maths less travelled

Upload: bodhayan-prasad

Post on 14-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Maths Less Travelled

    1/224

    Making a computer out of dominoes?

    Posted on October 10, 2012

    WhenImentionedcarryingoutcomputationalprocesseswitharoomfullofdominoes ,Iwasntkidding.Matt

    Parkerisplanningtobuildadominocomputer attheManchesterScienceFestivalattheendofthemonth.The

    ManchesterScienceFestivalbloghasanicewriteupexplainingtheproject.

    HeresavideoofMattexplaininghowadominoANDgateworks (twochainsofdominoescomein,andone

    goesout;theoutgoingdominoeswillfallonlyif bothincomingchainsdo).UnfortunatelyitseemsIcantembed

    videosonthisblog,atleastnotwithoutgivingwordpresssomecash=(,soyoullhavetoactuallyclickthatlink

    towatchthevideo,butitstotallyworthit(trustme).

    IwishIcouldgoseeit,butitsabitfarforme.Any MathLessTraveledreadersintheUKwhocanactuallygowatchthecomputerinactionandreportback?

    Posted in computation, links, video | Tagged computer, domino, festival, Manchester, Matt Parker, science | 3 Comments

    Factorization diagramsPosted on October 5, 2012

    InanidlemomentawhileagoIwroteaprogramtogenerate"factorizationdiagrams".Heres700:

    Itseasytosee(Ihope),justbylookingatthearrangementofdots,thatthereare intotal.

    HereshowIdidit.First,afewimports:afunctiontodofactorizationofintegers,anda librarytodrawpictures

    (yes,thisisthelibraryIwrotemyself;Ipromisetowritemoreaboutitsoon!).

    The Math Less Traveled

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    2/224

    > module Factorization where

    >

    > import Math.NumberTheory.Primes.Factorisation (factorise)

    >

    > import Diagrams.Prelude

    > import Diagrams.Backend.Cairo.CmdLine

    >

    > type Picture = Diagram Cairo R2

    TheprimeLayoutfunctiontakesanintegern(assumedtobeaprimenumber)andsomesortofpicture,and

    symmetricallyarrangesncopiesofthepicture.

    > primeLayout :: Integer -> Picture -> Picture

    Thereisaspecialcasefor2:ifthepictureiswiderthantall,thenweputthetwocopiesoneabovetheother;

    otherwise,weputthemnexttoeachother.Inbothcaseswealsoaddsomespaceinbetweenthecopies(equal

    tohalftheheightorwidth,respectively).

    > primeLayout 2 d

    > | width d > height d = d === strutY (height d / 2) === d

    > | otherwise = d ||| strutX (width d / 2) ||| d

    Thismeanswhentherearemultiplefactorsoftwoandwecall primeLayoutrepeatedly,weendupwiththingslike

    Ifwealwaysputthetwocopies(say)nexttoeachother,wewouldget

    whichismuchclunkierandhardertounderstandataglance.

    Forotherprimes,wecreatearegularpolygonoftheappropriatesize(usingsometrigIworkedoutonanapkin,

    dontaskmetoexplainit)andpositioncopiesofthepictureatthepolygonsvertices.

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    2 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    3/224

    > primeLayout p d = decoratePath pts (repeat d)

    > where pts = polygon with { polyType = PolyRegular (fromIntegral p) r

    > , polyOrient = OrientH

    > }

    > w = max (width d)(height d)

    > r = w * c / sin (tau / (2 * fromIntegral p))

    > c = 0.75

    Forexample,heresprimeLayout 5appliedtoagreensquare:

    Now,givenalistofprimefactors,werecursivelygenerateanentirepictureasfollows.First,ifthelistofprime

    factorsisempty,thatrepresentsthenumber1,sowejustdrawablackdot.

    > factorDiagram' ::[Integer]-> Diagram Cairo R2

    > factorDiagram' [] = circle 1 # fc black

    Otherwise,ifthefirstprimeiscalledpandtherestareps,werecursivelygenerateapicturefromtherestofthe

    primesps,andthenlayoutpcopiesofthatpictureusingthe primeLayoutfunction.

    > factorDiagram' (p:ps)= primeLayout p (factorDiagram' ps) # centerXY

    Finally,toturnanumberintoitsfactorizationdiagram,wefactorizeit,normalizethereturnedfactorizationinto

    alistofprimes,reverseitsothebiggerprimescomefirst,andcall factorDiagram'.

    > factorDiagram :: Integer -> Diagram Cairo R2

    > factorDiagram = factorDiagram'

    > . reverse

    > . concatMap (uncurry $ flip replicate)

    > . factorise

    Andvoila!Ofcourse,thisreallyonlyworkswellfornumberswithprimefactorsdrawnfromtheset

    (andperhaps ).Forexample,heres121:FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    3 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    4/224

    Arethere11dotsinthosecircles?13?Icantreallytellataglance.Andheres611:

    Uhhwell,atleastitspretty!

    Herearethefactorizationdiagramsforalltheintegersfrom1to36:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    4 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    5/224

    Powersofthreeareespeciallyfun,sincetheirfactorizationdiagramsare Sierpinskitriangles!Forexample,heres

    :

    Po wersoftwoarealso fun.Heres :

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    5 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    6/224

    [ETA:asanonpointsout,thisfractalhasanametoo:Cantordust!]

    Onelastone:104.

    IwishIknewhowtomakeawebsitewhereyoucouldenteranumberandhaveitshowyouthefactorization

    diagrammaybeeventually.

    (Incaseyouwerewondering, .)

    Posted in arithmetic, pictures, primes, programming, recursion | Tagged diagrams, fact orization, Haskell | 50 Comments

    What I Do: Part 0Posted on October 4, 2012

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    6 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    7/224

    ThisisthefirstinaplannedseriesofpostsexplainingwhatIdoinmy"dayjob"asacomputersciencePhDstudent.

    Theideaistowriteaseriesofpostsofincreasingspecificity,butallaimedatageneralaudience.

    HaveyoueverwonderedwhatIactuallydoallday,otherthanwritethisblog?(Well,probablytheansweris

    "no"since,asweallknow,peopleontheInternetdontactuallyhavereallives,inthesamewaythat

    kindergartenteachersliveintheclosetintheirclassroom.)ButwhatIdowillactuallybequiteinterestingto

    readersofthisblog,Ithink.

    So,tostartoff:Iamacomputerscientist.Whatdoesthatmean?

    WhatIdontdo

    Letmebeginbysayingthat"computerscience"isactuallyaterriblenameforwhatIdo.Itsakintoan

    astronomersayingtheystudy telescopescience ,oramicrobiologistsayingtheystudy microscopescience.Of

    course,astronomersdontstudytelescopes,they usetelescopestostudystarsandsupernovas.Microbiologists

    dontstudymicroscopes,they usemicroscopestostudycellsandDNA.AndIdontstudycomputers,I use

    computerstostudywell,what?

    Computation

    Inabroadsense,whatcomputerscientistsstudyis computation,bywhichwemeanprocessesofsomesortthat

    takesomeinformationandturnitintootherinformation.Questionsthatcanbeaskedaboutcomputation

    include:

    Whataredifferentwaysofdescribingacomputationalprocess?

    Howcaninformationbestructuredtomakecomputationalprocesseseasiertowrite,moreefficient,ormore

    beautiful?

    Howcantwodifferentcomputationalprocessesbecompared?Whenisoneprocess"better"thananother?

    Howcandifferentprocessesbecombinedintoalargerprocess?

    Howcanwebesurethatsomeprocessreallydoeswhatwewantitto?

    Whatsortsof"machines"canbeusedtoautomatecomputationalprocesses?

    What(ifany)arethelimitationsofcomputationalprocesses?

    Imsureotherquestionscouldbeaddedtothislist,butthesearesomeofthemostfundamentalones.

    Noticethatnoneofthesequestionsinherentlyhaveanythingtodowithcomputers.A"computationalprocess"

    couldbecarriedoutwithpilesofrocks,anabacus,paperandpencil(didyouknowthattheword"computer"

    usedtorefertoapersonwhosejobitwastodocarryoutcomputationalprocesses?),a carefullysetuproomfull

    ofdominoes,oracarefullysetuptesttubefullofDNA.Itsjustthatmoderncomputerscancarryout(most)

    computationalprocessesmanyordersofmagnitudefasterthananyothermethodweknowof,sotheymake

    exploringtheabovequestionspossibleinmuchdeeperwaysthantheywouldotherwisebe.Andindeed,the

    mathematicalrootsofcomputersciencegobackmanyhundreds,eventhousandsofyearsbeforetheadventof

    digitalcomputers.

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    7 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    8/224

    So,Istudycomputation.Butasyoucanseefromthelistofquestionsabove,thatsstillincrediblybroad.Infact,

    myresearchfocusesonthefirsttwoquestionsinthelistabove.InPart1Illdescribethosequestionsinabit

    moredetail.Also,Imhappytotrytoansweranyquestionsleftinthecomments!

    Posted in computation, meta | Tagged computation, computer sc ience, whatido | 5 Comments

    CoM and Relatively PrimePosted on September 17, 2012

    Acouplethingstodrawyourattentionto:

    The90thCarnivalofMathematicsisupoveratWalkingRandomly.Theresquitealotofcoolstuffinthis

    edition,gocheckitout!

    ThefirstepisodeofRelativelyPrimeisup!Thisisaseriesofeightshowsallaboutthestoriesbehind

    mathematicsproducedbySamuelHansen.Ihaventactuallyhadachancetolistentothefirstepisodeyet,

    butIknowheflewallovertheworldinterviewingmathematiciansforthissoitoughttobeinteresting!I

    alsohelpedfunditonKickstartersoImquiteexcitedtoseethefruits.

    Posted in links | Tagged Carnival of Mathematics, episode, podcast, show | 1 Comm ent

    Three new booksPosted on August 23, 2012

    Athree-for-onetoday!HerearethreebooksIwantedtomentiontoyou,dearreader,foronereasonoranother.

    AWealthofNumbers

    BenjaminWardhaugh

    PrincetonPresskindlysentmeareviewcopyofthisbook.Asan anthologyofpopularmathematicswritingfrom

    the1500

    stothepresent,itsnotthesortofbookIusuallyreviewherebutitsnonethelessfascinating.Thefeaturedexcerptsare,byturnsgripping,dull,lucid,incomprehensible,hilarious,irrelevant,andfun.Ididntlearn

    awholelotofnewmathematicsbyreadingthisanthology,butitgavemesomeeye-openingperspectiveonhow

    peoplehavethoughtandwrittenaboutmathematicsoverthelast500years.

    DeadReckoning:CalculatingWithoutInstruments

    RonaldW.DoerflerFollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    8 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    9/224

    Theresalotofcontroversyovertheuseofcalculatorsandcomputersinmathclassrooms.Shouldtheybe

    welcomedaslabor-savingdevicesthatallowstudentstoexploremathematicsinnewways,oreschewedas

    crutchesthatturnstudentsintobutton-pushingautomatawithnorealunderstanding?Itsanimportantdebate,

    butitseemstomethatthosewhoargueagainstcalculatorssometimeshaveanonethelessimpoverishedviewof

    thealternative:justtheabilitytodothestandardWesternalgorithmsforthefourbasicarithmeticoperations,

    andunderstandwhythealgorithmswork.

    Thisbook(whichIreceivedasagiftaboutsixmonthsago)isntintendedtoenterthatdebatedirectlybutitis

    afar-rangingsurveyofmethodsforpencil-and-paper(ormental)calculation.Therearegeneralalgorithms,of

    course,(andnotjustforarithmetic,butforsquareroots,logarithms,trigfunctions)buttherearealsoallsorts

    oftricksandspecialcaseswhicharisefrom,andengender,intimatefamiliaritywithnumbers.Isit"practical"?

    Well,notreally.Butthatscertainlynotthepoint.Ihadsomuchfunreadingthroughthisbookandtryingoutall

    thedifferentalgorithms:multiplyinginmyhead,computingsquarerootstomanydecimalplacesusingjusta

    singlesheetofpaperHonestlyIdontrememberanyoftheactualalgorithmsanymore,butIcameawaywith

    betternumbersenseandImayjustpullitoutandtrysomeofthealgorithmsagain.Eventuallysomeofthem

    areboundtostick!

    MathematicalLiteracyintheMiddleandHighSchoolGrades

    FaithWallaceandMaryAnnaEvans

    Imentionthisbookparticularlybecauseitcontains(inaboxonpage67)anessaybyyourstruly!Iwrote

    somethingabouttheexperienceofwritingthisblogandinspiringreaderswithmathematicalbeauty.

    Inolongerteachmiddleorhigh-schoolstudents,buttheideaofusingliteracytoinspireinterestinmathmakes

    alotofsensetome(andofcourse,itsperfectlyapplicableatthecollegelevelaswell).Thereareallsortsof

    interestingideasinheresomeofwhichIwillneveruse(discussingstatisticsandvotingvia AmericanIdol)but

    othersofwhichIdlovetotrysomeday(usingbiographyorfictiontoinspiremathematicalinterest).

    Posted in books, review | Tagged anthology, calculation, literacy | 2 Comments

    Introduction to Mathematical Thinking with Keith Devlin

    Posted on August 22, 2012

    IjustlearnedfromDeniseatLetsPlayMath!thatKeithDevlinisgoingtobeteachingacourseonCoursera

    calledIntroductiontoMathematicalThinking.Itsfreeandopentoanyonewithonlyabackgroundinhighschool

    math.Lookslikeitshouldbequiteinterestingandperhapsofinteresttosomeofmyreaders!

    Posted in links, teaching | Tagged Coursera, free, Keith Devlin, mathematical thinking, online | 1 Comment

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    9 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    10/224

    Visualizing nim-like gamesPosted on August 16, 2012

    Inspiredbythecommentsonthispost,IvehadsomeideasbrewingforawhileImjustonlynowgetting

    aroundtowritingthemup.

    Thetopicisvisualizingwinningstrategiesfor"nim-like"games.WhatdoImeanbythat?Byanim-likegameImean

    agameinwhichtwoplayerstaketurnsremovingobjectsfromsomepiles(subjecttosomerules),andthelastplayertoplayisthewinner(or,sometimes,theloser).

    Acutevariant,duetoPaulZeitz(andintroducedtomebySueVanHattum ),istothinkofapetshopwith

    differenttypesofpets;playerstaketurnsvisitingthepetshopandbuyingsomepets,untilthestoreisalloutof

    pets.

    Forgameswithonlytwopiles,orapetstorewithonlytwotypesofpets,playingthegamecanalsobethought

    ofasmakingmovesonasquaregrid.The -coordinaterepresents,say,thenumberofXoloitzcuintli,andthe

    y-coordinatethenumberofYaks;thesquarewithcoordinates meansthatthepetstorehas xolosand

    yaksleft.Buyingsomexoloscorrespondstomovingleft;buyingyaksmeansmovingdown;buyinganequal

    numberofeachmeansmovingdiagonallydownandleft;andsoon.

    Hereareafewexamplesofnim-likegames:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    0 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    11/224

    Inthegameofnim,youmayonlybuyonetypeofanimaloneachturn(butyoucanbuyasmanyasyou

    want).Onagrid,youareallowedtomoveanydistanceleftordown(butnotboth).

    Theinterestingthingisthatwecanvisualizethewinningstrategyforthisgameinthefollowingway.

    (ZacharyAbelhasamuchmoredetailedexplanationofthisidea .)Awinningpositionisasquarethat

    guaranteesawinthatis,ifitisyourturnandyouareonawinningsquare,then(assumingyoumakethe

    rightmoveandcontinuetoplayperfectly)youwillwinthegame.Illindicatewinningpositionsbylightgreensquares,likethis: .Alosingpositionisapositionsuchthatyoucantwinnomatterwhatmoveyou

    make(assumingyouropponentplaysperfectly).Illindicatelosingpositionsbydarkbluesquares,likethis:

    .Infact,thewinningpositionsareexactlythosefromwhichthere existsatleastonelegalmovetoalosing

    position;andthelosingpositionsarethosefromwhich everylegalmoveistoawinningposition.

    Hereswhatitlookslikefornim:

    Nottooexciting,butitmakessense.Ifthepetstorehasanequalnumberofeachtypeofpetremaining,the

    firstpersontomoveisgoingtolose:theirmovewillresultinanunequalnumberofpets( i.e.asquareoffthe

    mainbluediagonal),andalltheiropponenthastodoisbuyanequalnumberoftheothertypeofpetto

    restorebalance.Ultimatelythelosingplayerwillbeforcedtocleanthestoreoutofonetypeofpet,andthe

    otherplayerthenwinsbycleaningthestoreoutoftheothertype.

    InWythoffsgame,youmaybuyanynumberofasingletypeofanimal, oranequalnumberofboth.Onagrid,

    youareallowedtomoveanydistanceleft,down,orata45degreeangleleftanddown.

    Thevisualizationforthisgame,ofcourse,ismuchmoreinteresting:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    1 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    12/224

    Youcanreadallaboutthefascinatinganalysisofthisgame(anditsvisualization)onZacharyAbelsblog .

    Inacomment,MaxdescribedagamefromtheInternationalOlympiadinInformatics:

    Youstartwitharectangle,andyoucancutiteitherverticallyorhorizontallyatintegersizes,each

    timekeepingthelargerpiece;thegoalistoobtainaunitsquare(sothatyouropponentcantmove).

    Itsnotasobvious,butthisisalsoanim-likegame.Thetwodimensionsoftherectanglecorrespondtothe

    numberofpetsoftwodifferenttypes.Forexample,a rectanglecorrespondsto10xolosand7yaks.

    Therectanglemustbecuteitherverticallyorhorizontally,meaningthatyoucanonlybuyonetypeofpeton

    agiventurn.Theinterestingtwististhatyoumustkeepthe largerpieceresultingfromacut,whichis

    equivalenttosayingthatyoumaybuyanynumberofpetsbutonly uptohalfthenumberofpetsthestore

    currentlyhas.Forexample,ifthestorehas xolosand yaks,youmaybuyupto xolos,orupto yaks.Buyinganymorethanthatwouldcorrespondtocuttingtherectangleandkeepingthesmallerpiece,whichis

    notallowed.

    Naturally,Iwonderedwhatthevisualizationofthisgamelookslike.Ifiguredithadtobesomething

    interesting,andIwasntdisappointed!Hereitis(notethatthebottom-leftsquarerepresents here,

    whereasinthevisualizationsfornimandWythoffsgameitrepresented ):

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    2 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    13/224

    Woah,neat!Itlooksasifthelosingsquaresfallalongdiagonallinesofslope forallintegern(thatis, , ,

    , , ,andsoon)thoughthelinesdontallpassthroughtheorigin.Itsnotsurprisingthatthemain

    diagonalconsistsofalllosingpositionsthestrategyisthesameasfornim;thefactthatonecanonlybuy

    uptohalfofacertaintypeofanimaldoesntmakeanydifference.Ifitisyouropponentsturntomoveand

    thestorehasanequalnumberofxolosandyaks,iftheybuyacertainnumberofyaksyoucanbuythesame

    numberofxolos,andviceversa.Eventuallythestorewillhaveoneofeach,atwhichpointyouropponent

    losessincetheycantbuyanymoreanimals(theywouldonlybeallowedtobuy,say,halfayak,butthepet

    storehasthesensiblepolicyofnotchoppingpetsinhalftoomessy).

    However,apparentlythereareadditionallosingpositionsotherthanthemaindiagonal.Forexample,

    accordingtothegraph,ifthestorehas4xolosand19yaks,thenthenextplayertomoveisgoingtolose!

    Youcanverifyforyourselfthatfromthispoint,theonlylegalmovesaretolightgreen(i.e.winning)

    positions,andthatfromanyofthesepositionstheotherplayercanmakealegalmovetoanotherdarkblue

    (i.e.losing)position,andsoon.

    Somedirectionswecouldgofromhere:

    Canyouthinkofanyvariantnim-likegamestoexplore?Ihaveaverygeneralprogramforcreatinggame

    visualizationsliketheabove,soifyoudescribeavariantgameinthecommentsIwillbehappyto tryto

    generateavisualizationforit.

    Whataboutnim-likegameswiththree(ormore)piles?Tovisualizethestrategiesforthese,wehavetouse

    three(ormore!)dimensions.Ihopetoeventuallycomeupwithawaytodothis,atleastforthreedimensions.Ihappentoknowthatnimismuchmoreinterestinginthreedimensionsthanintwo!

    Canyouprovethatthevisualizationoftherectangle-cuttinggamereallylooksliketheabove?Canyoucome

    upwithanicewaytocharacterizethewinningstrategy,oratleastthelosingpositions?

    Posted in games, pattern, pictures | Tagged nim, strategy, visualization, Wythoff | 4 Comments

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    3 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    14/224

    Searchable tiling databasePosted on August 2, 2012

    Justalinktodaycheckoutthisawesome tilingdatabase!Itsgottonsofbeautifulplanetilings(with

    informationandfurtherreadingabouteachone)andmanywaystosearchthroughthedatabase.Itsagreatway

    tofindexamplesofparticularsymmetriesortypesoftilingsbutitsalsofuntojustoohandahhoverrandom

    entriesfromthedatabase.

    IwishIcouldrememberwhereIfirstcameacrossthis.

    Posted in geometry, group theory, links, pattern, pictures | Tagged beauty, database, search, symmetry, tiling | 2 Comments

    Book Review: The Enigma of the Spiral WavesPosted on July 14, 2012

    TheEnigmaoftheSpiralWaves(SecretsofCreationVolume2)

    wordsbyMatthewWatkins,picturesbyMattTweed

    MatthewWatkinsandMattTweedhavedoneitagain!Ipreviouslywrotea(verypositive)

    reviewofVolumeI thisbookisjustasengaging,ifnotmore.Itexplainsthe Riemann

    Hypothesisoneofthebiggest,mostmysteriousopenquestionsinmathematicstodayingreatdetail.But,asonemightexpectafterreadingVolumeI,itremainsthoroughly

    accessible,eventothosewithnotmuchmathematicalbackground.Asamathematical

    writer,Ifinditincrediblyinspiring:itshowsthatwithenoughtimeandhardwork,itis

    possibletoexplainverytechnicalideasinawaythatisaccessiblebutstilldetailedand

    accurate.

    So,whatistheRiemannHypothesis?Simplyput,itstatesthatthesolutionstothefunction

    (where isacomplexnumber)allliealongacertainline.Butthatmakesitsoundboring,likesayingthataroller

    coasterisamodeoftransportwithwheels.Beforereadingthisbook,though,Ididntknowmuchmorethan

    that.Ihadntthefaintestidea whyitissointerestinganddeep,orwhyanyonewouldthinkthat solvingitwould

    beworthonemilliondollars .Thisbookexplainsallthatandmore.ItturnsoutthattheRiemannHypothesisis

    intimatelylinkedtothenatureoftheprimenumbers,whichare(still!)quitemysterious.Theyaredefinedby

    suchasimplerule,butseemtobehavesoerratically!Whatsgoingon?

    Ofcourse,therearewonderfulpicturestoo.Evenifyoureaditonlyfortheawesomepictures,itsstillworthit.FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    4 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    15/224

    Highlyrecommendedforanyonewhowantsaglimpseintooneofthemostfascinatingandmysteriousopen

    questionsinmodernmathematics!

    Posted in books, open problems, primes, review | Tagged Reimann Hypothesis, s piral, waves | 1 Comment

    Blockly

    Posted on June 28, 2012

    ItseemsthatGoogleisdevelopingagraphicalprogramminglanguagecalledBlockly,inspiredbyScratchbut

    web-based,withtheabilitytocompiledowntoJavaScript,Dart,orPython(orrawXML,soyoucanprocessit

    further).IcantsayImallthatexcitedaboutthelanguageitselfnothingnewthere,justthesameoldtired

    imperativeprogrammingbutitsureisfun!Giveitatrycanyousolvethemaze ?Howbigofaprogramdoyou

    need?

    Posted in challenges, programming | Tagged Blockly, Google, graphical, maze, programming | 7 C omments

    Picture this

    Posted on June 13, 2012

    Picturethis!isaverycoolinteractivethingy,madebyJasonDavies,intendedtogetstudents(oranyone,really)

    thinkingaboutsomeinterestingmath.Goplayaroundwithitandseeifyoucanansweranyofthelisted

    questions(oranyotherquestionsyoumightcomeupwithyourself).Itturnsouttobequiteintimatelyrelatedto

    somethingIvewrittenaboutbeforebutIwontspoilitbysayingwhat(atleast,notyet=).

    Posted in challenges, links, pattern, pictures | Tagged interactive, picture, rectangles, this | 6 Comments

    How to explain the principle of inclusion-exclusion?Posted on June 11, 2012

    Ivebeenremissinfinishingmy seriesofpostsonacombinatorialproof.Istillintendto,butImustconfessthat

    partofthereasonIhaventwrittenforawhileisthatImsortofstuck.Thenextpartofthestoryistoexplain

    thePrincipleofInclusion-Exclusion,butIhaventyetcomeupwithacompellingwaytopresentit.SoperhapsI

    shouldcrowd-sourceit.IfyouknowaboutPIE,howwouldyoumotivateandpresentit?Ordoyouknowofany

    linkstogoodpresentations?

    Posted in combinatorics, meta | Tagged exclusion, inclusion, PIE, presentation | 7 Comments

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    5 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    16/224

    Wythoffs game at Three-Cornered ThingsPosted on June 10, 2012

    IvereallybeenenjoyingZacharyAbelsseriesofpostsonWythoffsgame[WythoffsGame:RedorBlue?;A

    GoldenObservation;TheFibonacciestString;WythoffsFormula],overonhisblog Three-CorneredThings .The

    Fibonaccinumbersshowupinthestrangestplaces!

    Moregenerally,ifyouhaventseenZacharysblogbefore,gocheckitout.Ifyouenjoymyblog,Ithinkyoull

    enjoyhistoo.

    Posted in fibonacci, games, links | Tagged Wythoff's game | 7 Comments

    Fibonacci multiples, solution 1Posted on June 9, 2012

    Inapreviouspost,Ichallengedyoutoprove

    If evenlydivides ,then evenlydivides ,

    where denotesthe thFibonaccinumber( ).

    Heresonefairlyelementaryproof(thoughitcertainlyhasafewtwists!).Picksomearbitrary andconsider

    listingnotjusttheFibonaccinumbersthemselves,buttheirremainderswhendividedby .Forexample,lets

    choose ,sowewanttolisttheremaindersoftheFibonaccinumberswhendividedby .

    Herearethefirst17Fibonaccinumbers:

    Andherearetheirremainderswhendividedby ,representedgraphically(red=1,orange=2,blankgap=

    0):

    Remainders of the first 17 F ibonacci numbers mod 3

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    6 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    17/224

    Andindeed,aswewouldexpectifthetheoremistrue,everyfourthremainderiszero: isevenlydivisibleby

    .Butthereseemstobeabitmorethanthatgoingonthepatternofremainderswegotisdefinitelynot

    random!Letstry .Herearetheremainderswhenthefirst21Fibonaccinumbersaredividedby5:

    The first 21 Fibonacci numbers mod 5

    Hmm.Everyfifthremainderiszero,asweexpectedbuttheotherremaindersdontseemtofollowanice

    patternthistime.

    ordothey?Actually,ifyoustareatitlongenoughyoullprobablyfindsomepatternsthere!Nottomention

    thatIhaventreallyshownyouenoughofthesequence.Herearetheremaindersofthefirst41Fibonacci

    numberswhendividedby5:

    First 41 Fibonacci numbers mod 5

    Aha!Soitdo esrepeatafterall.Wejusthadntlookedfarenough.

    Andjustf orfun,lets includesomeFibonaccinumbersmod .Theserepeatmuchmorequicklythanfor .

    Fibonacci numbers mod 8

    OK,nowthatwevetriedsomespecificvaluesof ,letsthinkaboutthismoregenerally.Whenlistingthe

    remaindersoftheFibonaccinumbersdividedby ,theinitialpartofthelistwilllooklike

    becausealltheFibonaccinumbersbefore areofcourselessthan ,sowhenwedividethemby theyare

    simplytheirownremainder.Next,ofcourse, leavesaremainderofzerowhendividedbyitself.Thenwhat?

    Well, bydefinition,soitsremaindermod is .OK,sofarwehave

    Infact,theruleforfindingthenextremainderinthesequencewillbethesameastheruledefiningtheFibonacci

    numbers,exceptthatwedoeverythingmod .Sothenextelementinthesequenceis again:FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    7 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    18/224

    andnow,itseems,wearestuck!Whatdowegetwhenweadd ?Whoknows?

    HereiswhereIwilldosomethingsneaky.Iamgoingtoreplacethesecondcopyof by ,likethis:

    Huh!?Whatdoesthatevenmean?Surelywecanneveractuallygetanegativenumberasaremainderwhen

    dividingby .Well,thatstrue,butfromnowon,insteadofstrictlywritingtheremainderwhen isdividedby

    ,Illjustwritesomethingwhichis equivalentto modulo .Thisisallthatreallymatters,sinceIjustwant

    toseewhichpositionsareequivalenttozeromodulo .

    So,theclaimisthat .Whyisthat?Well, ,andthenwecan

    justsubtract frombothsides.

    Thenwhat? ;then ,andsoon:wegettheFibonacci

    numbersinreverse,withalternatingsigns!

    Forexample,herearethefirstfewFibonaccinumbersmod8again,butaccordingtotheabovepattern,with

    negativenumbersindicatedbydownwardspointingbars(andtheoriginalbarsshownmostlytransparent,for

    comparison):

    Seehowthecolorsofthebarsrepeatnow,butrunningforwardsthenbackwards?

    If iseven,then willbepositive(asyoucanseeintheexampleabove);thatis,weget

    Afterthispointweget ,andsoon,andthewholepatternrepeatsagain,asweveseen.

    Whatif isodd?Then willbenegative,sowehavetogothroughonemorecyclewitheverythingnegated:

    Thisexplainswhywehadtolookatalongerportionoftheremaindersmod5beforetheyrepeated.Heresmod

    5again,withnegativesshowngraphically:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    8 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    19/224

    Thecolorsofthebarsstillrepeat:forwards,thenbackwardsbutalternatingupanddown,thenforwardsbutall

    upsidedown,thenbackwardsandalternating(buttheotherway).Butattheendwerebackto ,sothewhole

    thingwillrepeatagain.

    Inanycase,whether isoddoreven,thesepatternsofremainderswillkeeprepeatingforever,witha always

    occurringevery positionsthatis,at ,so willalwaysbedivisibleby !

    Thereareotherwaystoprovethisaswell;perhapsIllexplainsomeoftheminafuturepost.Itturnsoutthat

    theconverseisalsotrue:if evenlydivides ,then mustevenlydivide .Idontknowaproofoffthetopof

    myhead,butmaybeyoucanfindone?

    Posted in fibonacci, modular arithmetic, number theory, pattern, pictures, proof, sequences | Tagged divisibility, fibonacci, proof, remainders | 5 Comments

    Nature by NumbersPosted on June 6, 2012

    Thishasbeenmakingtheroundsofthemathblogosphere(blathosphere?),butincaseyouhaventseenityet,

    checkoutCristbalVilasawesomeshortvideo, NaturebyNumbers.EspeciallyappropriategiventhatIhave

    beenwritingaboutFibonaccinumberslately(Illpostasolutionto thechallengesoon).

    Posted in fibonacci, golden ratio, links, video | Tagged fibonacci, nature, numbers, phi, v ideo | 1 Comment

    Fibonacci multiplesPosted on May 15, 2012

    Ihaventwrittenanythinghereinawhile,buthopetowritemoreregularlynowthatthesemesterisoverI

    haveaseriesoncombinatorialproofstofinishup,somebookstoreview,andafewotherthingsplanned.Butto

    easebackintothings,heresalittlepuzzleforyou.RecallthattheFibonaccinumbersaredefinedby

    .

    Canyoufigureoutawaytoprovethefollowingcutetheorem?

    If evenlydivides ,then evenlydivides .

    (Incidentally,theexistenceofthistheoremconstitutesgoodevidencethatthecorrectdefinitionof is ,not

    .)

    Forexample, evenlydivides ,andsureenough, evenlydivides . evenlydivides ,andsure

    enough, evenlydivides (inparticular,

    ).FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    9 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    20/224

    Iknowoftwodifferentwaystoproveit;thereareprobablymore!NeitheroftheproofsIknowisparticularly

    obvious,buttheydonotrequireanydifficultconcepts.

    Posted in arithmetic, challenges, f ibonacci, number theory, pattern | Tagged divisibility, fibonacci | 12 C omments

    Carnival of Mathematics 86

    Posted on May 8, 2012

    Welcometothe86th CarnivalofMathematics! issemiprime,nontotient,andnoncototient.Itisalsohappysince and .Infact,itisthe

    smallesthappy,nontotientsemiprime(theonlysmallerhappynontotientis68whichis,ofcourse,86in

    reversebut68isnotsemiprime).

    However,themostinterestingmathematicalfactabout86(inmyopinion)isthatitisthelargestknowninteger

    forwhichthedecimalexpansionof containsnozeros!Inparticular, .

    Althoughnoonehasprovedit isthelargestsuch ,every upto (whichisquitealot,althoughstill

    slightlylessthanthetotalnumberofintegers)hasbeencheckedtocontainatleastonezero.Theprobability

    thatanylargerpowerof2containsnozerosisvanishinglysmall,givensomereasonableassumptionsaboutthe

    distributionofdigitsinbase-tenexpansionsofpowersoftwo.

    Eighty-sixisalsoapparentlysomesortofslangterminAmericanEnglish,butitreallyhasnothingtodowith

    math,sowhocares?Onwardtothecarnival!Ihadalotoffunreadingallthesubmissions,andhavedecidedto

    organizethemsomewhatthematicallythoughtheydontalwaysfitperfectly,sodontassumeyouwontbe

    interestedinapostjustbecauseofmycategorization!

    Art

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    20 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    21/224

    ChristianPerfecthasstartedaseriesofpostsonthethemeofArtyMaths,withlinkstoartisticimagesand

    videoswithamathematicalbent.Aboveisacoolexample,somesortofstellatedpolyhedronmadeoutof money

    byKristiMalakoff(youcanfindmorehere).

    KatieStecklessubmittedalinktoRobbyIngebretsensblogpostFirstDigital3DRenderedFilm(from1972)and

    MyVisittoPixar.Katiesays,

    Thisispossiblytheearliestexampleofacomputeranimation,andoneofitstwocreators,Edwin

    Catmull,whowentontofoundPixar,iscreditedwithhavingwork[ed]out[the]mathtohandle

    thingsliketexturemapping,3Danti-aliasingandz-buffering.Fascinatingtothinkhehadtoinventall

    ofthatinordertodothis!

    Robbysblogpost(andtheextensivecommentsonit)givealotmorecontextandfascinatingdetails.And,of

    course,youcanwatchthevideoitself!

    MikeCroucherofWalkingRandomlywritesaboutsomecoolmathematically-themedstainedglasswindows,and

    wonderswhetheranyoneknows ofanyot hers.

    Statistics/dataanalysis

    ArthurCharpentierofFreakonometricswritesaboutNonconvexity,andplayingindoorpaintball:ifabunchofpeopleinanonconvexplayingareaareallholdingwaterpistolsandshootattheclosestperson,whodoesntget

    wet?

    KatieStecklessubmittedalinkto Data:itshowstoresknowyourepregnant ,anarticlebyMatthewLaneof

    MathGoesPop!Everwonderhowcompaniescanpredictvariousthingsaboutyou(suchaswhetheryouare

    pregnant!)basedonyourbrowsinghabitsandotherpubliclyavailabledata?Thisarticleexplainssomeofthe

    basicmathunderlyingthissortofdatamining.

    JohnCookofTheEndeavouranswersthequestion:Whatisrandomness?inRandomisasrandomdoes .Itturns

    outthatthebestanswermightjustbetoavoidansweringatall!

    Geometry

    AugustusVanDusenof thinkingmachineblogsubmittedaposttitledSuperellipse,saying

    IreadanarticleaboutSergelstorg,aplazainStockholm,beinganexampleofasuperellipse.WhenI

    lookedupsuperellipseonWolframmathworld,InoticedthattheareaformulainvolvedgammaFollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    21 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    22/224

    functions.Ithendecidedtoderivetheresultmyselftoseeifitcouldbesimplifiedandhowitwould

    reducetothefamiliarformulafortheareaofanellipse.

    FrederickKohofWhiteGroupMathematicssharesageometricsolutiontoanoptimizationproblem thatdoesnt

    initiallyseemlikeithasanythingtodowithgeometry.

    ZacharyAbelofThree-CorneredThings haswrittenaseriesofthreeexcursionsintothemiraculousand

    interconnectedworkingsofthehumbletriangle:ManyMorleyTriangles,SeveralSneakyCircles,andThree-

    CorneredDeltoids.ThesearesomeofmypersonalfavoritesfromthismonthsCarnival:chock-fullofsurprising

    mathematicsandbeautifulillustrationsandanimations!

    Teaching

    ColinWrightwritesTheTrapeziumConundrum:howshouldatrapezium(akatrapezoidifyourefromtheUS)

    bedefinedwithexactlyonepairofparallelsidesoratleastonepairofparallelsides?Moregenerally,howare

    definitionsarrivedatandagreedupon?Theanswermaydependontheaudience.

    KarenG.ofschoolaramamusesupontherelationshipbetweenlanguageandlearningplacevalueinherpost

    LookingtoAsia.

    OnherblogMathMamaWrites,SueVanHattumwritesabout LinearAlgebra:LeadingintotheEigenStuff.Sue

    says,Imteachinglinearalgebraforthefirsttimeinoveradecade.Thathasmeantrelearningitadelightful

    experience.

    PaulSalomonofLostInRecursionwritesExponentsandtheScaleoftheUniversea21stCenturymathlesson ,

    afunstoryabouthowaninitiallydrylessononexponentsturnedintoaremarkablelearningexperience.

    Fun

    AlistairBirdsubmittedalinktoEnormousIntegers,saying,

    Itsstillacommonenoughmisconceptionthatpuremathematicsresearchmustbeaboutlargerand

    largernumbers,butitsstillnicetosometimesplayuptothisstereotype,asJohnBaezsblogposton

    AzimuthaboutEnormousIntegersdoes.Commentsareworthalooktoo.

    PatBallewwritesonPatsBlogaboutPandigitalPrimes:exploringpandigitalprimesandfindingouthowhandy

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    22 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    23/224

    Computerprogrammingskillsmightbe.

    Quick,whatcomesnextintheseries ?Theanswer,asexplainedbySteven

    Landsburgonhisblog,TheBigQuestions,maysurpriseyou!(ThankstoKatieStecklesforthesubmission, via

    AlexandreBorovik.)

    PaulSalomonofLostInRecursiondisplaysTheLostinRecursionRecursion.Canyoufigureoutwhatsgoing

    onwithoutgettinglostintheTheLostinRecursionRecursionrecursion?

    StuffThatDidNotFitInAnyOtherCategoryButIsStillAwesome

    ColinBeveridgeofFlyingColoursMathssubmittedSecretsoftheMathematicalNinja:Thesurprisingintegration

    ruleyoudontgettaughtinschool ,andwrites,

    WhenIstumbledacrossthisrule,myreactionwaswhoa.Itsquick,itsextremelydirty,andits

    surprisinglyaccurate.Thekindofthingthemathematicalninjadreamsof.

    AndrewTaylorwritesaguestpost,ElectoralReformsandNon-TransitiveDice,onTheAperiodical,explaining

    WhyChoosingaVotingSystemisHardintermsofasetofnontransitivedice.

    PeterRowlett,of TravelsinaMathematicalWorld,opinesinhispost,Whatanicejobyouhave,thatapopular

    rankinglistingmathematicianasoneofthetoptenbestjobsshouldntjustbeacceptedandrepeated

    uncritically.

    InherarticleHowcultureshapedamathematician,CarolClarkgivesaglimpseintothelifeandbackgroundof

    mathematicianSkipGaribaldi.Shewrites:

    Mathematiciansseetheworlddifferentlythanme.Iinterviewedamathematiciantogetaglimpseof

    thatview,andlearnedhoweverythingfromfinearttopopularfilmsandbooksplayedaroleinshaping

    thatview.

    ThepreviousCarnivalofMathematicswashostedatTravelsinaMathematicalWorld;nextmonth,the87th

    CarnivalwillbehostedbyMr.Chaseat RandomWalks,sostartgettingyoursubmissionsreadynow!Forlistsof

    pastandfuturecarnivals,instructionsonsubmitting,andanswerstofrequentlyaskedquestions,seethe main

    CarnivalofMathematicssite.ThenextMathTeachersatPlaycarnivalisalsocomingupsoon,witha submissionFollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    23 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    24/224

    deadlineofthisFriday.

    Posted in links | Tagged Carnival of Mathematics | 3 C omments

    IllbehostingtheCarnivalofMathematics,andthesubmissiondeadlineiscomingupsoonTuesday,May1.Pleasesubmitsomething!Itcouldbe

    somethingyouwrote,orsomethingsomeoneelsewrotethatyouenjoyed.Allmathematicsrangingfromelementarytoadvancediswelcome.

    Posted on April 23, 2012

    Book review: In Pursuit of the Traveling SalesmanPosted on April 7, 2012

    Asmathematicalproblemsgo,thetravelingsalesmanproblem(TSP)is

    araregem:itissimultaneouslyofgreattheoretical,historical,and

    practicalinterest.Onthetheoreticalfront,itisawell-knownexampleof

    theclassofNP-completeproblems,whichlieattheheartofthe million-

    dollarPvsNPquestion(whichIstillintendtoexplainatsomepoint).

    Historically,ithasbeenstudiedforalmost200years(givenasufficientlyinclusivedefinitionofstudy),andhasoccupiedaplaceinthepublic

    consciousnessforatleastthelast50.Andthisgreathistoricalinterestis

    partlyduetotheproblemspracticalsignificance.

    So,whatisit?Givenasetofpointsintheplane(or,moregenerally,aset

    ofpointswithdistancesspecifiedsomehowbetweeneachpairof

    points),theproblemistodeterminethe shortestpathwhichvisitsevery

    pointexactlyonceandthenreturnstothestartinglocation.Ofcourse,in

    onesensethisiseasy:justlistallpossiblepathsandcomputethe

    lengthofeach.Note,however,thatforasetof points,thereare

    (thatis, )possiblepathsthatvisiteverypointonceandthenreturntothestart.Evenwithonly

    points,thatsawhopping possiblepathsifyoucouldcomputethelengthof

    onetrillionpathseverysecond,itwouldstilltake280millionmillenia(thats years,slightlylongerthan

    Ivebeenalive)tocheckallofthem!Andthatsonly pointsinpractice,peoplewanttosolvetheTSPforsets

    ofpointsmuchlargerthan .Sothepointisnotjusttosolvetheproblem;therealquestionis,canitbe

    solvedefficiently?

    Amazingly,nooneknows!Butthathasntstoppedpeoplefromcomingupwithextremelycleveralgorithmsthat

    seemtoworkwellinpractice,onverylargesetsofpoints( i.e.thousands,oreventensofthousandsof

    points)eventhoughtherearepathologicalinputsforwhichthesealgorithmsdoessentiallynobetterthan

    justtryingeverypath.SothesealgorithmsconstituteagoodsolutiontotheTSPf romapracticalpointofview

    butnotatheoreticalone!

    WilliamCooksnewbook,InPursuitoftheTravelingSalesman:MathematicsattheLimitsofComputation,doesa

    wonderfuljobpresentingthehistoryandsignificanceoftheTSPandanoverviewofcutting-edgeresearch.Itsa

    beautiful,visuallyrichbook,fullofcolorphotographsanddiagramsthatenlivenboththenarrativeand

    mathematicalpresentation.Anditincludesawealthofinformation(perhapsevenabit toomuchattimes;IgotFollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    24 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    25/224

    lostinafewplaces).Butitactuallybillsitself,partly,asanintroductiontocutting-edgeideasinTSP

    researchandIthinkoverallitsucceedsadmirably,explainingideasinwaysthatareaccessiblebutnot

    patronizing.Readthisbookifyouwantafun,beautifullyillustratedintroductionto(thisonefascinatingpiece

    of)theedgeofhumanknowledge!

    Posted in books, computation, geometry, open problems, review | Tagged book review, salesman, TSP. traveling | 6 Comments

    New Carnival of MathematicsPosted on April 5, 2012

    TheCarnivalofMathematicshasbeenrevived!AbigthankstoMikeCroucherofWalkingRandomlyfor

    organizingitforthepastfewyears,andto KatieSteckles,ChristianPerfect,andPeterRowlettfortakingover.

    Thelatestedition,carnival#85(wow,hasitreallybeengoingthatlong?)isnowupatPeterRowlettsblog,

    TravelsinaMathematicalWorld.Lotsofcoolstuffthere,sobesuretocheckitoutifyouhaventalready.

    IllbehostingCarnival#86here,so pleasesubmitsomething!ThedeadlineisMay1st,andIllpostthecarnival

    sometimetheweekafterthat.

    Posted in links, meta | Tagged Carnival of Mathematics

    Making our equation countPosted on March 3, 2012

    [Thisispost#4inaseries;previouspostscanbefoundhere: Differencesofpowersofconsecutiveintegers ,

    Differencesofpowersofconsecutiveintegers,partII ,Combinatorialproofs.]

    Werestilltryingtofindaproofoftheequation

    whichexpressesthef actthatacertainarithmeticprocedurealwaysseemstoresult,strangelyenough,inthe

    factorialof .LasttimeIintroducedtheideaofusingacombinatorialproof,andgaveasimpleexampleinvolving

    abinomialcoefficientidentity.

    Inorderforthisideatoyieldanyfruit,weneedawaytointerpretthevariouspiecesoftheequationas counting

    something.Letsgooverthepiecesonebyoneanddiscusssomewaystointerpretthemcombinatorially.

    Factorial,permutations,andmatchings

    Letsstartwiththeright-handside, .Thisoneisnottoohard: countsthenumberofpermutationsofobjects,thatis,thenumberofdifferentwaystotake distinctobjectsandarrangetheminanorderedlist.Why

    isthat?Well,thereare objectswecouldchoosetoputfirst;oncewevemadethatchoice,thereare

    remainingobjectswecouldchoosetogosecond;then choicesforthethirdobject,andsoon,foratotalof

    choices.Forexample,herearethe differentpermutationsofsize :

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    25 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    26/224

    However,theresanotherwaytothinkaboutpermutationswhichwillcomeinhandylater.Namely,wecanthink

    ofapermutationasamatchingbetweentwosetsofsize .Youknow,likethosepuzzlesthatgivetwo

    side-by-sidelistsandsaydrawalinematchingeachcartooncharacterwiththeirfavoritecheese!(or

    whatever).Likethis:

    Herewehaveamatchingbetweentwosetsofsize .Eachdotontheleftismatchedwithexactlyonedotonthe

    right,andviceversa.

    Whyarematchingsanotherwayofthinkingaboutpermutations?First,itsnottoohardtoseethattherearealso

    matchingsbetweentwosetsofsize :wehave possiblechoicesofwhattomatchthefirstelementwith;

    thenthereare choicesleftoverforwhattomatchthesecondelementwith,andsoon.

    Butwecanalsoseeacorrespondencebetweenpermutationsandmatchingsmoredirectly.Startbylabelingthe

    dotsontheleftofamatchingwithconsecutivenumbers:

    Now,imagineeachnumbertravelingalongthecorrespondingrededgeuntilitreachesthedotontheother

    side.Likethis:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    26 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    27/224

    Seehowthe traveleddownthesteepedgetoendupatthefourthdotfromthetop;the traveledacrossthe

    horizontaledgetostayinthesameposition;the traveleduptothetop;andsoon.

    Whatwegetoutisalistofthenumbersfrom16insomeorder;inthisexampleweget .Inother

    words,wecanviewamatchingasalittlephysicalmachinefortakingalistofobjectsandputtingtheminto

    someparticularorder.

    Hereareallthepermutationsofsize again,thistimevisualizedasmatchings.

    Now,atthispointIamverytemptedtogooffonatangentexploringgrouptheory,symmetrygroups,andall

    sortsofotherstuff,butIshallrestrainmyself(fornow!).

    Binomialcoefficients

    Anotherpieceoftheequationisthebinomialcoefficient .Butofcoursewealreadyknowwhatbinomial

    coefficientscount isthenumberofwaystochoose thingsoutof ,thatis,thenumberofsize- subsetsof

    asize- set.(Ialsotalkedaboutthislasttime .)

    ExponentiationandfunctionsWhatabout ?Whatdoesthatcount?Itturnsoutthatexponentiationcorrespondstocountingfunctions:in

    particular, isthenumberoffunctionsfromasetofsize toasetofsize .Whyisthat?Well,foreachofthe

    elementsofthedomain,wehave choicesforwhereafunctioncouldsendit,andeachofthesechoicesis

    independentsothetotalnumberofchoicesis .

    Forexample,hereareallofthe functionsfromasize- settoasize- set:

    Hmmmthislooksfamiliar!Notethatsomeofthesefunctionsarematchings,andsomearent.Perhapsyoure

    startingtogetaninklingnowwhyIintroducedtheideaofpermutationsasmatchings

    Allthepiecesarealmostinplacenow.TheonepieceoftheequationwestillhaventyettalkedaboutisthatFollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    27 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    28/224

    mysterious .Itcertainlydoesntmakesensetointerpretthatasthenumberoffunctionsfromasetofsize

    toasetofsizenegativeone,becauseofcoursethereisnosuchthingasasetwithanegativesize.Sohow

    canweinterpretitcombinatorially?TheanswerliesinsomethingcalledthePrinc ipleofInclusion-Exclusion(or

    PIEforshort),whichwillbethesubjectofmynextpost!

    Posted in combinatorics, pictures | Tagged binomial coefficients, combinatorics, functions, m atching, permutation | 3 Comments

    Combinatorial proofsPosted on February 17, 2012

    Continuingfromapreviouspost,wefoundthatifwebeginwith thpowersof consecutiveintegersand

    thenrepeatedlytakesuccessivedifferences,itseemslikewealwaysendupwiththefactorialof ,thatis,

    .Wethenderivedanalgebraicexpressionfortheresultoftheiterativedifferenceprocedure.So

    thegoalnowistoprovethat

    thatis,

    Now,itspossible(probable,infact)thatthiscanbeprovedbypurelyalgebraicmeans.Ifyoucomeupwith

    suchaproofIwouldlovetoseeit!ButImustconfessthatIspentseveralhoursbangingmyheadagainstit

    (algebraicallyspeaking)withoutmakinganyprogress.EventuallyIturnedtotheideaofacombinatorialproof.

    WhatdoImeanbythat? Combinatoricsisthesubfieldofmathematicsconcernedwith counting.Theessenceofa

    combinatorialproofistoshowthattwodifferentexpressionsarejusttwodifferentwaysofcountingthesame

    setofobjectsandmustthereforebeequal.Ive describedsomecombinatorialproofsbefore,incountingthe

    numberofwaystodistributecookies.

    Asanothersimpleexample,considerthebinomialcoefficient identity

    Itscertainlypossibletoprovethisalgebraically,byexpandingoutthebinomialcoefficients(using ),

    butwecangiveamoreelegantproof,basedonthefactthat isthenumberofwaystochooseasubsetof

    thingsoutofasetof things.Forexample,herearethe waystochoosethreethingsoutasetoffive:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    28 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    29/224

    Considerthefirstelementofthesize- set.Everysubsetofsize eitherincludesthisfirstelement,oritdoesnt.

    Thenumberofsize- subsetswhichdonotincludethefirstelementis ,sincethatsthenumberofwaystochoose thingsfromtheremaining elements.Thenumberofsize- subsetswhichdoincludethefirst

    elementis ,becausetheycorrespondtochoosing oftheremaining things.Therefore

    .

    Heresanillustrationofhowthisworksintheparticularcasewhen and :

    Noticehowthetensubsetsfromabovehavebeensplitintotwogroups:thefirstgroup,ontheleft,arethose

    thatdontincludethefirstelement;youcanseethateachofthemcorrespondstooneofthe size- subsets

    oftheremainingfourelements.Thesecondgroup,ontheright,arethosethatdoincludethefirstelement;each

    correspondstooneofthe size- subsetsoftheremainingfourelements.

    Sothatstheideaofacombinatorialproof.Andwewanttodosomethingsimilarfortheidentitywearetrying

    toprovealthough,ofcourse,itsgoingtobeabitmoredifficult!

    Youmighthavefuntryingtothinkaboutwhatacombinatorialproofof ourtargetequationmightlooklike;

    althoughifyoudonthavemuchexperiencewithcombinatoricsyoumayhavetroublecomingupwithwhatsorts

    ofthingsthetwosidesoftheequationmightbecounting!ThatswhatIlltalkaboutinmynextpost.

    Posted in combinatorics, pictures, proof | Tagged binomial coefficients, combinatorial proof, identity | 12 Comm ents

    Differences of powers of consecutive integers, part IIPosted on February 16, 2012

    Ifyouspentsometimeplayingaroundwiththeprocedurefrom Differencesofpowersofconsecutiveintegers

    (namely,raise consecutiveintegerstothe thpower,andrepeatedlytakepairwisedifferencesuntilreaching

    asinglenumber)youprobablynoticedthecuriousfactthatitalwaysseemstoresultinafactorialinthe

    factorialof ,tobeprecise.

    Forexample:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    29 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    30/224

    Severalcommentersfiguredthisoutaswell.Doesthisalwayshappen?Ifso,canweproveit?

    Letsstartbythinkingaboutwhathappenswhenwedothesuccessive-differencingprocedure.Ifwestartwith

    thelist ,thenweget .(Iwanttokeepthelettersinorder,whichiswhyIwrote insteadof .

    Insteadofsubtractingthefirstvaluefromthesecond,wecanthinkofitasaddingthenegationofthefirstvalue

    tothesecond.)Ifwestartwith ,weget

    .

    (Thenegationof is ;addingthisto yields .)From weget

    Doyouseeanypatternsyet?Letsdoonemore.Fromtheabovecalculationwecanalreadyseethatdoingfour

    iterationson willresultin (doyouseewhy?).Doingonefinaliteration

    givesus

    .

    Hmm.Letsmakeatable.

    Result

    1

    2

    3

    4

    5

    Iincludedonemorerow(whichyoucanverifyifyoulike).Nowdoyouseeapattern?Thecoefficientsseemto

    betakenfromPascalstriangle,butwithalternatingsigns!

    Infact,itsactuallynottoohardtoseewhythishappens.Ateachstepwetaketwooffsetcopiesoftheprevious

    row(by"of fset"I meanthatthelettersareshif tedbyone,like and )andaddthenegationof

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    30 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    31/224

    thefirsttothesecond.Sincethesignsarealternating,wereallyendup addingabsolutevaluesofthe

    coefficients.Probablythebestwaytoreallyseethisisthroughanexample:

    Noticehowweflipallthesignsinthefirstrow,sothattheymatchthesignsinthesecondrow.Butthisis

    exactlyhowPascalstriangleisgeneratedeachrowisthesumofthepreviousrowwithitself,offsetbyone.

    Now,intherealproblem,wedontstartwith ,butwiththe thpowersof consecutiveintegers.

    Letscallthefirstinteger ,sothesequenceofconsecutiveintegersis .Giventhis,wecan

    nowwritedownanexpressionforwhatweendupwithafterdoingtheiterateddifferenceprocedure:

    Letsbreakthisdownabit.Weknowthatwegetasumof terms;thatsthe part(youcanreadmore

    aboutsigmanotationhere ).Welluse toindextheterms.Wealsoknowthatthetermsalternatesign,sowe

    needtoinclude raisedtosomepowerinvolving ;thelasttermisalwayspositive,soweuse ,whichis

    equalto when .Thebinomialcoefficient givesusthe thentryonthe throwofPascalstriangle.Finally,ofcourse, isthe thpowerofoneoftheintegerswestartedwith.

    Theclaim,therefore,isthat

    AndIwillproveittoyou,withprettypictures,aspromised!

    Posted in arithmetic, iteration, pascal's triangle | Tagged binomial coefficients, consecutive, difference, integers, powers | 3 Comments

    1717 4-coloring with no monochromatic rectanglesPosted on February 9, 2012

    Quick,whatsspecialaboutthefollowingpicture?

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    31 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    32/224

    AsjustannouncedbyBillGasarch,thisisa gridwhichhasbeenfour-colored(thatis,eachpointinthe

    gridhasbeenassignedoneoffourcolors)insuchawaythatthereareno monochromaticrectangles,thatis,no

    fourgridpointsformingthecornersofanaxis-alignedrectangleareallofthesamecolor.Forexample,ifwe

    changethetop-leftgridpointtored,wecanseeseveralmonochromaticrectanglespopup:

    OrheresanotherversionwhereIrandomlypickedagridpointinthemiddle,changeditscolor,andsureenough,

    moremonochromaticrectanglesresult:

    Asyoucantryverifyingforyourself(andasIalsoverifiedusingacomputerprogram),therearenosuchmonochromaticrectanglesinthefour-coloringatthetopofthispost!(Ifyouwanttoplaywiththefour-coloring

    yourself,hereitisinasimpledataformat.)

    Forseveralyearsnooneknewifthiswaspossible,andBillhadofferedaprizeof$289(thats ,ofcourse)to

    anyonewhocouldfindsuchafour-coloring.TheprizewillbecollectedbyBerndSteinbachandChristian

    Posthoffyoucanfindmoredetailsin Billspost.Nooneyetknowsexactlyhowtheyfoundtheirfour-coloring,FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    32 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    33/224

    butapparentlytheywillbepresentingapaperaboutitinMay.Illtrytowritemoreaboutitthen(ifI

    understanditatall)!

    Ifyoureinterestedinreadingmoreaboutthehistoryandmathbehindthisproblem(andtogetsomeintuition

    forwhyitisdifficult),takealookatthesepostsbyBrianHayesonhisblog,bit-player: The1717challengeand

    17x17:Anonprogressreport.IalsorememberseeingHeresafuninteractiveappletwhereyoucanplayaround

    withtheproblem,createdbyMartinSchweitzer.

    Posted in open problems, pattern, people, pictures | T agged 17x17, four-coloring, graph, grid, monochromatic, rectangles | 5 Comments

    Book review: Nine Algorithms that Changed the FuturePosted on February 4, 2012

    NineAlgorithmsthatChangedtheFuture:theIngeniousIdeasthatDriveTodays

    Computers,byJohnMacCormick.PrincetonUniversityPress,2012.

    Imoftenwaryofbookswrittenforgeneralaudiencesontechnicaltopics.Itsquite

    difficulttowriteinawaythatisbothaccessibletoawideaudienceandtechnically

    accurate.Manysuchbooksendupsacrificingaccuracyinthenameofaccessibility,

    tryingtoconveyjusttheintuitionorgeneralsenseofsometopic,butoftenend

    upgivingpeoplethewrongideainstead.

    Iwasquitehappytofind,therefore,thatJohnMacCormicknailsit:9Algorithms

    thatChangedtheFutureistechnicallyrightonthemoney,butmanagestoexplain

    thingsinwaysthatarebothunderstandableandfun.Wanttounderstandhow

    Googlerankssearchresults?OrhowAmazonmanagestoneverloseormessupyourorderinformation,even

    thoughtheygethundredsofthousandsoforderseachdayand(asweallknow)networksandharddrivesare

    unreliable?Everwonderhowyoucanordersomethingovertheinternetwithoutyourcreditcardnumberbeing

    stolen?Orhowzipisabletomakeyourfilessmaller,seeminglybymagic?Evenifyouhaveneverwondered

    aboutthesethings,perhapsIhavemadeyouwonderaboutthemjustnow.Andthatsexactlythepointofthis

    book:therearequiteafewingeniousalgorithmicideasthatmostofusrelyon everydaythatwerarelyor

    neverevenstoptowonderabout.

    Forexample,Iactuallylearnedsomethingnew:Iknewaboutpublic-keycryptographybuthadneverreally

    knownmuchaboutDiffie-Hellmankeyexchange,whichiswhatallowsyourwebbrowsertotalkto,say,

    Amazonsserverssecurelyeventhoughtheyhavenevercommunicatedbefore.Its likehavingasecret

    conversationincodewithapen-palwhomyouvenevermet,eventhoughlotsofpeoplearereadingyourmail.

    Howcanyoueveragreeonasecretcodeinthefirstplacewithoutthepeoplereadingyourmailfindingout(and

    hencebeingabletoreadallyoursubsequentcodedmessages)?Soundsimpossible,doesntit?Butitturnsout

    thatitispossible,withsomecleverideas,whichMacCormickskillfullyexplainsusingafunmetaphorabout

    mixingcolorsofpaint.

    Eachchapterstartsoutverysimply,graduallybuildingupmorecomplexexamplesuntilyoureachafull

    understandingofthealgorithmbeingexplained.AlongthewayMacCormickintroducesthetrickstheclever,FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    33 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    34/224

    centralideasthatmakeeachalgorithmwork.Thewritingisexcellent:clear,precise,andfun.Ihighly

    recommendthisbooktoanyonecuriousabouttheingeniousmathematicalandalgorithmicideasunderlying

    someoftodaysmostubiquitoustechnology.

    Posted in books, computation, review | Tagged algorithms, history, J ohn MacCormick

    Computing with decadic numbersPosted on January 30, 2012

    [Thisistheninth,and,Ithink,finalinaseriesofpostsonthe decadicnumbers(previousposts:Acuriosity,An

    invitationtoafunnynumbersystem ,Whatdoes"closeto"mean?,Thedecadicmetric,Infinitedecadicnumbers,

    Morefunwithinfinitedecadicnumbers,Aself-squarenumber,u-tube).]

    Inapreviouspost,wefoundadecadicnumber

    withthecuriouspropertythatitisitsownsquare,eventhoughitisobviouslynotzeroorone.Wethenderiveda

    moreefficientalgorithmforgeneratingthedigitsof .HeressomeHaskellcode(explainedinthepreviouspost)

    whichimplementsthemoreefficientalgorithm,whichIincludeherejustsothatthispostwillbeavalidliterate

    Haskellfileinitsentirety.

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    34 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    35/224

    > {-# LANGUAGE TypeSynonymInstances

    > , FlexibleInstances

    > #-}

    >

    > module Decadic2 where

    >

    > import Control.Monad.State

    >

    > -- State for incrementally constructing u_n.

    > -- Invariant: curT = 10^n; un^2 = pn*curT + un

    > data UState = UState { pn :: Integer

    > , un :: Integer

    > , curT :: Integer

    > }

    > deriving Show

    >

    > -- u_1 = 5; 5^2 = 25 = 2*10 + 5

    > initUState = UState 2 5 10

    >

    > uStep :: State UState Int

    > uStep =do

    > u p t

    > let d = p `mod` 10 -- next digit

    > u' = d * t + u -- prepend the next digit to u

    > p' =(p + 2*d*u + d*d*t) `div` 10 -- see above proof

    >

    > put (UState p' u' (10*t))-- record the new values

    >

    > return $ fromInteger d -- return the new digit

    >

    > type Decadic =[Int]

    >

    > u :: Decadic> u = 5 : evalState (sequence $ repeat uStep) initUState

    Toroundthingsout,Idliketoshowoffsomeofthecoolthingswecandowiththis.First, asweknow,its

    possibletodoarithmeticwithdecadicnumbers.Soletsimplementit!

    Additionofdecadicnumbersisdonejustlikeadditionoftheusualdecimalnumbers:weaddcorresponding

    places(i.e.,lineupthenumbersoneundertheotherandthenaddincolumns).

    > plus :: Decadic -> Decadic -> Decadic

    First,wehavespecialcasesforzero,representedbytheemptylistofdigits:inthosecaseswejustreturnthe

    othernumberunchanged.

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    35 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    36/224

    > plus [] n2 = n2

    > plus n1 [] = n1

    Next,toaddadecadicnumberwhosefirstdigitisxtoadecadicnumberwhosefirstdigitis y,wejustaddxandy

    andthencontinueaddingrecursively.

    > plus (x:xs)(y:ys)=(x+y) : plus xs ys

    Ofcourse,werenotdone:thisdoesntdoanycarrying.Insteadofmodifyingour plusfunctiontodocarrying,we

    justwriteafunctionnormalizewhichmakessureeveryplaceinadecadicnumberisbetween and ;itwillcome

    inhandyformorethanjustaddition.

    > normalize :: Decadic -> Decadic

    Thenormalizefunctionsimplycallsarecursivehelperfunctionnormalize'whichkeepstrackofthecurrent"carry".

    Thestartingcarry,ofcourse,iszero.

    > normalize = normalize' 0

    Tonormalizezero(theemptylist)whenthecurrentcarryiszero,justreturntheemptylist.

    > where normalize' 0 [] = []

    Withanonzerocarryandtheemptylist,wesimplyextendthelistwithaspecialzerodigitandcontinue

    normalizing.

    > normalize' carry [] = normalize' carry [0]

    Inthegeneralcase,weaddthecurrentcarrytothenextdigitx,andcomputethequotientandremainderwhen

    dividingthissumbyten.Theremainderisthenextdigitd,andthequotientisthenewcarrywhichgetspassed

    alongrecursively.

    > normalize' carry (x:xs)= d : normalize' carry' xs

    > where(carry', d)=(carry + x) `divMod` 10

    Andnowformultiplication,whichisbasedontheobservationthatzerotimesanythingiszero,andinthe

    generalcaseFollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    36 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    37/224

    .

    > mul :: Decadic -> Decadic -> Decadic

    > mul [] _= []

    > mul _ [] = []

    > mul (x:xs)(y:ys)= x*y : (map (x*) ys + (xs * (y:ys)))

    Finally,wedeclareDecadictobeaninstanceofthe Numclass,whichallowsustousedecadicnumbersinthesame

    waysthatwecanuseothernumerictypes:

    > instance Num Decadic where

    Toaddormultiplydecadicnumbers,usetheplusandmulfunctionsandthennormalize.

    > n1 + n2 = normalize (plus n1 n2)

    > n1 * n2 = normalize (mul n1 n2)

    Tonegateadecadicnumber,subtractthelastdigitfrom10andtherestofthedigitsfrom9.

    > negate [] = []

    > negate (x:xs)= normalize $ (10-x) : negate' xs

    > where negate' [] = repeat 9

    > negate' (x:xs)=(9-x) : negate' xs

    Finally,toconvertanintegerintoadecadicnumber,puttheintegerintoalistofoneelementand normalize.

    > fromInteger = normalize . (:[]) . fromInteger

    So,letstryit!Wellwantawaytodisplaydecadicnumbers:

    > showDecadic :: Decadic -> IO ()

    > showDecadic d = putStrLn . dots $ digits

    > where d' = take 31 d

    > dots | length d' | otherwise =("..." ++)

    > digits = concat . reverse . map show . take 30 $ d'

    Normaldecimalintegerscanalsobeusedasdecadicnumbers:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    37 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    38/224

    *Decadic2> showDecadic 7

    7

    Heres :

    *Decadic2> showDecadic u

    ...106619977392256259918212890625

    Andheres ;ithadbetterbethesameas !

    *Decadic2> showDecadic (u^2)

    ...106619977392256259918212890625

    Well,lookslikeitsthesameforthefirst30digitsatleast!Wecanalsocompute .Remember,if then

    ,so shouldbeanotherself-squarenumber.Rememberhowwethoughttheremightbeaself-squarenumberendingin ?Well,thisisit!

    *Decadic2> showDecadic (1-u)

    ...893380022607743740081787109376

    *Decadic2> showDecadic ((1-u)^2)

    ...893380022607743740081787109376

    Finally,wecancheckthat :

    *Decadic2> showDecadic (u * (1-u))

    ...000000000000000000000000000000

    Ifyourecall,thisisinsomesensethefundamentalreasonwhythedecadicnumbersactsofunny,becauseithas

    zerodivisors:pairsofnumbers(like and ),neitherofwhichiszero,whoseproductisnonethelesszero.

    Now,ifyouremember,fromevenfurtherback,whatgotusintothiswholedecadicmessinthefirstplace:

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    38 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    39/224

    Inthatfirstpost,Isaid

    ImanagedtoextendthispatternforafewmoredigitsbeforeIgotbored.Doesitcontinueforeveror

    doesiteventuallystop?Isthereanydeepermathematicalexplanationlurkingbehindthissupposed

    curiosity?Whatssospecialabout ?Dopatternslikethisexistforotherfunctions?

    Well,bythispointIhopeitsclearthatthereisindeedadeepermathematicalexplanationlurking!Theequation

    admitsthesolutions and ,butdoesitadmitanyotherdecadicsolutions?Noticethatgiven

    ,whichhas and assolutions,then (and )arealsosolutions:

    .

    Sointhiscaseweget

    asasolution(theothersolutionisnotadecadicinteger).

    Toimplementit,weneedawaytohalvedecadicnumbers(Illletyouworkoutwhatsgoingonhere):

    > halve :: Decadic -> Decadic

    > halve [] = []

    > halve t@(s:_)

    > | odd s = error "foo"

    > | otherwise = halve' t

    > where

    > halve' [] = []

    > halve' [x]=[x `div` 2]

    > halve' (x:x':xs)=(x `div` 2 + adj) : halve' (x':xs)

    > where adj | odd x' = 5

    > | otherwise = 0

    Andnowwecandefine

    > q = halve (3*u - 1)

    *Decadic2> showDecadic q

    ...159929966088384389877319335937

    *Decadic2> showDecadic (2*q^2 - 1)

    ...159929966088384389877319335937

    Woohoo!Thisclearlyshowsthatthepatterndoes,infact,continueforever.Italsoshowsusthat is

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    39 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    40/224

    notparticularlyspecial:anyquadraticfunctionthatfactorsas ,attheveryleast,willleadtoapattern

    likethis,andprobablylotsofotherequationsdotoo.

    Ifyoureinterestedinreadingmore,hereswhereIgotsomeofmyinformation .Forexample,youcanread

    abouthowthereisanothernumber ,definedbystartingwith anditerativelyraising

    tothefifthpower(justaswedefined bystartingwith andsuccessivelysquaring),suchthat .Iteven

    seemsthattheauthorofthatpage,GrardMichon,hasrecentlyaddedadiscussionofthisveryproblem,promptedbymyblogposts!Isnttheinternetgreat?

    Posted in arithmetic, programming | Tagged computing, decadic, numbers | 2 Comments

    Differences of powers of consecutive integersPosted on January 29, 2012

    PatrickVennebushofMathJokes4MathyFolks recentlywroteaboutthefollowingprocedurethatyields

    surprisingresults.Choosesomepositiveinteger .Now,startingwith consecutiveintegers,raiseeach

    integertothe thpower.Thentakepairwisedifferencesbysubtractingthefirstnumberfromthesecond,the

    secondfromthethird,andsoon,resultinginalistofonly numbers.Dothesamethingagain,resultinginnumbers,andrepeatuntilyouareleftwithasinglenumber.

    Forexample,supposewechoose ,andstartwiththefiveconsecutiveintegers .Weraisethem

    alltothefourthpower,givingus

    Nowwetakepairwisedifferences: ,then ,andsoon,andwegetthe

    newlist

    Repeatingthedifferenceproceduregives

    OK,soweget .Sowhat?

    Well,ifyoutryenoughexamples,youmaynoticeasurprisingpattern.Illletyouplaywithitforawhile.Over

    thecourseofafewfuturepostsIllexplainthepatternandprovethatitalwaysholdsbuttheproofwillbea

    reallycoolcombinatorialone,withprettypictures!

    Posted in arithmetic, pattern | Tagged consecutive, difference, integers, powers, surprising | 16 Comments

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    40 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    41/224

  • 7/30/2019 Maths Less Travelled

    42/224

  • 7/30/2019 Maths Less Travelled

    43/224

  • 7/30/2019 Maths Less Travelled

    44/224

    > uStep :: State UState Int

    > uStep =do

    > u p t

    > let d = p `mod` 10 -- next digit

    > u' = d * t + u -- prepend the next digit to u

    > p' =(p + 2*d*u + d*d*t) `div` 10 -- see above proof

    >

    > put (UState p' u' (10*t))-- record the new values

    >

    > return $ fromInteger d -- return the new digit

    So,didwegainanything?Asaconcretecomparison,letsseehowlongittakestocompute .Usingourfirst,

    simplecode,ittakes7.2seconds:

    *Decadic> :set +s

    *Decadic> length . show $ us !! 1000010001

    (7.23 secs, 208746872 bytes)

    (Ijusthaditprintthe numberofdigitsof toavoidwastingatonofspaceprintingouttheentirenumber.)

    Andusingournewandhopef ullyimprovedcode?

    *Decadic> length . show . un . flip execState initUState

    $ replicateM_ 10000 uStep

    10001

    (1.55 secs, 225857080 bytes)

    Only1.5seconds!Nice!

    TheothernicethingaboutuStepisthatitspitsoutonedigitof atatime,whichwecanusetodefine asan

    (infinite)listofdigitsasifthedigitswerecomingoneatatimedowna"tube",a -tube,onemightsaygetit,

    a tubehehnevermind.

    > type TenAdic =[Int]

    >

    > u :: TenAdic

    > u = 5 : evalState (sequence $ repeat uStep) initUState

    *Decadic> reverse $ take 20 u

    [9,2,2,5,6,2,5,9,9,1,8,2,1,2,8,9,0,6,2,5]

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    44 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    45/224

    Nifty!Nexttimetherealfunbegins,asIshowoffsomecoolthingswecandowithourshinynew

    implementationof .

    Posted in computation, c onvergence, infinity, iteration, modular arithmetic, number theory, programming | Tagged decadic, Haskell, idempotent, streaming, u | 2

    Comments

    Herbert Wilf: 13 June 1931 7 January 2012Posted on January 9, 2012

    Iwassadtolearnthat HerbertWilfdiedyesterday.Long-timereadersofthisblogmayrememberhimasoneof

    thediscoverersofthe Calkin-Wilftree,whichIwroteaboutinaten-partseriesofposts( 1,2,3,4,5,6,7,8,9,

    10).

    The Calkin-Wilf Tree

    Healsowrotegeneratingfunctionology,atextbookaboutgeneratingfunctions,atopicnearanddeartomyheart

    (whichIhopetowriteaboutheresomeday).

    AlthoughhewasanemeritusprofessorattheUniversityofPennsylvania(whereIamcurrentlydoingmyPhD)I

    sadlynevergotachancetomeethim.

    Posted in people | Tagged Herbert Wilf | 1 Comment

    A self-square numberPosted on January 4, 2012

    [Thisistheseventhinaseriesofpostsonthedecadicnumbers(previousposts:Acuriosity,Aninvitationtoa

    funnynumbersystem,Whatdoes"closeto"mean?,Thedecadicmetric,Infinitedecadicnumbers,Morefunwith

    infinitedecadicnumbers).Iknowit'sbeenawhilesinceI'vewrittenonthistopic,soifyou'vebeenfollowing

    along,youmightwanttogobackandrefreshyourmemory.]

    Finally,aspromised,Icanshowyouthestrangenumber uwhichisitsownsquare(butwhich isntzeroorone!).Upuntilnowallthedecadicnumbersweveconsideredhavebeenequivalenttofamiliarrationalnumbers,but

    zeroandonearetheonlyrationalnumberswhicharetheirownsquare;clearlyumustbesomethingquite

    different!

    Assumingthatsuchaucouldexistandassumingitsadecadicinteger,thatis,hasnodigitstotherightofthe

    decimalpointletsthinkforaminuteaboutwhat ucouldpossiblybe.Forexample,whatcouldits lastdigitbe?FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    45 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    46/224

  • 7/30/2019 Maths Less Travelled

    47/224

    Areyouseeingapattern?Letsmakeatableoftheresultssofar:

    1 5 25

    2 25 625

    3 625 390625

    4 0625 390625

    5 90625 8212890625

    WhydidIputsomenumbersinbold?Well,hopefullyyouvenoticedbynowthateachnumberintheleft-hand

    columnalwaysseemstobeasuffixofthesquareofthepreviousnumber.Soperhapsthenextdigitwillbe8?

    Sureenough, endsin .

    Willthisalwayswork?Yes,infact,itwill,andhereswhy.Letslet denotethelast digitsof (so ,

    ,andsoon).Oncewehavefound ,wecansetupamodularequationtofindthenextdigit(thisisjustageneralizationofwhatwedidearlier):

    Now, isclearlydivisibleby sot hattermgoesaway.Butwhatabout ?Itseemsthatweonly

    knowitisdivisibleby ,notnecessarilyby .Ah,butwait!Weknowthat endswith ,andhenceis

    divisibleby ;combiningthiswiththe givesusanotherfactorof !Sothistermgoesawaytoo,andweareleft

    with

    No w, (bydefinition),sosubtracting fromb othsidesleavesamultipleo f intheplaceof

    (namely, withtherightmost digitssettozero).Butwecanalsogetridofallthedigitstotheleftofthe

    stbecauseweareworkingmod .Dividingby wefindthat mustbeequaltothat stdigitof

    .

    Soherestheprocedure:startingwith ,define

    Thatis,squarethecurrentnumberoflength andtakethelast digitstogetthenextnumber.Theaboveproofshowsthat

    Ateverystepwewillhaveanumber whosesquareendswiththedigitsof ;

    thisprocedurewillalwayswork;and

    thisproceduregivestheuniquesequenceof withthispropertywhenstartingwith !

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    47 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    48/224

    Sowehave

    andsoon.

    Sowhatis ?Itissimplythelimitofcarryingoutthisproceduretoinfinity!

    Weknowthatanysuffixof ,whensquared,yieldssomethingendingwithitself.Soitmakessense(althoughit

    takesabitofimagination!)thatsquaring itselfyields again.

    Posted in arithmetic, infinity, iteration, modular arithmetic, proof | Tagged decadic, idempotent, self, square | 12 Comments

    Four-figure offerPosted on December 1, 2011

    Thisjustarrivedinmyinbox:

    MynameisBeckyRaymond,ImaDomainBrokerageConsultantworkingonbehalfoftheownerof

    traveled.comtosellthispremiumasset.

    WhilesearchingonlineIcameacrossyourdomainmathlesstraveled.com;sincebothdomainshave

    listingsunderarelatedkeywordIthoughtperhapsyourcompanymaybeinterestedinacquiring

    traveled.com?Ifthisdomainisofinteresttoyou,pleasesubmitanofferinthefourfigurerangeand

    abovetoqualifyasapotentialbuyer.

    Surething,Becky!Hereismyfour-figureoffer:

    Fig. 1. A graph of the first 1000 hyperbinary numbers.

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    48 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    49/224

    Fig 2. Hasse diagram for the subsets of a five-element set.

    Fig. 3: Proof that .

    Fig. 4: Complete set of 15-bracelets.

    Ihopeyouwillagreethatthisisaveryfinesetoffigures.Icouldprobablyaddacouplemorefigurestomyoffer

    ifthatbecomesnecessary.

    Ilookforwardtobeingtheproudowneroftraveled.com,theplacetogoforallyourmathematicaltravelneeds!

    Posted in humor, meta | Tagged domain, four figure, offer | 7 Comments

    Sigmas and sums of squaresPosted on November 29, 2011

    CommenterRachelrecentlyasked,

    FollowFollow

    F o l l o w T h e M a t h L e s s

    F o l l o w T h e M a t h L e s s

    T r a v e l e d

    T r a v e l e d

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    G e t e v e r y n e w p o s t d e l i v e r e d t o

    The Math Less Traveled | Explorations in mathema... http://mathlesstraveled.c

    49 of 224 10/16/12 1

  • 7/30/2019 Maths Less Travelled

    50/224

    Howwouldyoufindthesumof ?

    Seehereforanexplanationofsigmanotationinthiscaseitdenotesthesum

    Ofcourse,foranyparticularvalueof wecanjustpluginvaluesanddoabunchofadding.ButIinterpretRachelsquestiontomeancanwefindanalgebraicexpressionintermsof whichletsuscomputethesum

    morequicklythanactuallyaddingtheindividualterms?

    Letstry!

    First,weobservethat

    Why?Ifyouthinkaboutitabit,youcanseethatthesametermsshowupontheleftandtheright,justinadifferentorder:theleftsideis whereastherightsideis .

    Sinceadditionisassociative( )andcommutative( )theseareequal.

    Next,weobservethat

    ,

    thatis, .Thisisbecausemultiplicationdistributesoveraddition.

    So,wehave .

    isjust copiesof ,soitisequalto .Ivewrittenbeforeabout ;itisequalto .Sofar,we

    have

    .

    Whataboutthatpesky ?Canitbesimplifiedatall?

    Itcan,andIknowofafewdifferentwaystofigureitout.Illshowyouone