  reading  the  question  correctly  …  terms  1,  2,  3  required.  • 𝑆!""-­‐𝑆!"  • Computational  errors  by  students  attempting  to  making  the  numerical  calculations  without  a  

calculator    

Page 2: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

2013  Assessment  Report  

Page  2  of  7  

Question  5:    Whilst  most  students  made  reasonable  progress  with  this  inductive  proof,  many  lost  marks  for  imprecise  proof  structure  and  too  many  students  could  not  complete  the  algebraic  manipulations  correctly.      Question  6:    This  question  was  generally  well  done  and  most  students  made  good  progress.  Students  struggled  to  complete  the  GP  summation  because  of  errors  with  their  manipulation  of  fractions.      SECTION  B  (MATRICES  AND  LINEAR  TRANSFORMATIONS)    Overall,  students  performed  very  well  on  this  section  and  mostly  showed  a  good  understanding  of  the  concepts  being  examined.        Question  7:    Students  who  solved  the  equation  by  post-­‐multiplying  by  an  inverse  matrix  generally  had  no  problems  –  although  a  few  incorrectly  tried  to  pre-­‐multiply.    Students  who  used  a  general  matrix  generally  got  lost  in  the  algebra  involved  in  solving  the  resulting  simultaneous  equations.      Question  8:    This  should  have  been  a  very  simple  question,  but  frequently  proved  difficult.    The  simplest  approach  was  to  take  two  points  on  the  y-­‐axis  (such  as  (0,0)  and  (0,1)),  find  their  images  under  the  given  transformation,  and  then  find  the  equation  of  the  resulting  line.    It  was  disappointing  to  see  how  many  students  could  not  write  down  the  equation  of  the  y-­‐axis,  if  that  was  the  approach  they  attempted.      Question  9:    This  should  be  a  standard  proof  but  was  not  always  done  well.    Many  students  clearly  did  not  recognise  the  notation  for  the  determinant  of  a  matrix,  but  instead  thought  that  absolute  values  of  the  elements  were  required.    Proofs  were  often  poorly  set  out.      Question  10:    Most  students  knew  that  a  simple  substitution  was  required  here  to  find  the  equation  of  the  original  curve,  although  algebraic  errors  were  very  frequent.  Students  were  expected  to  simplify  the  equation  of  that  curve.          

Page 3: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

2013  Assessment  Report  

Page  3  of  7  

Question  11:    This  question  was  generally  very  well  done,  with  the  majority  gaining  full  marks.    There  were  the  usual  arithmetic  and  transcription  errors.    A  few  students  were  confused  by  having  equations  involving  a,  b  and  c  instead  of  x,  y  and  z,  and  had  the  former  variables  within  their  augmented  matrices.      Question  12:    Students  generally  knew  what  was  required  in  this  question,  but  errors  were  fairly  frequent.    The  most  common  error  was  an  incorrect  matrix  representing  the  reflection  transformation.    The  vast  majority  multiplied  their  three  matrices  in  the  correct  order.    The  simplest  approach  from  that  point  was  to  find  the  inverse  of  the  resulting  matrix  and  substitute  from  it  into  the  given  equation  –  students  who  tried  to  set  up  and  solve  simultaneous  equations  rarely  succeeded.    Some  simplification  of  the  final  equation  was  required  for  full  marks.      SECTION  C  (DIFFERENTIAL  AND  INTEGRAL  CALCULUS)    In  general,  candidates  demonstrated  a  sound  conceptual  understanding  yet  were  frequently  plagued  by  algebraic  issues,  particularly  those  involving  indices  and  logarithms.  Clearly  structured  and  presented  solutions  were  the  exception,  possibly  contributing  to  candidates’  algebraic  problems.      Question  13:    The  majority  of  candidates  scored  full  marks  on  this  problem,  showing  appropriate  working  to  differentiate  the  relation  implicitly  or  using  the  chain  rule.  A  significant  fraction  of  candidates  did  not  differentiate  the  constant  term.  Candidates  who  attempted  to  rearrange  the  equation  and  differentiate  explicitly  invariably  discarded  solutions  when  taking  the  square  root.      Question  14:    This  question  was  very  well  answered  by  the  majority  of  candidates.  The  most  common  error  resulted  from  incorrectly  evaluating  2! = 0  .  The  definite  integral  was  inconsistently  accompanied  by  units,  however  this  was  not  required.  Candidates  are  encouraged  to  refer  to  the  information  sheet  for  standard  integrals  such  as   2! 𝑑𝑥.      Question  15:    This  question  proved  to  be  quite  difficult  for  a  large  number  of  candidates.  Roughly  half  of  the  responses  neglected  to  show  that  the  curves  share  a  common  point,  whilst  some  candidates  focused  purely  on  the  common  point  and  did  not  consider  the  derivatives.      

Page 4: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

2013  Assessment  Report  

Page  4  of  7  

Many  candidates  clearly  made  use  of  their  calculator  to  find  the  derivatives,  evident  in  frequent  

transcription  errors  resulting  in    ! !!/!

!"= 𝑒

!!!!    or    𝑒!!!! − 1.  Another  common  error  was  the  assertion  

that  the  two  curves  were  tangential  due  to  the  property  𝑚!×𝑚! = 1  or  in  some  cases,  −1.    The  majority  of  candidates  did  not  use  appropriate  structure,  notation  or  commentary  to  clearly  communicate  mathematical  ideas  and  discriminate  between  the  two  curves.  Further,  appropriate  reasoning  to  support  the  proof  was  frequently  absent.      Question  16:    This  straight-­‐forward  application  of  the  trapezoidal  rule  gave  an  easy  five  marks  to  many  candidates.      The  most  common  error  was  the  incorrect  calculation  of  the  interval  width.  Some  candidates  made  a  sketch  to  assist  them  to  identify  the  correct  number  of  intervals.  Arithmetic  errors  in  simplifying  the  fraction  or  evaluating  the  sum  were  also  relatively  common.        Question  17:    Despite  the  explicit  instruction  to  not  use  calculators  and  the  implication  that  working  was  expected,  too  many  candidates  simply  stated  the  derivatives.  Candidates  who  used  the  product  rule  to  evaluate  𝑓′′′(𝑥)  were  generally  more  successful  than  candidates  using  the  quotient  rule  who  frequently  got  lost  in  the  algebra.  Candidates’  command  of  index  laws  was  disappointing  as  were  notational  issues  such  as  1− 𝑥! !/! =   1− 𝑥!! .    Even  those  candidates  who  were  clearly  well  versed  in  the  procedure  for  obtaining  a  MacLaurin  series  often  did  not  recognise  the  role  of  a  MacLaurin  series  as  an  approximation  of  the  function  

𝑓 𝑥 =   sin!! 𝑥  and  simply  evaluated   𝑥 + !!

! !

!.!to  approximate  the  integral  or  neglected  to  respond  to  

this  part  of  the  problem  entirely.      Question  18:    This  problem  posed  significant  problems  for  many  candidates.  Correctly  identifying  the  limits  of  integration  was  a  challenge  for  many  candidates.  Clearly  some  candidates  were  uncomfortable  with  logarithmic  functions,  as  expressions  such  as  log! 𝑎!  were  common  and  apparently  only  resolved  with  the  aid  of  a  calculator  or  not  at  all.  The  constant  𝑎  also  caused  issues  and  was  commonly  treated  as  a  variable  whilst  integrating  or  evaluating  definite  integrals.    A  common  approach  to  the  problem  was  to  simply  launch  into  the  integral  𝑉 = 𝑥!𝑑𝑦!

!  without  considering  the  composition  of  the  solid  and  the  necessity  to  subtract  this  volume  from  another  solid.  Candidates  also  struggled  to  calculate  the  annular  volume,  frequently  representing  such  a  volume  with  𝜋 𝑅 − 𝑟 !ℎ  or  its  integral  equivalent.  Those  candidates  who  spent  time  setting  up  the  problem  with  the  aid  of  a  clearly  labelled  diagram  and  appropriate  notation  𝑉!,𝑉!,𝑉!…  etc.  were  usually  successful  in  obtaining  the  correct  result.        

Page 5: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

2013  Assessment  Report  

Page  5  of  7  

SECTION  D  (TECHNIQUES  OF  INTEGRATION)    Generally,  students  demonstrated  a  good  level  of  understanding  in  this  section.  Many  students  need  to  take  greater  care  with  signs  and  algebraic  manipulation.      Question  19:  

Most  students  recognised  the  need  to  separate  the  variables  to  obtain   ∫∫ =+

dxdyy

111

2 ,  leading  to  

success.  Answers  did  not  have  to  be  written  in  the  form   )4

tan( π−= xy  in  order  to  gain  full  marks.  

   Question  20:    The  main  issue  here  was  to  provide  a  reasonable  format  for  the  solution.        Question  21:    This  question  was  well  done.  Most  students  made  a  successful  start.  After  that  students  needed  to  take  care,  especially  with  signs.  A  constant  of  integration  was  expected.      Question  22:    This  question  was  generally  well  done.  However,  many  students  made  errors.  Take  care  when  solving  

C915 = !  Include  the   symbol  when  appropriate.  Students  who  used  the  format

)2()1()1( 2 −+

++

+ xc

xb

xa generally  had  more  success  than  those  who  didn’t.  

   Question  23:    Whilst  most  students  made  reasonable  progress,  many  lost  marks  for  errors  or  incomplete  solutions.  

)5ln(51 IdII

−−=−∫  as   5<I .  Take  care  with  the  sign  and  give  an  explanation  as  to  why  the   symbol  

is  not  required.      Question  24:    Most  students  made  some  progress  with  this  question,  but  not  so  many  managed  a  complete  solution.        

Page 6: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

2013  Assessment  Report  

Page  6  of  7  

SECTION  E  (COMPLEX  NUMBERS)    Generally,  candidates  performed  well  on  this  section  and  demonstrated  a  good  understanding  of  the  operations  involved  in  working  with  complex  numbers.      However,  while  a  CAS  calculator  is  a  wonderful  calculating  assistant;  its  use  should  not  be  to  the  detriment  of  demonstrating  a  candidate’s  understanding  of  complex  numbers  (the  criterion  being  assessed  in  this  section).      Question  25:    Most  candidates  were  able  to  simplify  the  given  fraction  to   i33 −− ;  and,  in  so  doing,  showed  an  appropriate  recording  sequence  which  demonstrated  the  method  by  which  the  result  was  obtained.      Question  26:    It  is  important  to  label  axes  when  providing  a  graphical  representation  of  a  region:  otherwise,  the  tick  marks  could  be  taken  to  mark  off  any  scale.    Nevertheless,  the  question  was  relatively  well  done,  with  the  required  region  clearly  marked  and  labelled.    A  few  candidates  omitted  showing  the  required  boundary  of  the  desired  region  and,  in  many  instances,  the  argument  of   4

π  did  not  intercept  the  y-­‐axis  at  (0,  2).      Question  27:    Many  candidates  were  unable  to  write  an  appropriate  symbolic  expression  in  part  (a)  to  represent  the  cube  roots  of  i.    Those  candidates  who  used   3)( ibai +=  opened  themselves  to  a  more  complicated  

algebraic  solution  than  those  who  used   ............. )( 31

2233 ππ ciszcisziz =⇒=⇒=  to  find  the  three  

cube  roots.    A  disturbing  number  of  candidates  began  with  the  statement   .03

1=i  

   Question  28:      a) Almost  all  candidates  were  able  to  give   2

π  as  the  smallest  positive  value  of  θ .    However,  there  was  

a  number  of  candidates  who  resorted  to  logarithms  to  the  base  e,  and  then  calculated  iiln  to  

determine  the  smallest  positive  value  of  θ .  

(The  marker  was  able  to  find  some  wonderfully  (obscure)  results  (for  example,  2

ln π=

ii )  when  

checking  through  candidates’  responses  to  determine  the  correctness,  or  otherwise,  of  given  statements.)    

Page 7: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

2013  Assessment  Report  

Page  7  of  7  

b)   Instead  of  writing   iii ei )( 2π

= ,  many  candidates  got  stumped  by  writing   ,)( 22

ieii eiπ

π

=  and  were  then  unable  to  transform  the  statement  obtained  to  write   .0)( 1)1(

2 icis i −==−π  

 c)   Many  candidates  were  unable  to  use  the  result  in  (b)  to  write   iii )(  as   ie )( 2

π− ,  and  hence  express  the  result  in  Cartesian  form.  

   Question  29:    In  part  (b),  the  wording  of  the  question  stated  specifically  that  the  candidate  was  to  write  

12580428 234 +−+− zzzz  as  a  product  of  linear  factors  without  using  a  calculator.    Hence  it  was  a  requirement  of  this  question  that  the  factors  of   2562 +− zz be  found  (and  a  recording  sequence  shown)  by  a  means  other  than  that  of  a  CAS  calculation:  that  is,  the  quadratic  formula  or  a  difference  of  two  squares  needed  to  be  used,  for  example,  to  assist  factorisation.    Using  the  reasons  “by  inspection”,  or  “by  observation”  to  perform  multi-­‐step  operations  (using  a  calculator)  was  not,  in  the  view  of  the  examiner,  sufficient  methodology  to  obtain  the  linear  factors  from  the  initial  roots  1  +  2i  and  1  –  2i.      Question  30:    While  most  candidates  recognised  that   54321 zzzzz +−+−+−  could  be  expressed  as  a  sum  of  a  geometric  series,   6)(1( z−− )  was  disappointingly  written  as   6)1( z+  by  many  candidates.    Also,  while  

solving   011 6

=+−zz ,  many  omitted  considering  that  z  cannot  take  the  value  -­‐1.    This  led  to  incorrectly  

obtaining  six  zeros  to  the  quintic  equation.    Another  common  error  involved  the  transposition  of   01 6 =− z  to   16 −=z  which  then  gave  the  incorrect  argument  of  the  complex  number.    Finally,  since  the  arguments  involved  were  ‘exact  values’,  it  was  expected  that  the  factors  were  given  free  of  the  trigonometric  ratios  of  the  arguments.    

Page 8: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

TASMANIAN QUALIFICATIONS AUTHORITY

ASSESSMENT PANEL REPORT

MTS315109 Mathematics Specialised

20% (39) 24% (48) 38% (74) 18% (36) 197

20% (37) 23% (44) 34% (64) 23% (43) 188

11 % 19 % 39 % 31 %

18 % 24 % 36 % 22 %

11 % 19 % 39 % 30 %

72% (142) 28% (55) 2% (3) 98% (194)

73% (138) 27% (50) 3% (6) 97% (181)

68% 32% 1% 99%

This year

Last year

Previous 5 years

EA HA CA SA Total

Previous 5 years (all examined subjects)

Last year (all examined subjects)

Award Distribution

Student Distribution (SA or better)

This year

Last year

Previous 5 years

Male Female Year 11 Year 12

Page 9: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Mathematics Specialised – 2013 Examination Solutions

Question 1

nth

term

.

Question 2

Convergence to 0 requires and hence .

Thus since , convergence requires .

Question 3

It is required that for any |

| .

This is true if

i.e. if

[for

]

i.e. if

i.e. if

i.e. if

i.e. if

Hence

is a suitable N and so {

} converges to 0.

Question 4

(a) Denote the sum to n terms by

Hence the first term,

Now

And

(b) ∑ ∑

Question 5

To prove: ∑

Proof: Denote the proposition by ;

thus

LHS

Assume

Hence remains to be proven, that

.

Page 10: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

LHS

Thus since and ⇒ then is true for all positive integers n by the

Principle of Mathematical Induction.

Question 6

The series

to 2n terms can be divided into

series 1:

to n terms

plus series 2:

to n terms.

Denote the rth

term of series 1 by

Sum to n terms

Now series 2 is geometric, with first term

and common ratio

.

Sum to n terms

( (

) )

( (

) )

( (

)

)

(a) In the original series, sum to 2n terms

( (

)

).

(b) As

(

)

.

Page 11: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Question 7

If X(

) (

) (

) (

)

(

)

(

)

(

) .

Question 8

The y-axis contains the points .

Given , then

- .

Question 9

Let (

) (

) | | | |

(

)

| |

| || |

Question 10

Let

. Hence if is a point on the original curve, then

must satisfy the equation of the image. Hence the original curve is

given by (

)

(

) (

) (

)

Question 11

(a) The required equations are:

(b) (

)

→ (

) → (

) →

(

)

→ (

) → (

)

Hence .

Page 12: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Question 12

Rotation = (

) (

)

Reflection = ( (

) (

)

(

) (

)) (

)

Dilation = (

)

Transformation, (

) (

) (

)

(

) (

)

(

√ )

(√

) (

) ( √

)

If lies on the image, then ( √

) must satisfy the equation of the

original curve. Hence the equation of the image is given by:

( √

)

( √

)

( √ ) ( √ )

( √ )

√ √ √

√ √

Question 13

If , then

.

or

.

Question 14

Area ∫ (

)

[

]

(

) (

)

Page 13: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Question 15

If

then when

and so when

and so when

Hence both curves meet at the point with gradient 1

the curves are tangential to each other.

Question 16

Electric power generated

-

Question 17

(a)

( )

( )

( )

[ ]

(b)

[

]

Question 18

(a) (b) ⇒

{∫ ∫ ∫

}

{

[

]

}

{

}

(

)

Page 14: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Question 19

⇒ ∫

∫ and so

Given that when

(

)

Question 20

Question 21

∫ ∫

Question 22

Let

If ⇒ ⇒

If ⇒ ⇒

Equating coeff. of ⇒ ⇒

∫(

(

))

[

|

|]

Question 23

The equation

, with , becomes

, which can be rearranged to

.

[Given , no absolute value is necessary]

But when ⇒

Page 15: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Question 24

where

| | [Using substitution ]

(

)

Question 25

Question 26

Question 27

Let (

)

(

)

(

)

Page 16: Mathematics Specialised - Department of Education · Mathematics Specialised Course Code: MTS315109 2013 Assessment Report Tasmanian’Qualifications’Authority’ Page1’of’7’

Question 28

(a)

(b) (

)

(c) ( ) (

)

Question 29

(a)

is a root of the equation

(b) By the conjugate root theorem, is also a root of the equation

By long division, or otherwise, it can be shown that

and the zeros of are √

Question 30

(a)

Consider

(

)

(

) (

)

( (

)) ( (

)) (

) (

)

(

) (

) (

) (

)

(b) (

) (

)