mc0063(a) unit1 final

40
Discrete Mathematics Unit 1 Sikkim Manipal University Page No: 1 Unit 1 Sets, Relations and Functions Structure 1.1 Introduction Objectives 1.2 Sets 1.3 Relations 1.4 Functions 1.5 Intervals 1.6 Functions of real variables 1.7 Different functions Self Assessment Questions 1.8 Summary 1.9 Terminal Questions 1.10 Answers 1.1 Introduction The concepts of set, relation and function are of fundamental importance in modern mathematics. The idea of a set has been intuitively used in mathematics since the time of ancient Greeks now set theory and its associated branches such as Group theory, Ring theory etc., have far reaching applications. The systematic development of set theory is attributed to the German mathematician George Cantor (1845 – 1918). Some elementary definitions of set theory have been studied by students in the high school standard. In this chapter we briefly give some preliminaries of set theory and discuss the relations and functions.

Upload: sanjeev-malik

Post on 24-Sep-2015

242 views

Category:

Documents


0 download

DESCRIPTION

h

TRANSCRIPT

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:1

    Unit1 Sets,RelationsandFunctionsStructure

    1.1 Introduction

    Objectives

    1.2 Sets

    1.3 Relations

    1.4 Functions

    1.5 Intervals

    1.6 Functionsofrealvariables

    1.7 Differentfunctions

    SelfAssessmentQuestions

    1.8 Summary

    1.9 TerminalQuestions

    1.10Answers

    1.1Introduction

    Theconceptsofset,relationandfunctionareoffundamentalimportancein

    modern mathematics. The idea of a set has been intuitively used in

    mathematics since the time of ancient Greeks now set theory and its

    associated branches such as Group theory, Ring theory etc., have far

    reachingapplications.

    The systematic development of set theory is attributed to the German

    mathematicianGeorgeCantor(18451918).

    Someelementarydefinitionsofsettheoryhavebeenstudiedbystudentsin

    thehighschoolstandard.Inthischapterwebrieflygivesomepreliminaries

    ofsettheoryanddiscusstherelationsandfunctions.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:2

    Objectives

    Attheendofthisunitthestudentshouldbeableto:

    Performdifferentoperationsonsets

    UseVenndiagrams

    Describedifferenttypesofrelationsandfunctions

    1.2Sets

    Thenotionofasetiscommon,intuitivelyasetisawelldefinedcollectionof

    objects.Theobjectscomprisingthesetarecalled itsmemberorelements.

    The sets areusually denoted by the capital letter A,B,X,Y etc., and its

    elementsbysmalllettersa,b,x,yThestatementxisanelementofA

    isdenotedbyx A andisreadasxbelongstoA.Ifxisnotanelementof

    the set A then it is denoted by x A (read as x does not belong to A).

    Whenever possible a set is written by enclosing its elements by brace

    brackets{}.Forexample, A={a,e,i,o,u}.Theotherwayofspecifyingthe

    setisstatingthecharacteristicpropertysatisfiedbyitselements.Theabove

    exampleof thesetcanalsobewrittenasthesetofvowels in theEnglish

    alphabetandiswrittenas,

    A={x/x isavowelintheEnglishalphabet}.

    Ifthenumberofelementsinasetisfinitethenitsissaidtobeafiniteset,

    otherwiseitissaidtobeaninfiniteset.Ifasetcontainsonlyoneelementit

    iscalledasingletonset.Ifasetcontainsnoelementsitiscalledanullsetor

    emptyset,denotedby f.

    Forexample,

    B={1,3,5,7,9}isafiniteset,

    N={x:x isanaturalnumber}={1,2,3,4,..}isaninfiniteset,

    C={2} isasingletonsetand

    D={x:x2=9andxiseven}isanemptyset.

    Asetconsistingofatleastoneelementiscalledanonemptyset.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:3

    1.2.1Definition

    IfeveryelementofasetAisalsoanelementofasetB thenAissaidtobe

    a subset of B and it is denoted by BA or AB . Clearly A F ,

    AA .

    Forexample,letN,Z,Q,R respectivelydenotethesetofnaturalnumbers

    the set of integers the set of rational numbers the set of real numbers.

    Then

    RQZN .

    AsetA issaid tobeapropersubsetofB if thereexistsanelementofB

    whichisnotanelementofA.ThatAisapropersubsetofB if BA and

    BA .

    Forexample,ifA={1,3,5},B={1,3,5,7} thenAisapropersubsetofB

    Twosets AandBaresaidtobeequalifandonlyif BA and AB .

    1.2.2Familyofsets

    If theelementsofasetAarethemselvessetsthenA iscalledafamilyof

    setsoraclassofsets.ThesetofallsubsetsofasetA iscalledthepower

    setofAanditisdenotedbyP(A).

    ForexampleifA={1,3,5}then.

    P(A)={{ f},{1),{3),{5},{1,3},{3,5},{5,1}{1,3,5}}

    Notethatthereare23=8 elementsinP(A).IfasetA hasn elementsthen

    itspowersetP(A) has2nelements.

    1.2.3Cardinalityofaset

    IfAisafiniteset,thenthecardinalityofA isthetotalnumberofelements

    thatcomprisethesetandisdenotedbyn(A).

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:4

    The cardinal number or cardinality of each ofthe sets { } { } { } c,b,a,b,a,a, F isdenotedby0,1,2,3,respectively.

    1.2.4Universalset

    Inanydiscussion ifall thesetsaresubsetsofa fixedset, then thisset is

    calledtheuniversalsetandisdenotedbyU..

    For example, in the study of theory of numbers the set Z of integers is

    consideredastheuniversalset.

    1.2.5Unionofsets

    Theunionof twosets AandB denotedby BA is the set ofelements

    whichbelongtoAorBorboth.

    Thatis, { } BxorAx:xBA = .Properties

    1. AAA = 2. ABBA =

    3. ( ) ( ) CBACBA = 4. BAA and BAB 1.2.6Intersectionofsets

    The intersection of two sets A and B denoted by BA is the set of

    elementswhichbelongtobothAandB.

    Thatis, { } BxandAx:xBA = .Properties

    1. AAA =

    2. ABBA =

    3. ( ) ( ) CBACBA = 4. ( ) ( ) ( ) CABACBA = 5. ( ) ( ) ( ) CABACBA =

    If F = BA thenAandBaresaidtobedisjointsets.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:5

    1.2.7 Differenceofsets

    ThedifferenceoftwosetsAandB,denotedbyABisthesetofelements

    of A whicharenottheelementsofB.Thatis,

    { } Bx,Ax:xBA = - Clearly,

    1. ABA -

    2. ABBA - -

    3. AB,BA,BA - - aremutuallydisjointsets.

    1.2.8Complementofaset

    ThecomplementofasetAwithrespecttotheuniversalsetUisdefinedas

    UAandisdenotedbyA or cA .Thatis,

    { } Ax,Ux:xA = Clearly,

    1. ( ) AA = 2. U = F 3. F = U1.2.9 DeMorganslaws

    ForanythreesetsA,B,C

    1. ( ) ( ) ( ) CABACBA - - = - 2. ( ) ( ) ( ) CABACBA - - = - 3. ( ) BABA = 4. ( ) BABA = 1.2.10Cartesianproductoftwosets

    LetAandBbetwosets.ThentheCartesianproductofAandBisdefined

    as the set of all ordered pairs. (x, y) Where ByandAx and is

    denotedbyAx B.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:6

    Thus,

    ( ) { } ByandAx:y,xBA = Twoorderedpairs(a,b)and(c,d)areequalifandonlyifa=cand b=d.

    IfA containsmelementsandBcontainsnelementsthenAxBcontains

    mn orderedpairs.

    1.2.11Example IfA={2,3,4},B={4,5,6}andC={6,7}

    Evaluatethefollowing

    (a) ( ) ( ) CBBA - (b) ( ) BCA - (c) ( ) BBA - (d) ( ) ( ) CBBA - - (e) ( ) ( ) CBBA - Solution:

    (a) { } { } { } 46,5,44,3,2BA = = { } { } { } 5,47,66,5,4CB = - = -

    Therefore ( ) ( ) { } { } ( ) ( ) { } 5,4,4,45,44CBBA = = - (b) { } { } { } { } 76,5,47,6BC4,3,2A = - = - =

    Therefore ( ) { } { } ( ) ( ) ( ) { } 7,47,37,274,3,2BCA = = - (c) { } { } { } 3,26,5,44,3,2BA = - -

    Therefore ( ) { } { } 6,5,43,2BBA = - ( ) ( ) ( ) ( ) ( ) ( ) { } 6,3,5,3,4,3,6,2,5,2,4,2 =

    (d)Wehave ( ) ( ) { } { } 5,43,2CBBA = - - ( ) ( ) ( ) ( ) { } 5,34,35,24,2 =

    (e) { } { } 6,5,44,3,2BA = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } 6,4,5,4,4,4,6,3,5,3,4,3,6,2,5,2,4,2 =

    { } { } 7,66,5,4CB = ( ) ( ) ( ) ( ) ( ) ( ) { } 7,6,6,6,7,5,6,5,7,4,6,4 =

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:7

    Therefore ( ) ( ) ( ) ( ) { } CBb,a:BAb,aCBBA = - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } 5,4,4,4,6,3,5,3,4,3,6,2,5,2,4,2 =

    1.2.12Example: If { } { } { } { } e,c,bC,e,dB,d,c,aA,e,d,c,b,aU = = = = Evaluatethefollowing

    (a) ( ) CBA - (b) ( ) ( ) CBBA (c) ( ) ( ) CBBA - - (d) ( ) ACB (e) ( ) CAB - Solution:

    (a) { } { } { } e,bd,c,ae,d,c,b,aAUA = - = - = { } { } { } de,c,be,dCB = - = -

    ( ) { } { } ( )( ) { } d,ed,bde,bCBATherefore = = - (b) ( ) ( ) { } { } { } be,d,c,ae,d,c,b,aBAUBA = - = - =

    { } { } { } ee,c,be,dCB = = ( ) ( ) { } { } ( ) { } e,bebCBBATherefore = =

    (c) { } { } { } c,ae,dd,c,aBA = - = - { } { } { } de,c,be,dCB = - = -

    ( ) ( ) { } { } ( )( ) { } d,cd,adc,aCBBATherefore = = - - (d) { } { } { } e,d,c,be,c,be,dCB = =

    ( ) ( ) { } aCBUCBTherefore = - = ( ) { } { } d,c,aaACBTherefore =

    ( ) ( ) ( ) { } d,a,c,a,a,a =

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:8

    (e) { } { } { } ed,c,ae,dAB = - = - { } { } d,ae,c,bUCUC = - = - =

    Therefore ( ) { } { } ( ) ( ) { } d,e,a,ed,aeCAB = = - 1.2.13Example

    If

    = + - = 06x5x:xA 2

    { } 4,3,0B = { } 4xandNx:xC < =

    Evaluatethefollowing:

    (a) ( ) CBA (b) ( ) ( ) CBBA - (c) ( ) ( ) BCBA - - Solution:Now ( )( ) { } { } 3,203x2x:xA = = - - =

    { } 4,3,0B = { } { } 3,2,14xandNx:xC = < =

    (a) { } { } { } { } 33,2,14,3,0CB3,2A = = = Therefore ( ) { } { } ( )( ) { } 3,33,233,2CBA = =

    (b) { } { } { } 4,3,2,04,3,03,2BA = = { } { } { } 4,03,2,14,3,0CB = - = -

    Therefore ( ) ( ) { } { } 4,04,3,2,0CBBA = - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } 4,4,0,4,4,3,0,3,4,2,0,2,4,0,0,0 =

    (c) { } { } { } 24,3,03,2BA = - = - { } { } { } 2,14,3,03,2,1BC = - = -

    Therefore ( ) ( ) { } { } ( ) ( ) { } 2,2,1,22,12BCBA = = - -

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:9

    1.3Relations

    LetA andBbetwononemptysets.ThenarelationR from A toB isa

    subsetofAxBcontainingtheorderedpairs ( ) BAb,a suchthatsomerelationexistsbetweenaandb.

    InotherwordsarelationRismerelyasubsetofAxB.

    If ( ) Rb,a thenwesaythataisR relatedtobandiswrittenasaRb.IfB=AthenwesaythatRisarelationinA.

    Forexample,let A={2,3,5}B=(4,6,9}then

    AxB={(2,4),(2,6),(2,9),(3,4),(3,6),(3,9),(5,4),(5,6),(5,9)}

    DefinearelationRby

    R= A:BA)b,a{( dividesb}

    Then R= ( ) ( ) ( ) ( ) { } 9,3,6,3,6,2,4,2IfanotherrelationSisdefinedby

    S= a:BA)b,a({ andbarerelativelyprime}

    Then S={(2,9)(3,4)(5,4),(5,6),(5,9)}

    1.3.1Domainandrangeofarelation

    Let R be a relation from A to B. The domain of R is the set of all first

    coordinates of the ordered pairs of R and the range of R is the set of

    secondcoordinatesofthepairsofR.

    Thatis, Domainof ( ) { } Rb,a:AaR = Rangeof ( ) { } Rb,a:BbR =

    Obviouslythedomainof Risasubsetof AandtherangeofR isasubset

    of B.

    Intheaboveexample,domainofR={2,3}rangeofR={4,6,9}

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:10

    1.3.2Inverseofarelation

    Let R be a relation from a set A to a set B. The inverse relation of R

    denotedbyR1 istherelationfromBtoAdefinedby

    ( ) ( ) { } Rb,a:a,bR 1 = -

    InotherwordsR1 canbeobtainedbyreversingtheorderedpairsofR.

    ClearlyR1isasubsetof AB .

    Forexample,letA={2,3,5},B={1,4}

    If ( ) { } ba:BAb,aR > = then ( ) ( ) ( ) ( ) { } 4,5,1,5,1,3,1,2R = Then ( ) ( )( ) ( ) { } 5,45,13,12,1R 1 = -

    Nowweprovidethetypesofrelations

    1.3.3Reflexiverelation

    ArelationRinasetAissaidtobereflexiveifforevery ( ) Aa,a,Aa .ThusR isreflexiveifwehaveaRaforevery Aa .

    Examples:

    1. LetLbethesetoflinesintheplane.ConsiderarelationRdefinedby

    R={(x,y):xisparalleledtoy}

    Sinceeverylineisparalleltoitself,itfollowsthat ( ) Rx,x foreveryRx .HenceRisareflexiverelation.

    2. LetN bethesetnaturalnumbers.RelationsxRydefinedby

    i) xdividesyisreflexivesinceeverynaturalnumberdividesitself.

    ii) x=yisreflexivesinceeverynumberisequaltoitself.

    iii) xyisdivisibleby5isreflexivesincexx=0isdivisibleby5for

    every Nx .

    iv) x

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:11

    1.3.4Symmetricrelation

    ArelationRinasetAissaidtobesymmetricif ( ) Rb,a implies ( ) Ra,b ThatisRissaidtobesymmetricifaRbimpliesbRa

    Examples

    1. LetAbethesetoftrianglesinaplane.TherelationinAdefinedbya is

    similarto b where A, b a issymmetricsinceifatriangle a is

    similarto b then b isalsosimilarto a.

    SimilarlyifLissetofstraightlinesinaplanethenarelationinLdefined

    byxisparalleltoyandxisperpendiculartoyaresymmetric.

    2. DefinerelationR in N by

    i) x=yisasymmetricrelationsince x=y impliesy=x.

    ii) xyisdivisibleby5isasymmetricrelationsinceifxyis

    divisibleby5thenyxisalsodivisibleby5.

    iii) x

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:12

    Then R isnot an anti symmetric relation inA since ( ) R2,1 and ( ) R1,2 but 21

    1.3.6Transitiverelation

    ArelationRinasetAissaidtobetransitiveif ( ) ( ) Rc,b,Rb,a implies ( ) Rc,a ThatisRissaidtobetransitiveifaRb andbRcimpliesaRc.

    Examples

    1. IfListhesetofallstraightlinesinaplanethenarelationinLdefinedby

    aisparalleltobistransitivesinceifa,b,carethreestraightlinesin

    L thena isparallel tobandb isparallel toc impliesa isparallel toc.

    Howeverarelationdefinedbyaisperpendiculartobisnottransitive

    since aisperpendiculartobandbisperpendiculartocdoesnotimply

    aisperpendiculartocinfacta isparalleltoc.

    2. TherelationsinNdefinedby

    i) x=yistransitivesince x=yandy=zimpliesx=z

    ii) xyisdivisibleby5istransitivesinceifxyisdivisibleby5

    andyzisdivisibleby5impliesxy+yz=xzisdivisibleby

    5.

    iii) x

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:13

    Examples

    1. IfA isthesetoftrianglesinaplanethentherelationR definedbyais

    similartobisanequivalencerelation.

    For,if a,b,careanythreetriangles,then(i)aissimilartoitself(ii)ifa

    issimilartobthenbissimilartoa(iii)ifaissimilartobandbissimilar

    to cthenaissimilartoc.

    2. In the setLofall straight lines inaplane the relationdefinedby a is

    parallel to b is an equivalence relation. For if a, b, c are any three

    straightlinesthen(i)a isparalleltoitself(ii)ifa isparalleltob thenb

    is parallel to a (iii) if a is parallel to b and b is parallel to c then a is

    paralleltoc.

    However the relation a is perpendicular to b is not an equivalence

    relation.Sinceitissymmetricbutnotreflexiveandtransitive.

    3. LetNbethesetofnaturalnumbers.Therelationsdefinedby

    i) x=yisanequivalencerelation.

    ii) xyisdivisibleby5isanequivalencerelation.

    iii) x

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:14

    functionf,theny iscalledtheimageofxunderfandisdenotedbyy=f(x).

    Alsoxiscalledthepreimageofyunderf

    TherangeoffisthesetofthoseelementsofBwhichappearastheimage

    of at least one element of A and is denoted by f(A). Thus

    ( ) ( ) { } Ax:BxfAf = .Clearly f(A)isasubsetofB.1.4.2Example:LetA={1,2,3,4}andZbethesetofintegers.Define

    ZA:f byf(x)=2x+3.ShowthatfisafunctionfromAtoB.Alsofind

    therangeoff.

    Solution:

    Now ( ) ( ) ( ) ( ) 114f,93f,72f,51f = = = = Therefore ( ) ( ) ( ) ( ) { } 11,4,9,3,7,2,5,1f = SinceeveryelementofA isassociatedwithauniqueelementofB, f isa

    function.

    Rangeof f={5,7,9,11}

    1.4.3 Example: Let N be the set of natural numbers. If NN:f is

    definedbyf(x)=2x1showthatfisafunctionandfindtherangeoff.

    Solution:

    Now ( ) ( ) ( ) ,.....53f,32f,11f = = = Therefore ( ) ( ) ( ) ( ) { } ,.....7,4,5,3,3,2,1,1f = Clearly f isafunction.

    Rangeoff={1,3,5,7,...}

    1.4.4Example: LetRbe the set of realnumbers.Define RR:f by

    ( ) 2xxf = forevery Rx .Showthatfisafunctionandfindtherangeoff.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:15

    Solution:

    Here fassociateseveryrealnumbertoitssquare,whichiscertainlyareal

    number.Hencef isafunction.RangeofR is thesetofallnonnegative

    realnumbers.

    1.4.5OneOnefunction

    A function BA:f is said to be one one or injection if for all

    ( ) ( ) 2121 xfxf,A,x,x = implies 21 xx = . The contrapositive of thisimplicationisthatforall 2121 xx,A,x,x implies ( ) ( ) 21 xfxf .

    Thusafunction BA:f issaidtobeoneoneifdifferentelementsof

    AhavedifferentimagesinB.

    1.4.6Example:LetRbethesetofrealnumbers.Define RR:f by

    i) ( ) 3x2xf + = (ii) ( ) 3xxf = forevery Rx provethatfisoneone.Solution:

    i) Let ( ) ( ) 21 xfxf = forsome Rx,x 21 3x23x2 21 + = +

    21 xx =

    Thus for every ( ) ( ) 2121 xfxf,Rx,x = implies 21 xx = .Therefore f isoneone.

    ii) Let ( ) ( ) 21 xfxf = forsome Rx,x 21 32

    31 xx =

    21 xx = Thereforef isoneone.

    1.4.7Example: Iff:R R isdefinedby ( ) 2xxf = forevery Rx ,showthatfisnotoneone.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:16

    Solution:

    Let ( ) ( ) 21222121 xxxxxfxf = = = Hence f isnotoneone.

    Forexample, ( ) 42f = - and ( ) 42f = .The imagesof2and2arenotdifferent.Hence f isnotoneone.

    1.4.8OntoFunction

    A function BA:f is said tobe onto or surjection if for every By

    there exist at least one element Ax such that f(x) = y. i.e., every

    elementofthecodomainBappearsastheimageofatleastoneelement

    ofthedomain A.

    If fisontothen f(A)=B

    1.4.9Example: Define RR:f by

    (i) f(x)=2x+3 (ii) ( ) 3xxf = forever Rx Showthatfisonto

    Solution

    i) Let Ry .Thentofind Rx suchthatf(x)=y i.e.,2x+3=y

    Solvingforxweget,2

    3yx - =

    Since R2

    3yx,Ry - =

    Henceforevery Ry exists R2

    3yx

    - = such

    that y2

    3yf =

    - .Thereforefisonto.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:17

    ii) Let Ry . We shall show that there exists Rx such that

    f (x)=y.That is yx3 = .Hence 31

    yx = . If Ry , then Ry31

    .

    Thus for every Ry there exists Ry31

    such that

    yyyf

    3

    31

    31

    =

    =

    .

    Thereforefisonto.

    1.4.10Example: If RR:f isdefinedby ( ) 2xxf = forevery Rx thenprovethatfisnotonto.

    Solution:

    Sinceanegativenumberisnotthesquareofanyrealnumber,thenegative

    numbersdonotappearastheimageofanyelementofR.

    For example, R9 - but there does not exist any Rx such that

    ( ) .9xxf 2 - = = Hencefisnotonto.1.4.11OnetooneFunction

    Afunction BA:f issaidtobeonetooneorbijection if it isboth

    oneoneandonto.

    Forexample,if RR:f isdefinedby

    i) ( ) 3x2xf + = ii) ( ) 3xxf = forevery Rx thenf isonetoonefunctions.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:18

    1.4.12Inverseimageofanelement

    Let BA:f bea functionand By . Then the inverse imageof y

    under f denotedby ( ) yf 1 - isthesetofthoseelementsofAwhichhaveyastheirimage.

    Thatis, ( ) ( ) { } yxf:Axyf 1 = = -

    1.4.13Example:.If RR:f isdefinedby ( ) 5x3xxf 2 + - = find(i) ( ) 3f 1 - and (ii) ( ) 15f 1 -

    Solution:

    i) Let ( ) y3f 1 = - then ( ) 3yf = i.e., 35y3y3 = + - or 02y3y2 = + -

    i.e., ( ) ( ) 02y1y = - - Therefore 2yor1y = =

    Therefore ( ) { } 2,13f 1 = -

    ii) Let ( ) y15f 1 = - Hence ( ) 15yf = Therefore 155y3y2 = + -

    010y3y2 = - -

    ( )( ) 2yor,5yTherefore02y5y - = = = + - Hence ( ) { } 5,215f 1 - = -

    1.4.14Inversefunctions

    Ifafunction BA:f isoneoneandontothentheinverseoffdenoted

    by AB:f 1 - isdefinedby ( ) ( ) { } fy,x:x,yf 1 = -

    Thus if BA:f is both one one and onto then AB:f 1 - is

    obtainedbyreversingtheorderedpairsoff.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:19

    Notethatf1existsonlywhen f isbothoneoneandonto.Furtherf1 is

    alsooneoneandonto.

    1.4.15Example:LetQbethesetoftherationals.If QQ:f isdefinedby

    f(x)=2x3forevery Qx thenfindf1 ifitexists.

    Solution:

    i) Let f(x1)=f(x2)

    2121 xx3x23x2 = - = -

    Hence f isoneone.

    ii) Let Qy .Thentofind ( ) yxf:Qx =

    i.e.,2

    3yxThereforey3x2

    + = = -

    Whenever y is rational,2

    3yx + = is also a rational. Hence there

    exists Q2

    3y

    + suchthat y

    2

    3yf =

    +

    Hence f isonto.Therefore QQ:f 1 - exists.

    Letx=f1(y) Thereforey=f(x)

    i.e.,2

    3yxor3x2y

    + = - =

    Define QQ:f 1 - by ( ) 2

    3yyf 1

    + = - forevery Qy .

    Replacingybyx,weget ( ) Qx2

    3xxf 1

    + = - .

    Thisisrequiredinversefunction.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:20

    1.4.16CompositefunctionorProductfunction

    If BA:f and CB:g aretwofunctionsthenthecompositefunction

    off and gdenotedbygofisafunctionfromA toCdefinedby

    ( ) ( ) ( ) { } xfgxfog = forevery Ax Here ( ) ( ) ( ) { } ( ) zygxfgxfog = = =

    1.4.17Example:LetRbethesetofrealnumbers.Define

    RR:gandRR:f byf(x)=3x2and ( ) 4xxg 2 + = .Find(i)gof (ii) fog

    Solution

    i) ( ) ( ) ( ) { } ( ) 2x3gxfgxfgo - = = ( ) 42x3 2 + - =

    8x12x9 2 + - = forevery Rx

    ( ) xfy =

    ( ) ygz =

    fog

    x

    A B C

    g

    Figure1.1

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:21

    ii) ( ) ( ) ( ) { }

    + = = 4xfxgfxogf 2

    24x3 2 -

    + =

    10x3 2 + = forevery Rx

    Note that foggof .Thatisthecompositionofmappingsisnotcommutative.

    1.4.18Example: If ( ) 1x,x1

    1xf -

    = findf[f{f(x)}]

    Solution

    Now ( ) { } x1

    11

    1

    x1

    1fxff

    - -

    =

    - =

    x1x

    xx1 -

    = - -

    =

    Therefore ( ) { } [ ] ( )

    x1xx

    x

    x

    1x1

    1x

    1xfxfff =

    - - =

    - -

    =

    - =

    Hencef[f{f(x)}]=x

    1.5Intervals

    Let Rb,a suchthat ba < .Thesetofrealnumbersx suchthat

    a

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:22

    Further,semiopenorsemiclosedintervalsaredefinedasbelow

    [a,b)={x R:a x

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:23

    1.6.1Example: If f is realvaluedfunction find thedomainof the following

    functions.

    (i) ( ) 6x5x

    xxf

    2 + - = (ii) ( ) 2x9xf - = (iii) ( )

    2x1

    xxf +

    =

    Solution:

    Thedomainoffunctionfisthesetofallrealnumbersxforwhich f(x)isa

    realnumberi.e., f(x) ismeaningful.

    i) Thefunction ( ) 6x5x

    xxf

    2 + - = isdefinedforallrealvaluesofx except

    when

    ( ) ( ) 3x,2xor03x2xor06x5x2 = = = - - = + - .Hence f(x)isnotdefinedforx=2and

    x=3.Hencedomain(f)=R{2,3}

    ii) Clearly ( ) 2x9xf - = is defined for all real x for which thequantityundertheradicalsigni.e., 2x9 - ispositivei.e., 0x9 2 -

    or ( ) ( ) 3x30x3x3 - + - .Hencedomainoff(x)={x:3 x 3}=[3,3]

    iii) Clearly, ( ) 2x1

    xxf +

    = isdefinedforallrealvaluesof x.Sodomain

    of f(x)=R

    1.6.2Example:Findtherangeofthefollowingrealfunctions

    (i) ( ) 9x

    1xf -

    = (ii) ( ) 2xxf = (iii) ( ) x1

    xxf -

    =

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:24

    Solution:

    Sincerangeof f={y:f(x)=yandx domainf},wesubstitutef(x)=yand

    expressxintermsofyintheform ( ) yx F = ,say,andsolveforyforwhichthevaluesofxareinthedomainoff.

    i) Let ( ) y

    1y9xy

    9x1xf

    + = =

    - =

    Clearly,xisnotdefinedwheny=0

    Hencerangeof f=R{0}

    ii) Let yxyx)x(f 2 = = =

    Clearly,xisdefinedforallpositiverealvaluesofy.Hencerangeoffis

    thesetofallnonnegativerealnumbersi.e.,[0, ).

    iii) Let ( ) y1

    yxy

    x1xxf

    + = =

    - =

    Clearly, x is defined for all real values of y except when 1+y = 0

    i.e.,wheny=1

    Hencerangeoff=R{1}

    1.6.3Example:Findthedomainandrangeofthefunction2x1

    x)x(f +

    =

    Solution:

    Domain: Clearly, f(x)isdefinedforallrealvaluesofx.

    Hencedomainof f=R

    Range: Let 0yxyxyx1

    xy)x(f 22

    = + - = +

    =

    y2

    y411x

    2 - = whichisarealnumberif14y2 0and 0y

    01y4 2 - and 0y

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:25

    041y2 - and 0y

    021y

    21y

    +

    - and 0y

    21y

    21 - and 0y

    -

    2

    1,00,

    2

    1y

    Forx=0wehavey=0

    Hence,rangeof

    - =

    2

    1,00,

    2

    1f

    1.6.4Example:Findthedomainandrangeoftherealfunction

    ( ) x3cos2

    1xf -

    =

    Solution:

    Giventhat ( ) x3cos2

    1xf -

    =

    Domain:since q cos liesbetween1and+1,

    i.e., ,1cos1 - q wehave

    ,1x3cos1 - for x3 = q

    ( ) 12x3cos212 - - - - 1x3cos23 -

    3x3cos21 - forallrealx

    Hence f(x)isdefinedforall Rx

    Hencedomainof f=R

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:26

    Range:Let ( ) y1x3cos2y

    x3cos21yxf = - =

    - =

    y12x3cos - =

    But 1x3cos1 -

    1y

    121Therefore - -

    21y121 - - - -

    1y13 - - -

    1y13

    1y31

    1,

    31y

    So,rangeof

    = 1,

    3

    1f

    1.7Differentfunctions

    In thisarticlewe shall discuss somestandard real valued functionswhich

    areofmuchimportanceinthestudyofcalculus.

    1.7.1 Periodic function: A function BA:f is said to be periodic if

    ( ) ( ) a + = xfxf forevery Ax andforsome R a .Here a iscalledtheperiodofthefunction.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:27

    For example: f(x) = sin x is a periodic function with period 2p since

    sin(2 p +x)=sinxf(x)=tanxisaperiodicfunctionwithperiod p sincetan

    (p +x)=tanx.

    1.7.2 Algebraic function: the function y = f(x) which consists of finite

    numberoftermsinvolvingpowerandrootsoftheindependentvariablex,is

    calledanAlgebraicfunction.Ifradicalsignsorfractionalindicesoccurinthe

    function,itissaidtobeirrationalotherwiseitissaidtoberational.

    Forexample:

    ( ) 1xxy,1x2y

    ,6x5x

    3x2y,8xy,1xxy

    23

    1

    232

    + + = + =

    + -

    + = + = + - =

    ,

    are all algebraic functions the former three functions are rational algebraic

    functionswhereasthelattertwoareirrationalalgebraicfunctions.

    AfunctionwhichisnotalgebraiciscalledTranscendentalfunction.

    Forexample: xlog,e,xsin x aretranscendentalfunctions.

    1.7.3Trigonometricfunctions:Thesefunctionsaredefinedasbelow.

    Sine function: The function RR:sin where R is the set of real

    numbersdefinedbysinx=yforevery Rx iscalledSinefunction.Here

    Rx aretheradianmeasuresoftheangle.

    Inotherwords, thefunctionthatassociateseachrealnumberx tosinx is

    calledthesinefunction.

    ThedomainofthesinefunctionisRandtherangeis[1,+1]

    Similarly, the other trigonometric functions viz., cosine, tangent, cosecant,

    secantandcotangentcanbedefined.Howeverthedomainandrangeofthe

    trigonometricfunctionsareasstatedbelow:

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:28

    Function x domain y range definitionofthefunction

    sin R [ ] 1,1 + - yxsin = cos R [ ] 1,1 + - cosx=ytan ( )

    + - Zn:2

    1n2R p R yxtan =

    cosec { } Zn:nR - p (,1] [1, ) yxcosec = sec ( )

    + - Zn:2

    1n2R p (,1] [1, ) secx=y

    Cot { } Zn:nR - p R cotx=y

    Note that tanfunctionandsecfunctionarenotdefinedatoddmultiplesof

    2 p whereas cosec function and cot function are not defined at

    Zn,2

    .n2nx = = p p i.e.,atevenmultiplesof2 p .

    1.7.4 Inverse Trigonometric functions: We know that the inverse of

    a function f exists only when f is both one one and onto i.e., f is

    bijective. The sine function RR:sin defined by sin x = y for every

    Rx is not oneone since sine function is periodical i.e.,

    ( ) xsinxn2sin = + p wheren isan integer.However, ifwe restrict the

    domain of the function to the set

    2

    ,2

    _ p p and the corresponding

    rangetotheset[1,1],thefunction [ ] 1,12

    ,2

    :sin + -

    + -

    p p

    definedby

    + - " =

    2,

    2xyxsin p p

    isbothoneoneandonto(Provethis)

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:29

    Thedomainsandtherangesforwhichthetrigonometricfunctionsareboth

    oneoneandontoaregivenbelow:

    Function x domain y range definitionofthefunction

    sin

    + -

    2,

    2 p p [1, +1] yxsin =

    cos [0, p] [1, +1] yxcos =

    tan

    + -

    2,

    2 p p R yxtan =

    cosec { } 02

    ,2

    -

    + - p p ( ) 1,1R - - yxcosec =

    sec [ ]

    - 2

    ,0 p p ( ) 1,1R - - yxsec =

    Cot (0, p) R yxcot =

    Note that tan p p p

    cot,0cotand2

    sec0,cosec,2

    are not defined.

    Wenowdefinetheinversetrigonometricfunctionsasfollows.

    (i) Inverseofthesinefunction

    Inverseofthesinefunctiondenotedby 1sin - isthefunction

    [ ]

    - + - -

    2,

    21,1:sin 1

    p p definedby

    xysin 1 = - forevery y [1,+1]

    Whichisalsobothoneoneandonto.Thus ysin 1 - istheanglebetween

    2

    p - and

    2 p whosesineisy.Thisiscalledtheprincipalvalueof ysin 1 - .

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:30

    Forexample,since

    - =

    223and

    2

    3

    3sin

    p p p p ,wehave

    323

    sin 1 p = -

    Whereas,

    - =

    2,

    23

    2and

    2

    3

    3

    2sin

    p p p p ,

    Hence32

    23

    sin 1 p -

    (ii)Inverseofthecosinefunction

    Inverse of the cosine function denoted by 1cos - is the function

    [ ] [ ] p ,01,1:cos 1 + - - definedby xycos 1 = - forevery [ ] 1,1y + -

    Thefunction [ ] p ,0ycos 1 - iscalled theprincipalvalueof inverseofthecosinefunction.

    Forexample,since [ ] p p p ,03

    and21

    3cos = ,wehave

    321cos 1 p = -

    Also [ ] 32

    21cos,0

    32and

    21

    32cos 1 p p p p =

    - - = - etc.

    (iii)Inverseofthetangentfunction

    Inverse of the tangent function denoted by 1tan - is the function

    - -

    2,

    2R:tan 1 p p definedby

    xytan 1 = - forever Ry

    Thefunction

    - -

    2,

    2ytan 1 p p istheprincipalvalueof 1tan - function,

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:31

    Forexample,since

    - =

    2,

    23,3

    3tan p p p p wehave

    33tan 1 p = -

    Also, ( ) 4

    1tan 1 p - = - - since

    - -

    2,

    24 p p p

    Similarly, 111 cotandsec,cosec - - - functionscanbedefined.However,

    thedomainandrangeofthesefunctionsareasstatedbelow:

    i) The domain of 1eccos - is ( ) 1,1R - - , while its range is

    { } 02

    ,2

    -

    - p p

    ii) Thedomainof 1sec - is ( ) 1,1R - - ,whileitsrangeis [ ] 2

    ,0 p p -

    iii) Thedomainof 1cot - isR,whileitsrangeis ( ) p ,0(iv)Notation

    i) The functions xtan,xcos,xsin 111 - - - etc. are also denoted by

    arcsinx,arccosx,arctanxetc.

    ii) xsin 1 - shouldnotbeconfusedas ( ) xsin

    1xsin 1 = - etc.

    1.7.5Exponentialfunction

    Let + R bethesetofpositiverealnumbers.Afunction + RR:f defined

    by ( ) 0a,axf x > = is called the exponential function. In particular, ifea = where 71828.2e = approx, then ( ) xexf = is the exponential

    function.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:32

    1.7.6Logarithmicfunction

    Afunction RR:f + definedby ( ) xlogxf a = ,where + R1a iscalled a logarithmic function. In particular if ea = , then ( ) xlogxf e = iscalledthenaturallogarithm

    1.7.7HyperbolicFunctions:

    Hyperbolic functions are defined in termsof the exponential functions xe

    and xe - asfollows

    1.2ee

    xsinhxx - -

    = 2.2ee

    xcoshxx - +

    =

    3.xx

    xx

    ee

    ee

    xhcos

    xhsinxtanh

    -

    -

    +

    - = = 4.

    xx ee

    2

    xhsin

    1xechcos

    - - = =

    5.xx ee

    2

    xhcos

    1xhsec

    - + = = 6.

    xx

    xx

    ee

    eexhsinxhcos

    xhcot -

    -

    -

    + = =

    Heresinhxiscalledhyperbolicsinefunctioncoshxiscalledthehyperbolic

    cosinefunctionetc.

    Byusingtheabovedefinitionswecaneasilyprovethefollowingidentities.

    1. 1xhsinxcosh 22 = -

    2. xhtan1xhsec 22 - =

    3. 1xhcotxhcosec 22 - =

    4. ( ) yhsinxhcosycoshxhsinyxsinh = 5. ( ) ysinhxhsinycoshxcoshyxcosh = 6. ( )

    yhtanxhtan1yhtanxhtan

    yxtanh

    =

    7. xcoshxhsin2x2sinh =

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:33

    8. xsinh211xcosh2xsinhxcoshx2cosh 2222 + = - = + =

    9.xhtan1

    xhtan2x2tanh

    2 + =

    1.7.8Parametricfunctions

    Ifthetwovariablesxandyareexpressedasfunctionofathirdvariabletby

    x=f(t),y=g(t),thensuchfunctionsarecalledparametricfunctions.The

    thirdvariabletiscalledtheparameter.

    For example, consider the function y2 = 4ax. This function is satisfied by

    ( ) 222 at.a4at2forat2yandatx = = = i.e., 2222 ta4ta4 = .Hencewe say that at2y,atx 2 = = are the parametric functions of the

    givenfunction ax4y2 =

    Similarly, q q sinay,cosax = = are the parametric functions of

    222 ayx = + .

    1.7.9ModulusFunction

    Thefunctiondefinedby

    ( )

    = < -

    > = =

    0xwhen0

    0xwhenx

    0xwhenx

    xxf

    iscalledthemodulusfunction.

    Thus|x|istheabsolutevalueofx.Forexample,

    00,5555 = = - = .

    Thedomainof|x|isthesetRofrealnumberswhileitsrangeisthesetofall

    nonnegativerealnumbers.

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:34

    1.7.10TheGreatestIntegerFunction

    Let R be the set of reals and Z the set of integers. Then the function

    ZR:f definedby

    f(x)=[x]forevery Rx

    Where[x]denotesthegreatest integer lessthanorequaltoxiscalledthe

    greatestintegerfunction.

    Notethatthedomainof[x] is Rwhileitsrangeisthesetofallintegersasit

    attainsonlyintegralvalues.

    Forexample,

    [3.75]=3, [2.25]=2,[1.75]=1,[0.25]=0

    [3.5]=4,[2.75]=3,[1,25]=2,[0.5]=1

    Graphsof ex,logx,|x|and[x]:

    We now sketch the graphs of exponential, logarithmic, modulus and the

    greatestintegerfunctionsasexplainedbelow.

    (i)Graphofex:Thecurvewhoseequationis xey = where 71828.2e =

    approximatelyiscalledexponentialcurve

    Thiscurvepassesthroughthepoint(0,1)whichliesabovethexaxisand

    hasxaxisasasymptote(Anasymptoteisthestraightlinewhichtouchesa

    curveat infinity,butwhich isnotaltogetherat infinity).That is thecurve is

    extending towards but never touches the x axis. The shape of the

    curvemaybeobservedinthegraphintheFigure1.2.

    Tosketchthegraphof xey = ,weassigntheconvenient(smaller)values

    toxandfindthecorrespondingvaluesof ybytaking 71828.2e = whose

    4343.0elog10 = ,

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:35

    y=ex

    x 4 3 2 1 0 1 2 3 4

    y 0.02 0.05 0.13 0.37 1 2.7 7.4 20.1 54.6

    Tocomputey whenx=2,

    Wehave xey = or ( ) 8686.04343.2elog2ylog = = = Therefore ( ) 4.7389.78686.0ALy = = = Whenx=2,

    2ey - = or ( ) 8686.04343.02elog2ylog - = - = - = Therefore ( ) ( ) 13.01314.1AL8686.0ALy = = - =

    (ii)Graphoflogx

    The curve whose equation is 1a,xlogy a > = is called a logarithmic

    curve.Thiscurvepassedthroughthepoint(1,0)whichliestotherightofthe

    yaxixandhastheyaxisasasymptote.

    Figure1.2

    X

    Asymptote

    60

    50

    40

    30

    20

    10

    1 2 431234

    Y

    O

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:36

    Wenowsketchthegraphoflogx, asexplainedbelow.

    Example: Sketchthegraphofy=logx.

    x 10 5 4 3 2 1 0.5 0.25 0.1 0.01

    y=logx 1 0.7 0.6 0.5 0.3 0 0.3 0.6 1 2

    Figure1.3

    (iii)Graphof|x|

    Thecurvewhoseequationisy=|x| iscalledamoduluscurve.Bydefinition

    ofthemodulusfunction

    Wehave

    < -

    = =

    0xwhenx

    0xwhenxxy

    Wenowformthetablefordifferentvaluesofx

    x 4 3 2 1 0 1 2 3 4

    y 4 3 2 1 0 1 2 3 4

    X

    Y

    Asymptote3

    3

    2

    1

    1

    2

    O1041 2 3 5 7 96 8

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:37

    (iv)Graphof [x]

    Thecurvewhoseequationisy=[x]iscalledthegreatestintegercurve.By,

    definition,wehaveforanyrealnumber,[x]isthegreatestintegerlessthan

    orequaltox.Herethedomain[x]=Randrange[x]=Z

    x 2.75 1.5 0.5 0 1.25 2.75 3.5

    Y=[x] 3 2 1 0 1 2 3

    Y

    3

    3

    21

    Figure1.4

    12O

    41 2 3

    4

    4X

    2

    f(x)=x f(x)

    =x

    Figure1.5

    3

    3

    2

    1

    12

    O

    1 2 3

    2

    1

    3

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:38

    SelfAssessmentQuestions

    1. Findxandyif(3x+y,x1)=(x+3,2y2x)

    2. IfA={1,2,3},B={2,4,5}find

    (A B)x(AB)

    (b) Ax(AB)

    (c)(A D B)x(A B)

    3. IfA={x/x Nandx

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:39

    1.9TerminalQuestions:

    1. Defineanequivalencerelationwithasuitableexample.

    2. Defineamodulusfunctionwithexample.

    1.10Answers

    SelfAssessmentQuestions

    1) TheorderedPairsareequalif3x+y=x+3andx1=2y2x

    i.e.2x+y=3

    3x2y=1

    Solvingx=1,y=1

    2) A B={2}

    AB={1,3}

    BA={4,5}

    A D B=(AB) (BA)={1,3,4,5}

    (A B)x(AB)=(2)x{1,3}={(2,1),(2,3)}

    Ax(AB)={1,2,3}x(1,3)={(1,1),(1,3),(2,1),(2,3),(3,1),(3,3)}

    (A D B)X(A B)={1,3,4,5}X{2}={(1,2),(3,2),(4,2),(5,2)}

    3) Sincex216=0

    A={1,2}andB={4}

    (x4)(x+4)=0

    BxA={4}x{1,2}

    ={(4,1),(4,2)} ==>x=4,4

    Thereforex=4(x

  • DiscreteMathematics Unit1

    SikkimManipalUniversity PageNo:40

    5) x25x+6=0==>(x2)(x3)=0==>x=2,3

    A={2,3},B={2,4}andC={4,5}

    AB={3}andBC={2}

    Therefore(AB)x(BC)=(3)x(2)=(3,2)

    6) (A B)={3,4},(B C)={4}

    (A B) C={3,4} {1,4,7,8}={4}

    A (B C)={1,2,3,4} {4}={4}

    ThereforeA B C=(A B) C=A (B C)

    TerminalQuestions

    1. RefertoSection1.3.7

    2. RefertoSection1.7.9