maths paper-1 & 2(xyz)

20
7/30/2019 Maths Paper-1 & 2(Xyz) http://slidepdf.com/reader/full/maths-paper-1-2xyz 1/20 XIII RT-2 [Paper-I] Page # 1 MATHEMATICS PART-A [SINGLE CORRECT CHOICE TYPE] Q.1 to Q.20 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct. [20 × 3= 60] Q.1 Which one of the following limit does not have value unity ? (A) x sin ) x (tan sin Lim 0 x (B) x cos ) x (cos sin Lim 2 x (C) x x 1 x 1 Lim 0 x (D*) 2 x 1 0 x x x sin Lim        [Sol. (A) x sin ) x (tan sin Lim 0 x         0 0 = x x x sin x tan x tan ) x sin(tan Lim 0 x               = x x tan Lim 0 x = 1. (B) x cos ) x (cos sin Lim 2 x         0 0 ; Put x = h 2 , = h sin ) h sin(sin Lim 0 h = 1. (C) x x 1 x 1 Lim 0 x         0 0 (Rationalise) = ) x 1 x 1 ( x ) x 1 ( ) x 1 ( Lim 0 x = 2 2 = 1. (D) 2 x 1 0 x x x sin Lim        (1 ) = e L , where L = 2 0 x x 1 1 x x sin Lim        = 3 0 x x x x sin Lim = 3 5 3 0 x x x ....... ! 5 x ! 3 x x Lim        = 6 1 . Ans.] Q.2 If the solutions of the equation x 2 + px + q = 0 are the cubes of the solutions of the equation x 2 + mx + n = 0, then (A) m 3   – 3mn + p = 0 (B) m 3 + 3mn + p = 0 (C*) m 3   – 3mn  – p = 0 (D) m 3 + 3mn  – p = 0 [Sol. Given, x 2 + mx + n = 0 ; x 2 + px + q = 0 3 3 3 + 3 =  – p ; 3   3 = q and + =  – m ; = n Now, ( + ) 3   – 3 ( + ) =  – p   – m 3   – 3n (  – m) =  – p   – m 3 + 3mn =  – p m 3   – 3mn  – p = 0. Ans.] Q.3 In an arithmetic progression, if S n = n(5 + 3n) and t n = 32, then the value of n is [Note : S n and t n denote the sum of first n terms and n th term of arithmetic progression respectively.] (A) 4 (B*) 5 (C) 6 (D) 7 [Sol. We have, t n = S n   – S n  – 1 = n (3n + 5)  – (n  – 1) (3n + 2) = 6n + 2 = 32 (Given) n = 5. Ans.] Q.4 If , are the roots of equation x 2 + x  – 2 = 0, then the value of  2 2 4 4 4 4 ) 1 ( ) 1 ( is equal to (A) 2 (B)  – 2 (C) 4 (D*)  – 4

Upload: vishal110085

Post on 14-Apr-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 1/20

XIII RT-2 [Paper-I] Page # 1

MATHEMATICS

PART-A

[SINGLE CORRECT CHOICE TYPE]

Q.1 to Q.20 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct. [20 × 3= 60]

Q.1 Which one of the following limit does not have value unity ?

(A)xsin

)x(tansinLim

0x(B)

xcos

)x(cossinLim

2x

(C)x

x1x1Lim

0x

(D*)2x

1

0x x

xsinLim

 

  

 

[Sol. (A)xsin

)x(tansinLim

0x 

 

  

 0

0=

xx

xsin

xtanxtan

)xsin(tan

Lim0x

 

  

 

  

  

=

x

xtanLim

0x = 1.

(B)xcos

)x(cossinLim

2x

   

  

 0

0; Put x = h

2

, =

hsin

)hsin(sinLim

0h = 1.

(C)x

x1x1Lim0x

    

  

00 (Rationalise) = )x1x1(x

)x1()x1(Lim0x

=

2

2= 1.

(D)2x

1

0x x

xsinLim

 

  

 

(1) = eL, where L = 20x x

11

x

xsinLim

 

  

 

= 30x x

xxsinLim

= 3

53

0x x

x.......!5

x

!3

xx

Lim

 

  

 

=

6

1. Ans.]

Q.2 If the solutions of the equation x2 + px + q = 0 are the cubes of the solutions of the equation

x2 + mx + n = 0, then

(A) m3  –  3mn + p = 0 (B) m3 + 3mn + p = 0 (C*) m3  –  3mn  –  p = 0 (D) m3 + 3mn  –  p = 0

[Sol. Given, x2 + mx + n = 0

; x2 + px + q = 0

3

3

3 + 3 =  –  p ; 3 3 = q

and + =  – m ; = n

Now, ( + )3  –  3 ( + ) =  –  p   – m3  –  3n ( – m) =  –  p    –  m3 + 3mn =  –  p

m3  – 3mn  – p = 0. Ans.]

Q.3 In an arithmetic progression, if Sn

= n(5 + 3n) and tn

= 32, then the value of n is

[Note : Sn

and tn

denote the sum of first n terms and nth term of arithmetic progression respectively.]

(A) 4 (B*) 5 (C) 6 (D) 7

[Sol. We have, tn

= Sn  –  S

n  –  1= n (3n + 5)  –  (n  –  1) (3n + 2) = 6n + 2 = 32 (Given) n = 5. Ans.]

Q.4 If  , are the roots of equation x2 + x  –  2 = 0, then the value of 

22

4444 )1()1(

is equal to

(A) 2 (B)  –  2 (C) 4 (D*)  –  4

Page 2: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 2/20

XIII RT-2 [Paper-I] Page # 2

MATHEMATICS

[Sol. We have, x2 + x  –  2 = 0

  + =  –  1; =  –  2

22

4444)1()1(

=

2)( 2

4545

=

2

)()( 4

=

2

)4

=

4

16

=  –  4. Ans.

Aliter:

22

4444 )1()1(=

4

)(16

[Using 2 + = 2 + = 2 and + 1 =2

and + 1 = 2

]

=4

16=  –  4. Ans.]

Q.5 If f (x) =

)1x(x)1x()2x)(1x(x)1x(x3

x)1x()1x(xx2

1xx1

then f (100) =

(A*) 0 (B) 100 (C) 1 (D)  – 100

[Sol. Taking common factors x from C2, (x + 1) from C

3and (x  – 1) from R 

3, we have

f (x) = x (x2  – 1)322

233

CCC

CCC

x2xx3

x1xx2

111

= x (x2  –  1)

2)1x(2x3

1)1x(x2

001

= 0

f (100) = 0 ]

Q.6 Number of values of x satisfying the equation cos )1xcos(arc3 = 0 is equal to

(A) 0 (B) 1 (C) 2 (D*) 3

[Sol. Let = arc cos (x  –  1)

Now, cos 3= 4 cos3  –  3 cos So, 4y3  –  3y = 0, where y = x  –  1

y = ±2

3, 0

x = 1 ±23 , 1

Hence three values of x . Ans.

Aliter :

cos (3 cos – 1 (x  –  1)) = 0

3 cos – 1 (x  –  1) = (2n + 1)2

, n I

cos – 1 (x  –  1) = (2n + 1)6

, n I

Page 3: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 3/20

XIII RT-2 [Paper-I] Page # 3

MATHEMATICS

cos – 1 (x  –  1) =6

5,

2,

6

  x  –  1 =

2

3, 0,

2

3; x = 1 +

2

3, 1,

2

31 . Ans.]

Q.7 Let f(x) =  

  

 

 

  

   

  

  )3(tanx

2

1cosx

2

3sinsgn 2

.

If f(x) is identically zero for every x R, then the number of values of  in [ – 2, 2], is

[Note: sgn k denotes the signum function of k.]

(A) 0 (B) 1 (C*) 2 (D) 3

[Sol. The equation 3tanx2

1cosx

2

3sin

2  

  

   

  

  = 0 must be an identity in x.

sin =2

3and cos =

2

1and tan = 3   =

3

or

3

5in [ –  2, 2]. Ans. ]

Q.8 The smallest integral value of p for which the inequality (p  –  3)x2   –  2px + 3(p  –  2) > 0

is satisfied for all real values of x, is

(A) 8 (B*) 7 (C) 6 (D) 5

[Sol. We have, (p  –  3)x2  –  2px + 3(p  –  2) > 0 is true for all x R, so

p  –  3 > 0 ........(1)

and Disc. < 0 ........(2)

must be satisfied simultaneously.

p > 3 .......(1)

and D < 0 4p2  –  4(p  –  3) (3p  –  6) < 0f(x) = (p – 3)x – 2px + 3(p – 2)

2

v

x

2p2  –  15p + 18 > 0

2p2  –  12p  –  3p + 18 > 0

2p (p  –  6)  –  3(p  –  6) > 0

(2p  –  3) (p  –  6) > 0

p > 6 or p < 2

3

.......(2)

(1) (2) p (6, )

Hence, the smallest integral value of p equals 7. Ans.]

Q.9 If x = x0

is solution of the equation 0)x3()x2(3log2log 55 , then the value of 

 

  

 

00

x

1x is equal to

(A*)6

37(B)

2log3log

3log2log

55

55

(C) log23 (D) 2

[Sol. We have 3log2log 55 )x3()x2(

Taking logarithm to the base 5 on both sides, we get

(log52) · (log

52 + log

5x) = (log

53) · (log

53 + log

5x)

–  (log53  –  log

52) · log

5x = (log

53  –  log

52) · (log

53 + log

52)

 

  

 x

1log5 = log

56 x =

6

1  x

0(Given)

Hence,  

  

 

00

x

1x =

6

37. Ans. ]

Page 4: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 4/20

XIII RT-2 [Paper-I] Page # 4

MATHEMATICS

Q.10 Number of solutions of the equation xcos)x(sinsin 1 , for x  

2

,2

is equal to

(A) 0 (B*) 2 (C) 4 (D) 6

[Sol. As, )x(sinsin 1= x , for x  

2

,2

From above graph, the equation

y=cosx

 

 

 

  0,2   

 0,2

Y

X

y= – x y=x

O

  )x(sinsin 1 = cos x has two solutions, in 2,

2. Ans.]

Q.11 If  e

1

x

a2Lim

a2

xtana

ax

 

  

 

  

  

, then a is equal to

(A)  –   (B) (C*)2

(D)

2

[Sol.e1)form1(

xa2Lim a2

xtana

ax     

 

 

 

 

(Given)

Let 

  

 

 

  

  a2

xtan·a

ax x

a2Lim = eL,

where L =  

  

  

  

  a2

xtan·a

x

a1Lim

ax

Put x = a + h

=  

  

 

)ha(a2tan·hLim0h =  

  

 

a2

h

2tanhLim0h = 

  

 

a2

htan

hLim0h =

a2

 

  

 

 

  

  a2

xtan·a

ax x

a2Lim =

a2

e   e – 1 (Given)

Hence, a =2

. Ans.]

Q.12 The true solution set of inequality log2(sin ) > log

2(cos ) is equal to

(A) In 4

5n2,4

n2

  

   (B*)

In 2n2,

4n2

  

  

(C) In 4

n2,n2

 

  

  (D)

In 4

7n2,

4n2

 

  

 

[Sol. Given, log2(sin ) > log

2(cos )

sin > 0, cos > 0 and sin > cos Hence,  In 2

n2,4

n2

 

  

 

. Ans.]

Page 5: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 5/20

XIII RT-2 [Paper-I] Page # 5

MATHEMATICS

Q.13 The value of 

 

  

  n

3k 2

2

n k 

1k Lim is equal to

(A*)3

2(B)

3

1(C)

2

1(D) 2

[Sol.

 

 

 

  n

3k 

2n

11Lim =

 

 

 

 

n

3k 

n

3k 

n k 

1k ·

1k Lim =

 

  

   

  

  3

1n

n

2Limn

=3

2. Ans.]

Q.14 Which one of the following function contains only one integer in its range?

[Note: sgn k denotes the signum function of k.]

(A) f(x) =  

  

 

2

21

x1

x1cos

2

1(B) g(x) =

 

  

  x

1xsgn

(C) h(x) = sin2x + 2sin x + 2 (D*) k(x) = cos – 1(x2  – 2x + 2)

[Sol.

(A) f(x) =

2

1cos – 1 

 

 

 

 

2

2

x1

x1

Df = R

As, 0 cos – 1   

  

 

2

2

x1

x1<

Rf =

 

 

2

,0 .

(B) g(x) = sgn  

  

  x

1x

Dg

= ( –  , 0) (0, )

Rg

= { –  1, 1}

(C) h(x) = sin2x + 2 sin x + 2

Dh

= R

Also, h(x) = (sin x + 1)2 + 1

Rh

= [1, 5].

(D) k(x) = cos – 1 (x2  –  2x + 2) = cos – 1  1)1x( 2 ; Dk 

= {1} ; Rk 

= {0}. Ans.]

Q.15 Which one of the following function defined below is continuous at origin?

(A) f(x) =

0x,0

0x,x

1sin

(B*) g(x) =

3,2x,1

3,2x,6x5x

)6x5xcos(2

2

(C) h(x) =

 

  

 

0x,1

0x,x

1tanx 1

(D) k(x) =

0x,1

0x,1x

)1xsin(

Page 6: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 6/20

XIII RT-2 [Paper-I] Page # 6

MATHEMATICS

[Sol.

(A)x

1sinLim)x(f Lim

0x0x = does not exist,

becausex

1sin oscillates from  – 1 to 1 in the neighbourhood of x = 0. So f(x) is discontinuous at x = 0.

(B) )x(gLim0x

=6

1cos 6 = g(0) g(x) is continuous at x = 0.

(C)  

  

 

x

1tan·xLim)x(hLim

1

0x0x= 0 ×

 

  

  2

or2

= 0

But, h(0) = 1

So, h(x) is discontinuous at x = 0.

(D) )x(k Lim0x

= sin 1

But k(0) = 1

So, k(x) is discontinuous at x = 0. Ans.]

Q.16 If 4x

  – 

2x + 1

+ 2 + | a | = cos y where x, y, a R, then the value of (a + x + y) can be

(A)2

(B) (C*) 2 (D) 3

[Sol. We have (2x  –  1)2 + | a | + 1 = cos y

As, L.H.S. 1 and R.H.S. 1

x = 0; a = 0 and cos y = 1 i.e. y = 2n n I. ]

Q.17 If  

 

 

x

xsinLim

1

0x+

x

x2sin212

+

x

x3sin312

+ …… +

x

nxsinn12

 

 

 = 100,

then the value of n, is

[Note : [k] denotes the greatest integer less than or equal to k.]

(A) 2 (B) 3 (C*) 4 (D) 5

[Sol. In vicinity of x = 0 , |sin – 1 x| > |x|

x

xsin1

> 1, in vicinity of x = 0.y = x

y = sin x – 1

(0,0)x

y

l = 13 + 23 + 33 + .... + n3

=

2

2

)1n(n 

  

  = 100 n = 4. Ans.]

Q.18 If cos (22) =)(cos)(cos

31

31 , then

(A) tan 1, tan

2, tan

3are in A.P. (B*) tan

1, tan

2, tan

3are in G.P.

(C) tan 1, tan

2, tan

3are in H.P. (D) tan

1, tan

2, tan

3are NOT in A.P./G.P./H.P.

[Sol. cos (22) =

)(cos

)(cos

31

31

   1

)2(cos 2 =)(cos

)(cos

31

31

(Using dividendo and componendo)

 1)2(cos

1)2(cos

2

2

=31

31

coscos2

sinsin2

  tan22

= tan 1

tan 3  tan

1, tan

2, tan

3are in G.P..Ans.]

Page 7: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 7/20

XIII RT-2 [Paper-I] Page # 7

MATHEMATICS

Q.19 If the function f(x) = 2p [2x + 5] + q[3x  – 7] is continuous at x = 1, then

[Note: [k] denotes the greatest integer less than or equal to k and p, q R.]

(A*) 2p + q = 0 (B) p + 2q = 0 (C) p + q = 0 (D) 10p  –  7q = 0

[Sol. We have, f(x) = 10p + 2p [2x]  – 7q + q[3x]

Now, f(1+) = 10p + 4p  –  7q + 3q = (14p  –  4q) = f(1)

Also,

f(1 – ) = 10p + 2p  –  7q + 2q = (12 p  –  5q)

As, f(x) is given continuous at x = 1, so

14p  –  4q = 12p  –  5q 2p + q = 0. Ans.]

Q.20 The maximum value of expression  

  

 

 

  

 

x4

sinx4

cos22 is equal to

(A) 1 (B*) 2 (C)2

3(D)

2

[Sol. Let Expression (E) =  

  

 

 

  

 

x4

sinx4

cos22

=  

  

  

  

 

 

  

 

x42

cosx4

cos 22

=   

   x

4cos·2 2 =

  

   x2

2cos1 = 1  –  sin 2x

Hence, maximum value is 2. Ans.]

Q.21 to Q.30 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct. [10 × 4= 40]

Q.21 Let f (x) =)1x(·e1

)1xsin(·e)xcos(Lim

nx

nx

n

, then which one of the following is correct?

(A) The value of f(1) is equal to zero.

(B) The value of f(0+) is equal to  –  sin 1.

(C) The value of f(0 – 

) is equal to  – 1.

(D*) The value of  )0(f )0(f  is equal to 1sin1 .

[Sol. We have, f(1) = cos =  –  1

Also, f (x) =

),0(x);xcos(

)0,(x;)1x(

)1xsin(

So, f (0+) = 1 and f(0 – ) =  –  sin 1.

)0(f )0(f  = 1  –  ( –  sin 1) = (1 + sin 1). Ans.]

Q.22 The sequence a1, a2, a3, .... satisfies a1 = 19, a9 = 99, and for all n 3, an is the arithmetic mean of the first (n  – 1) terms. Then a

2is equal to

(A*) 179 (B) 99 (C) 79 (D) 59

[Sol.33/seq/SC

n 3, a3

=2

aa21

....(1) [11th (PQRS) 15-10-2006]

a4

=3

a)aa(321

=

3

aa233

a

4= a

3

a5

=4

)aaaa(4321

=

4

aa344

= a

4 ;a

3= a

4= a

5= ......... = a

9= 99

Page 8: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 8/20

XIII RT-2 [Paper-I] Page # 8

MATHEMATICS

put in equation (1)

99 =2

a192

  a

2= 179. Ans.]

Q.23 If the function f(x) = )bx(1ax

e

is non differentiable at exactly one point then the value of ab is

equals to

(A*) 1 (B) 2 (C) 3 (D) 4

[Sol: (ax  – 1) (x  – b) should be perfect square

D = 0 for ax2  –  (ab + 1) x + b (ab + 1)2  –  4ab = 0 or (ab  –  1)2 = 0 ab = 1 ]

Q.24 Let f : R R be defined by f(x) =

QRxif ,x

Qxif },x{.

If  )x(f Limx

exist , then the true set of values of  is

[Note : {k} denotes the fractional part of k and Q be the set of all rational numbers.]

(A) ( – 1, 1) (B) ( – 1, 0] (C*) (0, 1) (D) [0, 1)

[Sol. For limit to exist,

x  –  [x] = x, at x = + h or   –  h

x

Lim [ + h] = 0

Note that f(x) is discontinuous at x = 0,

because f(0 ) = 0, but f(0 )+ – 

= 1 (via. x Q)

= 0 (via. x Q)

(0, 1). Ans.]

Q.25 The value of 

 

 

 

 

1r 2

1

4

1r4

2tan is equal to

(A) tan – 11 (B) tan – 12 (C) tan – 13 (D*) tan – 14

[Sol.

 

 

 

 

1r 2

1

4

1r4

2tan =

 

 

 

 

  

  

  

   1r

1

2

1r

2

1r4

2tan =

 

 

 

 

 

 

 

 

 

 

 

 

1r

1

22

1r

22

1r

1

2

1

tan

=

  

  

  

  

  

  

  

  

1r

1

2

2r

·2

2r

1

2

2

1r

2

2

1r

tan =

 

 

 

 

 

 

 

 

 

 

 

  n

1r

11

n 2

1r

tan2

2

1r

tanLim

Page 9: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 9/20

XIII RT-2 [Paper-I] Page # 9

MATHEMATICS

=

 

  

  

  

   

  

 

 

  

   

  

   

  

 

4

1

2

ntan

4

1

2

ntan..........

4

5tan

4

7tan

4

3tan

4

5tan

4

1tan

4

3tanLim

11

111111

n

=  

  

 

 

  

 

4

1tan

4

1

2

ntanLim 11

n=

4

1tan

2

1

=4

1cot 1

= tan – 14. Ans.]

Q.26 Let f(x) =

3n3x3;e2

3x3;x103x

2

l.

Which one of the following statement is incorrect?

(A) f(x) is continuous for all x ( – 3, 3 + ln 3].

(B*) Number of solutions of the equation f(x) = 1 is two.

(C) Range of f(x) is 10,1 .

(D) f(x) is not injective.

[Hint.

x= – 3

 – 1

1

O(0, 0)

)10,0(

3 + n 3l

( – 3,1) (3,1)

x=3

x = 3 + n 2l

Y

X

(3+ n 3, – 1)l

]

Q.27 Let and be two real numbers such that = n and = 1 (where ).Then the value of  )n(Lim

n

is equal to

(A) 0 (B)2

1(C)

3

2(D*) 1

[Sol. A quadratic whose roots are and is given by

x2  –  nx + 1 = 0

x =2

4nn 2

As, so,=2

4nn2

 2

)4nn(nLim)n(Lim

2

nn

 

)4nn(2

))4n(n(nLim

2

22

n

=)4nn(

n2Lim

2n =2

2= 1. Ans.]

Page 10: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 10/20

XIII RT-2 [Paper-I] Page # 10

MATHEMATICS

Q.28 Number of integral ordered pair(s) (x, y) satisfying the equation

tan – 1(x + 2011) + tan – 1   

  

  2012y

1= tan – 12, is equal to

(A) 1 (B) 2 (C*) 3 (D) 4

[Sol. Put X = x + 2011 and Y = y + 2012, so we get

tan

 – 1

 

 

 

 

YX1

Y

1X

= tan

 – 1

2 XY + 1 = 2 (Y – 

X) Y = X2

X21

Y =X2

5

  –  2 (X, Y) = (1, 3) (3,  –  7), (7,  –  3) and ( –  3,  –  1)

(x, y) (x =  –  2010, y = 2009), (x =  –  2008,. y =  –  2019), (x =  –  2004, y =  –  2015).

But (x =  –  2014, y =  –  2013) rejected.

[For Y to be an integer, 2  –  x = ± 1 or ± 5 x = 1, 3, 7,  –  3]. Ans.]

Q.29 If   0xLim 2

2x

1

x

ex4

tan

 

 

 

   

  

is equal to2

eq

p

 

  

 , (p, q N), then the minimum value of (p + q) is

(A) 5 (B) 6 (C*) 7 (D) 9

[Sol.0x

Lim 2

2xtan1

xtan1n

x

1

x

ee  

  

 

l

= e2

0xLim 2

2xtan1

xtan1·n

x

1

x

1e

 

 

 

 

 

  

 

l

= e2

0xLim 3x

x2xtan1

xtan1n

 

  

 

l

= e2

0xLim 3

x

x2)xtan1(n)xtan1(n ll

= e2

0xLim 3

3232

x

x2......3

xtan

2

xtanxtan......

3

xtan

2

xtanxtan

 

  

 

 

  

 

[Using series expansions]

= e2

0xLim 3

3

x

........xtan3

2)xx(tan2

= e2

3

e4

3

2

3

2 2

 

  

  . Ans.]

Page 11: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 11/20

XIII RT-2 [Paper-I] Page # 11

MATHEMATICS

Q.30 The graph of functions f and g are shown below.

y=f(x)

O

 – 1

1

2

 – 2

 – 1 – 2 21 x

y

 

y=g(x)

O

 – 1

1

2

 – 2

 – 1 – 2 21 x

y

4/3

[Note : [k] denotes the greatest integer less than or equal to k.]

Consider the following statements

I. )x(g)x(f Lim1x

exist and is equal to 2.

II. )x(g)x(f Lim2x

exist and is equal to 1.

III. )x(gf Lim0x

exist and is equal to 1.

IV. )x(f gLim2x

exist and is equal to  – 1.

Which of the statements I, II, III and IV given above are correct?

(A*) I, II and III (B) I, II, III and IV (C) I, II and IV (D) II, III and IV

[Sol.

I : )x(g)x(f Lim1x

= 2 True.

II : )x(g)x(f Lim2x

= 1 True.

III : )x(gf Lim0x = 1 True.

IV : )x(f gLim2x

= 0 False. ]

Page 12: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 12/20

XIII RT-2 [Paper-II] Page # 1

MATHEMATICS

PART-A

[PARAGRAPH TYPE]

Q.1 to Q.5 has four choices (A), (B), (C), (D) out of which ONE OR MORE may be correct. [5 × 4 = 20]

Paragraph for question no. 1 to 3

Consider f, g and h be three real-valued continuous functions on R (the set of all real numbers)

defined by

f(x) =

x1,4qx

1x2

1,p

21x,3xx2

, g(x) =

0x,1a

0x,x

xcosba2 and h(x) =

1x,1x

1x,1x3

2

.

Q.1 Which of the following statement(s) is(are)correct?

(A*) The value of (p + q) equals2

3. (B) The value of (p + q) equals

2

5.

(C) The value of (a + b) equals 1. (D*) The value of (a + b) equals 0.

Q.2 Which of the following statement(s) is(are)correct?

(A*) Number of real roots of equation f(x) = 0 is one.

(B*) Number of real roots of equation h(x) = 0 is zero.

(C*) The value of g() equals 2

4

.

(D) The range of function h(x) is R.

Q.3 Which of the following statement(s) is(are)correct?

(A*) There exists some x0

> 1 such that h(x) > f(x) is true for all (x0,).

(B*) Both f(x) and h(x) are not injective.

(C) Number of real roots of equation g(x) = 0 in [0, 4] are 3.(D*) Range of f(x) is R.

[Sol.

 

 

 

 

2

1f  =

 

  

 

2

1f  =

2

1

4

1 + 3 =

4

1221 =

4

11and

 

 

 

 

2

1f  = p

As, f is continuous at x =2

1, so p =

4

11.

Now, f(1 – ) = f(1) = p and f(1+) = q + 4

As, f is also continuous at x = 1, so p = q + 4 q =4

11  – 4 =

4

1611  q =

4

5

So, f(x) =

x1,4x4

5

1x2

1,

4

112

1x,3xx2

Page 13: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 13/20

XIII RT-2 [Paper-II] Page # 2

MATHEMATICS

2

1x

xx = 1

 

 

 0,

5

16

y = 11/4

 –  

+

y = x  – x + 32

4x4

5y

y

O

Graph of f(x)

As, g(x) is continuous at x = 0, so  

  

 

20x x

xcosbaLim = a – 1 ......(1)

As, above limit exist, so a + b = 0 b = – a

a  

 

 

 

20x x

xcos1

Lim = a – 

1

 2

a= a – 1 a = 2a – 2 a = 2

b = – 2

So, g(x) =

0x,1

0x,x

)xcos1(22

and h(x) =

1x,1x

1x,1x3

2

(0,1)y=x +1

3

(1,2)y=x +1

2

( – 1,0)

(1,0)

Graph of h(x)

[Note : g(x) = 0 cos x = 1

x = 2n , n I. But g(0) = 1 ]

Now, verify alternatives. ]

Paragraph for question no. 4 & 5

The graph of y = px2 + qx + r, x R is plotted in adjacent diagram. Given AM = 2 and CM = 1.

Where C is the vertex.

 

Y

XBA

C

(0, – 8)

O M

Q.4 Which of the following statement(s) is (are) correct?

(A*) The value of (4p – r) is equal to 7.

(B) The value of (4p – r) is equal to 5

(C) The sum of roots of equation px2 + qx + r = 0 is equal to 10.

(D*) The sum of roots of equation px2 + qx + r = 0 is equal to 12.

Page 14: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 14/20

XIII RT-2 [Paper-II] Page # 3

MATHEMATICS

Q.5 Which of the following statement (s) is (are) incorrect?

(A*) The value of  )rqxpx(Lim 2

8x

is not equal to zero.

(B*) The inequality px2 + qx + r < 0 is true for all x (6,).

(C*) Harmonic mean of roots of the equation px2 + qx + r = 0 is3

32.

(D*) The value of q is equal to  – 3.

[Sol. We have, y = px2 + qx + r, x R

Let OA = , OB = Also, y (x = 0) = – 8 r = – 8

Now, | | = 4 ()2 = 16

()2  – 4 = 16    

  

 

 

  

 

p

r4

p

q2

= 16 q2  – 4pr = 16p2 .....(1)

As, ymax.

=p4

)pr4q( 2 = 1 (given)

q2  – 4pr = – 4p .....(2)

From (1) and (2), we get16p2 = – 4p

p =4

1(As, p 0)

Y

XA 1

C

(0, – 8)

O(6,0)(4,0) (8,0)

8x3x4

1y

2

Now, on putting the value of p =4

1and r = – 8 in equation (1),

we get, q2 + ( – 8) = 1   q = ± 3

But q = – 3 (reject)

q = 3

Hence y = 8x3x4

12

Now verify alternatives ]

[REASONING TYPE]

Q.6 to Q.9 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct. [4× 3= 12]

Q.6 Statement-1:  

  

 

1n

1....

3n2n

4·3

2n2n

3·2

1n2n

2·1Lim

232323nis equal to

3

1.

Statement-2: Let f , g and h be three functions such that f (x) g (x) < h (x) for all x in some interval

containing the point x =c, and if  )x(f Limcx = )x(hLimcx = L then )x(gLimcx = L.

(A*) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

[Sol. 1·2 + 2·3 + 3·4 + ............ + n(n + 1)

=

n

1n

)1n(n =

n

1n

2 )nn( =6

)1n2)(1n(n +

2

)1n(n =

3

)2n)(1n(n

Page 15: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 15/20

XIII RT-2 [Paper-II] Page # 4

MATHEMATICS

 

nn2n

)1n(·n....

nn2n

3·2

nn2n

2·1232323

<

nn2n

)1n(·n....

2n2n

3·2

1n2n

2·1232323

<1n2n

)1n(·n....

1n2n

3·2

1n2n

2·1232323

1n2n

3

)2n)(1n(n

nn2n

)1n(·n....

2n2n

3·2

1n2n

2·1

nn2n

3

)2n)(1n(n

2323232323

As,1n2n

3

)2n)(1n(n

Lim3

1

nn2n

3

)2n)(1n(n

Lim23n23n

So,  

  

 

nn2n

)1n(·n....

3n2n

4·3

2n2n

3·2

1n2n

2·1Lim

23232323n=

3

1.

Hence, both S1

and S2

are true and S2

is explaining S1

also. Ans.]

Q.7 Statement-1: In triangle ABC, if cot A· cot C =2

1and cot B · cot C =

18

1, then cot C is equal to 4.

Statement-2: In triangle ABC, cot A · cot B + cot B · cot C + cot C · cot A equals 1.(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D*) Statement-1 is false, statement-2 is true.

[Sol. In ABC, we know that

cot A · cot B + cot B · cot C + cot C · cot A = 1

cot A · cot B +18

1+

2

1= 1 cot A · cot B =

9

4  

 

  

  

  

 

Ccot18

1

Ccot2

1=

9

4  cot C =

4

1.

Hence, S1

is false but S2

is true.]

Q.8 Statement 1: The equation cos (x) + 2x  – 3 = 0 has atleast one real root in (0, 2).

Statement 2: If f(x) is continuous function in [a, b] and f(a) · f(b) < 0, then there exist some c (a, b)

such that f(c) = 0.

(A*) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[Sol. Let f(x) = cos (x) + 2x  – 3, x [0, 2]

f(x) = 1 + 1 – 

3 = – 

1, f(2) = 1 + 4 – 

3 = 2.

As, f(x) is continuous function in [0, 2] and f(0) · f(2) < 0.

So, using intermediate value theorem, the equation f(x) = 0 has atleast one real root in (0, 2).

Also, S2

is obviously true and exaplaining S1

also. Ans.]

Page 16: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 16/20

XIII RT-2 [Paper-II] Page # 5

MATHEMATICS

Q.9 Statement-1: If 9x2x

9x2x2

2

  

9a2a

9a2a2

2

is true for all xR, then the sum of possible integral

values of a is equal to 2.

Statement-2: Let f be a real-valued function defined on R. If f(x) c is true for all xR,

(c is some finite real number) then c must be less than or equal to the

minimum value of f(x).

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false. (D*) Statement-1 is false, statement-2 is true.

[Sol. Let y =9x2x

9x2x2

2

(y – 1) x2 + 2 (y + 1) x + 9 (y  – 1) = 0

As, x is real, so put D 0  2

1  y 2

  9a2a

9a2a

2

2

   2

1

  2a

2

  – 

4a + 18 a

2

+ 2a + 9 a

2

  – 

6a + 9 0

(a – 3)2  0

a = 3.

Hence, S1

is false, but S2

is true. Ans.]

PART-B

[MATRIX TYPE] [3 + 3 + 3 = 9]

Q.1 has three statements (A, B, C) given in Column-I and four statements (P, Q, R, S) given in Column-II.

Any given statement in Column-Ican have correct matching with one or more statement(s) given in Column-II.

Q.1 COLUMN-I COLUMN-II

(A) If  x

2baxLim

3

0x

=

12

5, then the value of (b – a) is equal to (P) 0

(B) The smallest integer in the range of function (Q) 2

f(x) =1x2x

5x6x2

2

is equal to (R) 3

(C) If x [0, 4], y [0, 4], then the number of ordered pairs (x, y) (S) 4

of real numbers satisfying the equation sin – 1

(sin x) + cos – 1

(cos y) = 2

3

, is

[(A) R ; (B) P;(C) S]

[Sol. (A) We have,x

2baxLim

3

0x

=

12

5(exists)

  3 b   – 2 = 0 b = 8 .......(1)

Page 17: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 17/20

XIII RT-2 [Paper-II] Page # 6

MATHEMATICS

Now, we getx

2)8ax(Lim

3

1

0x

=

12

  

 

0

0

 

 

 

 

 

4)8ax(2)8ax(x

)2()8ax(Lim

3

1

3

2

3

0x=

12

5

 12

a=

12

5  a = 5 .......(2)

Hence, (b – a) = 8 – 5 = 3. Ans.

(B) Let y =1x2x

5x6x2

2

yx2 + 2xy – x2 + 6x – 5 = 0

(y – 1)x2 + 2(y + 3)x + (y – 5) = 0

As x is real, so put D 0

++

Y

(0, 5)

O (1, 0)

x = 2

(5, 0)X

Graph of f(x) =x  – 6x + 5

x + 2x +1

2

2

y = 1

x = – 1

2,– 

13 4(y + 3)2  4(y – 

1) (y – 

5)

y  3

1[Also, y = 1 is possible when x =

2

1.]

So, minimum value of f(x) equals3

1, which occurs at x = 2.

The smallest integer in the range of function is 0.

(C) As, sin – 1 (sin x) 2

,

and cos – 1 (cos y) So, sin x = 1, cos y = – 1

Possible ordered pairs are  

  

 

,

2;

 

  

 

3,

2;

 

  

 

,

2

5;

 

  

 

3,

2

5]

PART-C

[INTEGER TYPE]

Q.1 to Q.4 are "Integer Type" questions. (The answer to each of the questions are upto 4 digits) [4 × 5 = 20]

Q.1 Let f(x) =

x4,qx3

4x2,px

2x,5

and g(x) =

x1,1x

1x,2x3.

If  )x(gf Lim1x

= 5, then find the value of (2p + q). [Ans. 0015]

[Sol. As, )x(gf Lim1x

= 5

15 – q = 5 q = 10 . ....(1)

and )x(gf Lim1x

= 5 2p = 5 p =2

5.....(2)

Hence, (2p + q) = 5 + 10 = 15. Ans.]

Page 18: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 18/20

XIII RT-2 [Paper-II] Page # 7

MATHEMATICS

Q.2 Let a1, a

2, a

3,.........., a

nare in arithmetic progression where n 10. If the sum of its first five even terms

is equal to 15 and the sum of the first three terms is equal to ( – 3) then find the seventh term

of arithmetic progression. [Ans. 0004]

[Sol. We have, first term = a1

and common difference = d

Now, a2

+ a4

+ a6

+ a8

+ a10

= 15

2

5(a

2+ a

10) = 15

a2

+ a10

= 6

(a1 + d) + (a1 + 9d) = 6 a

1+ 5d = 3 ......(1)

Also, a1

+ a2

+ a3

= – 3

a1

+ (a1

+ d) + (a1

+ 2d) = – 3

3a1

+ 3d = – 3

a1

+ d = – 1 .......(2)

From (1) and (2), we get

d = 1, a1

= – 2

Hence, a7

= a1

+ 6d = – 2 + 6(1) = 4. Ans.]

Q.3 If both roots of equation x2  – 2cx + c2 + c  – 5 = 0 are less than 5, then find the largest integral

value of c.

[Ans. c < 4,c = 3 largest]

[Sol. We have, f(x) = x2  – 2cx + (c2 + c – 5)

x=5x

f(x)

or

x=5x

f(x)

Now, conditions for both roots of equation f(x) = 0 to be less than 5 are

(i) D 0 4c2  4 (c2 + c – 5) c 5 ......(1)

(ii) 5a2

b

   5

2

c2   c < 5 .....(2) and

(iii) f(5) > 0 c2  – 9c + 20 > 0

(c – 4) (c – 5) > 0

c < 4 or c > 5 .....(3)

must be satisfied simultaneously.

(1) (2) (3)

c ( –  , 4)

Hence, the largest integral value of c is 3. Ans.]

Q.4 Let g : RR be defined as g(x) = sgn (x2 – 

5x + 6), then find the number of solutions of equation

sinx = )x(singcos 11 .[Note: sgn (k) denotes the signum function of k.] [Ans. 0001]

[Sol. As, g(sin – 1x) = )3x(sin·)2x(sinsgn11

= 1

We get, sin x = cos – 1(1) sin x = 0

x = n, n I

But domain of equation is [ – 1, 1].

The possible solution is x = 0.

Hence, the number of solutions of given equation are one. Ans.]

Page 19: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 19/20

XIII RT-2 [Paper-II] Page # 8

MATHEMATICS

Q.5 to Q.8 are "Integer Type" questions. (The answer to each of the questions are upto 4 digits) [4 × 6 = 24]

Q.5 Let a differentiable function f satisfying the functional equation

 f (x + y) = f (x) f (y) V x, y.

Suppose f (5) = 2 and  f '(0) = 3. find f '(5). [Ans: 0006]

[Sol:  f ' (5) =h

)05()h5(Lim

0h

 f  f 

 f ' (5) =h

)0()5()h()5(Lim0h

 f  f  f  f 

 f ' (5) =

h

)0()h(Lim)5(

0h

 f  f  f 

= 2 f ' (0) = 2 × 3 = 6 ]

Q.6 Let f, g : RR be defined by f(x) = 3x – 1 + 1x2 and g(x) =5

1 5x25x3 , then at

how many points y = 10132xfog..,,.........xfog,xfog,xfog.min is not differentiable.

[Ans: 0003]

[Sol. f(x) =

2

1xx5

21x2x

, g(x) =

2

5x

5

x25x2x

 – 1

1O

f(x) and g(x) are inverse of each other.

y = min {fog(x), (fog(x))2, (fog(x))3 ,........., (fog(x))2011}

y = min {x, x2, x3,........, x101} not differentiable at x = 0, ± 1.

Q.7 Let g (x) =

x4,4x

4x2,)2x(2x0,x

0x,2x

2

2

.

If the equation g (x) = k has four real and distinct roots, then find the sum of all possible integral values

of k. [Ans. 0001]

[Sol.

(4, 4)

  y  =   x    – 

 4(2, 2)

  y  =  x

)0,2(

(0, – 2)

(2, 0) (4, 0)(0, 0)

y = x  – 22

Graph of y = g(x), x

Y

X

Page 20: Maths Paper-1 & 2(Xyz)

7/30/2019 Maths Paper-1 & 2(Xyz)

http://slidepdf.com/reader/full/maths-paper-1-2xyz 20/20

MATHEMATICS

From above graph of g(x), the equation g(x) = k has four real and distinct roots if k  [0, 2).

Hence, the sum of all possible integral values of k = 0 + 1 = 1. Ans.]

Q.8 Let f(x) = ]1x[ba2xsgn·)1aba(4 2 , xR.

If  )x(f Lim2x

exists for some real value(s) of a, then find the smallest positive integral value of b.

[Note: [k] and sgn (k) denote the largest integer less than or equal to k and signum function of k 

respectively.] [Ans. 0003]

[Sol. As, )x(f Lim)x(f Lim2x2x

4 + (a2  – ab + 1) + 2(a – b) = 4 – (a2  – ab + 1) + 3(a – b) 2a2  – a (2b + 1) + (2 + b) = 0Since a R, so put D 0.

(2b + 1)2  – 8 (2 + b) 0 4b2  – 4b – 15 0 b   

 

 

  ,

2

5

2

3,

Hence, the smallest positive integral value of b is 3. Ans.]