mechanical engineering finexcell ® grades - … · mechanical engineering finexcell ® grades ......

16
Hot Formed Seamless Tubes for Mechanical Engineering High-strength fine-grain FineXcell ® grades Hot Formed Seamless Tubes for Mechanical Engineering HIGH-STRENGTH FINE-GRAIN FINEXCELL ® GRADES We’ll be sending you copies from existing stocks until the revised version is available.

Upload: hathuy

Post on 27-Jul-2018

250 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

Hot Formed Seamless Tubes for

Mechanical EngineeringHigh-strength fine-grain

FineXcell® grades

Hot Formed Seamless Tubes for

Mechanical Engineering

HIGH-STRENGTH FINE-GRAIN

FINEXCELL® GRADES

We’ll be sending you copies

from existing stocks until the

revised version is available.

Page 2: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

2

The FineXcell® series regroups V & M TUBES’ proprietary grades for fine-grain steels. FineXcell® series displays the perfect balance between high strength, excellent toughness, re-sistance to brittle fracture, and excellent suitabi-lity for welding! It is the perfect combination for the design of demanding steel structures, in the most cost effective way.

Our FineXcell® series is available both in circu-lar mechanical and square or rectangular structu-ral product range (under our MSH brand). This brochure focuses on their specific advan-tages and design requirements for circular mechanicals. Please refer to our other product line brochures for further information on the rest of our offering.

Grade portfolio Indusry division

FineXcell®: high performance fine-grain steelsV

&M

TU

BES

for s

tand

ard

grad

esV

&M

TU

BES

spec

ific

bran

ded

grad

es

Increasing technical requirements

AdvancedEngineering Grades

Avadur® series ASTM A 519

Alloyed heat treatable steels 25CrMo4, 34CrMo4, 42CrMo4, Grade 4130, Grade 4140, ...

Unalloyed heat treatable steels C35E, C45E, C60E, Grade 1045, ... Case hardening steels 16MnCr5, C10E, 20NiCrMo2-2, …

Offshore Grades

Oceanfit® series API 5L, EN 10225

X52, X65, X80, ...

Engineering Grades

Spirafort® series EN 10294

Forterior® seriesEN 10297, EN 10210Multicert® series

EN 10297, EN 10210

E355, S355J2H, Grade B, C, …

Fine-Grain High- Strength Grades

FineXcell® series Stahl-Eisen- Werkstoffblätter

S460NLH, P690QL1, ...

Basic Mechanical Grades

Square and rectangularhollow sections

Round tubesHollow bar

V & M TUBES grade brands meet and in many cases surpass the requirements of the relevant standard grades. The respective compliance with the standard is clearly indicated in the ma-terial datasheets, orders and certificates.

Page 3: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

min. y

ield strength of ty

pical grades used in crane constructionFGS 63 V~ 600 MPa

St 52355 MPa

FineXcell® 700FineXcell® 780FineXcell® 800FineXcell® 900

~ 700 - 900 MPa

FineXcell® 960960 MPa

1960 1970 1980 1990 2000

1600 tons

3200 tons

1000 tons800 tons

250 tons45 tons

2010

Maximum lifting capacity for latticed boom cranes

3

High-strength steels for record-breaking performance …

Extremely high performance such as that shown by record-breaking cranes and hydraulic cylin-ders can only be achieved with highly sophistica-ted materials. The FineXcell® series developed by V & M TUBES provides here all the safety needed to design steel structures for even more demanding operating conditions. The family

includes grades with yield strengths up to the impressive level of around 1000 MPa, enabling your structure to handle any type of load! The development of this grade series has opened up new fields in structure design: with FineXcell®, structures can now be realised that, for technical or economic reasons, would be impossible with lower-strength steels!

… and lightweight design!

With highly stressed steel structures, the struc-ture’s dead weight is a major factor in its cost effectiveness. Hence, there is a strong interest in reducing the dead weight without any loss of load-bearing capacity, i.e. the structure’s strength and the safety of its components. It is a question of satisfying this demand for lightweight con-struction while simultaneously improving the safety of highly stressed structures. This can be easily achieved with our FineXcell® grades, whose higher strength allow you to reduce the wall thickness and thus weight of the tubular structure. And each kilogram gained means improved mobility!

With the same working conditions, using FineXcell® 890 instead of simple S275 reduces weight up to 70 % in the design of the structure. Wall thicknesses are then thinner, and thus easier to process!

Fine-grain steels development enabled record lifting capacities

tension / compression

bending

100%

50%

0%

FineXcell®

960FineXcell®

900FineXcell®

800FineXcell®

780FineXcell®

700FineXcell®

460FineXcell®

360S275

Potential weight savings for construction high-strength fine-grain steels compared to S275

Potential weight savings for construction high-strength fine-grain steels compared to S275

Maximum lifting capacity for latticed boom cranes

Page 4: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

4

The reduction of wall thickness is also important for applications having to withstand internal pressure, such as hydraulic cylinders. The use of the FineXcell® series makes better mechanical properties possible while using less material.But saving weight doesn’t only mean savings in the weight of the structure and improved mobility. It also of course means less material to purchase for the same use, and less weight to handle and to transport.

We also offer FineXcell® material according to EN 10216 standard, with leakage test for pres-sure applications. Please contact us for further details on materials available.Similar high-strength grades have also been developed for offshore application. Please refer to our Oceanfit® series for further information!

P355N

Forterior® 590

FineXcell® 700

FineXcell® 780

FineXcell® 800

FineXcell® 900

Thinner walls for pressure applications with FineXcell® steels

Page 5: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

5

Chemical composition (in % by mass)

Steel grade Deliverycondition1)

Yield strength ReH min in MPa2)

Tensile strength Rm in MPa2)

Elongation Amin in %

Min. average absorbed energy KV in J

Long. Transv.FineXcell® 360 ImpactFIT 30 N 360 490 - 650 22 20 27 at –30 °C

FineXcell® 360ImpactFIT 60 N 360 490 - 650 22 20 25 at –60 °C

FineXcell® 360TempFIT 400 N

360167 at +400 °C

490 - 650390 at +400 °C 22 20 27 at –30 °C

FineXcell® 460ImpactFIT 30 N 460 560 - 720 19 17 27 at –30 °C

FineXcell® 460ImpactFIT 60 N 460 560 - 720 19 17 25 at –60 °C

FineXcell® 460TempFIT 400 N

460235 at +400 °C

560 - 720460 at +400 °C 19 17 40 at –20 °C

FineXcell® 700 ImpactFIT 40

QT 700 770 - 960 16 14 45 at –40 °C

FineXcell® 700 ImpactFIT 60 QT 700 770 - 960 16 14 40 at –60 °C

FineXcell® 700 TempFIT 300 QT

700510 at +300 °C

770 - 960620 at +300 °C

16 14 40 at –60 °C

FineXcell® 780 ImpactFIT 40 QT 780 820 - 1000 15 13 45 at –40 °C

FineXcell® 800 ImpactFIT 40 QT 800 850 - 1030 15 13 40 at –40 °C

FineXcell® 900 ImpactFIT 40 QT 900 960 - 1110 14 12 45 at –40 °C

FineXcell® 960 ImpactFIT 40 QT 960 980 - 1150 10 – 27 at –40 °C

1) N: normalized or normalized formed; QT: quenched and tempered; 2) valid for the smallest wall thickness range given in the respective material data sheets;

Chemical composition (in % by mass)

Mechanical properties (all other testing requirements according to EN 10210-1 and EN 10216-3)

Steel grade C Si Mn Pmax.

Smax.

Cr Mo Nimax.

W V Al Nmax.

Timax.

Nbmax.

FineXcell® 360ImpactFIT 30

max. 0.20

max. 0.50

0.90 to 1.65 0.025

0.020

max. 0.30

max. 0.08

0.50 – max. 0.10

min. 0.020 0.015 0.03 0.05FineXcell® 360

ImpactFIT 60max. 0.18

0.015

FineXcell® 360TempFIT 400

max. 0.20

0.020

FineXcell® 460ImpactFIT 20

max. 0.20

0.10 to 0.50

1.20 to 1.70

0.025

0.020

max. 0.30

max. 0.10

0.70 – max. 0.20

min. 0.020

0.020 0.03 0.05FineXcell® 460ImpactFIT 60 0.015

FineXcell® 460TempFIT 400 0.020

FineXcell® 700ImpactFIT 40

0.14 to 0.18

0.20 to 0.50

1.20 to 1.70

0.025 0.015 max.0.80

0.20 to 0.40

0.40 0.10 to 0.70

0.05 to 0.12

0.015 to 0.050

0.020 0.05 0.05

FineXcell® 700ImpactFIT 60 0.14 to

0.180.20 to

0.501.20 to

1.700.025 0.015 max.

0.800.20 to

0.400.40 0.10 to

0.700.05 to

0.120.015 to

0.0500.020 0.05 0.05

FineXcell® 700TempFIT 300FineXcell® 780ImpactFIT 40

0.14 to 0.18

0.20 to 0.50

1.20 to 1.70

0.025 0.015 max.0.80

0.20 to 0.40

0.40 0.10 to 0.70

0.05 to 0.12

0.015 to0.050

0.020 0.05 0.05

FineXcell® 800ImpactFIT 40

0.10 to 0.18

0.20 to 0.50

1.20 to 1.70

0.025 0.015 0.40 to 0.90

0.20 to 0.50

0.40 0.10 to 0.80

0.03 to 0.12

0.015 to0.050

0.020 0.05 0.06

FineXcell® 900ImpactFIT 40

0.14 to 0.18

0.20 to 0.50

1.20 to 1.70

0.020 0.010 0.50 to 0.90

0.30 to 0.70

0.40 0.40 to 0.80

0.03 to 0.12

0.015 to0.050

0.020 0.05 0.06

FineXcell® 960ImpactFIT 40

max.0.20

max. 0.50

1.20 to 1.70

0.020 0.010 0.40 to 1.00

0.30 to 1.00

0.40 0.40 to 1.50

max. 0.02

0.010 to0.050

0.025 0.03 0.05

Page 6: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

6

FineXcell® 700ImpactFIT 60

FineXcell® 700ImpactFIT 40

FineXcell® 360ImpactFIT 60

FineXcell® 460ImpactFIT 60

FineXcell® 780ImpactFIT 40

FineXcell® 800ImpactFIT 40

FineXcell® 900ImpactFIT 40

FineXcell® 960ImpactFIT 40

S355NLH

S460NLH

S355NH

S460NH

– 40 °C

– 50 °C

– 60 °C

Yield strength

Imp

act

toug

hnes

s te

st t

emp

erat

ure

– 30 °C

– 20 °C

– 10 °C

Page 7: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

Outstanding toughness even at very low temperatures

But fine-grain steels do not only feature high strength. Their key characteristic is their out-standing toughness as well as their excellent resistance to brittle fracture. While most of FineXcell® grades show excellent impact values at –40 °C, some were developed to withstand im-pact tests at temperature levels as low as –60 °C. FineXcell® are then the favourite choice for low-temperature applications, with Charpy values unrivalled by other grade families.

Those excellent characteristics are due to their fine-grain structure. This can be clearly illustra-ted by comparing the impact resistance of a standard S355 grade to the lowest fine-grain FineXcell® 360, with the same yield strength. The FineXcell® 360 achieves notably better impact test results thanks to the normalizing heat treatment, which significantly improves the microstructure. The very high Charpy values achieved with the FineXcell® series are attained in their quenched and tempered condition, for yield strengths exceeding 460 MPa.

7

Temperature

Imp

act

ener

gy

FineXcell® 360

Coarse grainS355

Effect of grain size on notched bar impact energy

Page 8: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

Weldability

Being used for mechanical applications, our FineXcell® tubes of course need to be welded to other tubes or components. Their excellent weldability is due to their high-quality pre-material with very low impurities and a stable production process yielding a homogeneous microstructure. To ensure the good weldability of quenched and tempered high-strength FineXcell® grades, the relatively low carbon equivalents are adjusted. Depending on the strength level and application, all common manual and mechanised welding processes may be used. Suitable welding consumables with adequate strength levels are available from well-known suppliers of filler material.

V & M TUBES has carried out weldability tests for a wide range of dimensions and strength levels of FineXcell® alloys. As an example of a typical weldability test on a pipe of FineXcell® 700 ImpactFIT 40, the picture on the left shows a cross section.

To characterise the performance of V & M TUBES steel grades, welds are tested with hard-ness measurements, tensile and bend tests and for toughness behaviour. Toughness is commonly tested with Charpy V-notch tests and, if neces-sary or on customer’s request, with CTOD tests. Bead-on-pipe tests or Tekken tests are performed to determine the material’s welding behaviour and enable the customer to produce crack-free root passes. For special projects, investigations on adapted welding technologies can be perfor-med as well as application-related testing.

0.5

1000

750

500

250

0

Carbon equivalent CEIIW

SM

YS

fo

r w

alls

≤ 1

6 m

m in

MP

a

FineXcell® 360S355J2H, E355, grade C

Normalised Q & T

0.70.3

42CrMo4, grade 4140 to125 ksi SMYS

FineXcell® 460

FineXcell® 700

FineXcell® 900

Correlation between SMYS and CEIIW of different grades

8

TIG-dressing of an FineXcell® 960 ImpactFIT 40 weld seam

Cross section of a FineXcell® 700 Impact FIT 40 weld seam; HV-bevel preparation was chosen to produce a steep edge for heat affected zone testing.

1 µm

Page 9: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

Data from weldability tests are collected in a V & M TUBES database so that customers can be easily provided with basic welding information, like heat input, pre-heating temperatures and filler material. Since welding procedures aredependent on bevel design, wall thickness or steel grade, it may be necessary to adapt the parameters of test welds to application welds to achieve similar results. Independently of the welding information from V & M TUBES, designers and welders have to conform to technical rules and standards and the state of technology.

9

Fatigue test of weld seams for crane applications

For more information on FineXcell®’s weldability, please ask for V & M TUBES welding information for your

chosen steel grade.

Page 10: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

Cranes

The demands placed on modern cranes are as many and varied as their applications and design. The challenges are growing, with a need for higher maximum lifting capacities and lifting heights, without sacrificing rapidity and mobility.

The FineXcell® series is regularly used in all types of crane construction. Using such supe-rior grades permits higher lifting capacities and lifting heights – for instance for the recent record-breaking crawler cranes with lifting capacities of several thousand tonnes. FineXcell® also achieves substantial savings in weight at the lattice jib extension of mobile cranes, thus permitting higher lifting capacities at maximum reach. Additionally, a low service weight greatly improves crane mobility.

For harbour cranes, for instance, the savings in weight permit higher operating speeds. And the lattice structures increase lifting capacity and the number of load cycles per unit of time. Any type of crane can benefit from the high performance features of our FineXcell® series.

Applications

10

Page 11: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

11

Hydraulic cylinders

Hydraulic cylinders can be found in an extremely wide range of applications. Many of them are used in extreme conditions, calling for great attention to safety. With the FineXcell® series, even higher properties can be achieved without compromising on safety.

The FineXcell® series is available in an impressi-vely wide range of dimensions and tight toleran-ces in order to minimize the machining operati-ons required on the tubes. Since they are already close to the final shape of the cylinder body, the material loss is minimized: a great advantage for our customers.

And many other applications!

Our FineXcell® grades are also used in a number of applications where they bring value to our customers. High-strength properties are benefi-cial on winch drums, as well as on the columns of truck loading cranes. Shock absorbers for heavy-duty vehicles and other structural parts are also among the numerous potential applications for fine-grain steels.

Page 12: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

12

The excellent property profile of the FineXcell® series can only be achieved with rolling and heat treatment processes geared to the grade of steel, combined with optimally adapted, product-driven steel compositions.

Fine chemistry for improved properties

The development of the fine-grain steels goes back to the 1950s. One of the decisive factors for the development of steel products that fully satisfies the varied requirements of the market has been progress in metallurgy.

Advanced quality with carefully controlled FineXcell® production

Finer micro structures can be reached with dedicated heat treatment

20 µm 20 µm 20 µm

As rolled Normalized Quenched & tempered

1 µm

Chemistry plays an important role here. FineXcell® grades have lower contents of phos-phorus and sulphur, and improved purity: this yields a lower tendency to brittle fracture and good toughness. In addition, their excellent strength and toughness properties are achieved thanks to a micro-alloying concept. The high strength of FineXcell® is a result of the grain size: the finer the microstructure, the higher the yield strength. The micro-alloying elements such as V, Nb and Ti form a large number of small, homogeneously distri-buted precipitates. These precipita-

tes delay grain growth during hot rolling and heat treatment, and facilitate a finer microstructure.

Page 13: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

13

Carefully selected hot-rolling & heat treatment parameters

Our FineXcell® series are produced in high-performance push bench, continuous mandrel and plug rolling mills. They are also available from our new PFP (Premium Forged Pipes) mill. For large diameters and/or heavy wall thicknes-ses we use the pilger rolling process.

Heat treatment is the key process for ensuring the desired characteristics. The lower range of our fine-grain steels, our FineXcell® 360 and FineXcell® 460, are normalized. The process is carried out in high-performance plants and starts with through-thickness reheating from ambient temperatures to temperatures above austenitizing temperature (Ac3). Heating is followed by coo-ling back to ambient temperature in still air. Minimum yield strengths of up to 460 MPa can be attained in this normalized condition. For higher properties, quenching and tempering are carried out: accelerated cooling with water from austenitizing temperature is carried out so that the austenite is converted to martensite. This is the step of quenching which leads to high tensile properties. The tempering done afterwards ensures a balanced combination of tensile and impact properties. Contrary to direct hardening, this quenching & tempering process provides a more uniform combination of properties through the tube’s cross section, circumference and length. FineXcell® grades achieve yield strengths of up to around 1000 MPa and Charpy values down to test temperatures of –60 °C. These heat treatments need to be conducted carefully in order to achieve and maintain the desired fine-grain size and mechanical properties. FineXcell® grades are characterised – in addition to the tensile properties at room temperature – by impact values down to low test temperatures (ImpactFIT) and for some grades also tensile properties at elevated test temperatures (TempFIT).

Fine-tuned chemical composition

Suitable hot rolling ...

... and heat treatment

Excellent tube characteristics of FineXcell® grades

Page 14: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

14

FineXcell®design book

Technical support

V & M TUBES cooperates closely with its custo-mers, jointly developing a tailored concept of tube materials and dimensions for each structure. We provide, when necessary, design verifica-tions for individual steel tube components or assemblies, for example in order to obtain the building authorities’ approval. We also offer support in drawing up application-related wel-ding recommendations as well as fatigue tests for components.

Cold forming

FineXcell® steels provide superior cold formabi-lity. Such operations are easily carried out within the scope of the steels’ deformability characteri-zed by uniform elongation. During cold forming, it is important to take into account the additional force required due to the enhanced yield strength and the resultant intensified springback. In addi-tion, the change in strength properties caused by cold forming and the impairment of workability and toughness characteristics must also be borne in mind. Cold forming is permitted at elevated tempera-tures, up to just short of the maximum allowable stress-relieving temperature. If, after relatively extensive cold forming, subsequent heat treat-ment is required to diminish strain hardening and improve the toughness properties impaired by forming, stress-relieving usually suffices unless repeated normalization or quenching & tempe-ring are specified in the acceptance conditions or technical rules. It should be remembered that the effect of cold forming cannot be entirely reversed by stress-relieving.

Hot forming

Hot forming, i.e. forming at temperatures above the maximum permissible temperature for stress-relieving, can usually be carried out without difficulty. The rules applicable to hot forming should also be observed for local adjustment and straightening work, during which the temperature must be monitored. Where normalized steels are concerned (up to FineXcell® 460), the workpiece temperature during hot forming must not exceed 1050 °C because of the risk of grain coarsening. Exces-sive soaking must also be avoided. Before the final hot forming stage or in single-stage hot forming, the workpiece should not be heated to more than 980 °C. If, however, grain coarsening does occur, inter-mediate cooling to temperatures below 700 °C is necessary before the final heat treatment. The forming process should be completed at above 750 °C or, if the degree of forming does not exceed 5 % during the last stage, at above 700 °C. This does not include straightening and smoothing processes. Forming with a predominance of upsetting, e.g. forging, can be carried out in the upper tempe-rature range, while forming in which stretching occurs should be effected in the lower tempera-ture range. After hot forming in the conditions described above, cooling should take place in still air. The rate of cooling depends on the wall thickness. Since excessively slow cooling can have a detri-mental effect on the strength and toughness properties, an accumulation of heat must be avoided at all costs. If the wall thickness is small and the steel is normalized retarded cooling or tempering may be necessary. If the above conditions are complied with, nor-malizing can be omitted as long as the properties specified in the technical delivery conditions, on the VdTÜV data sheet, the V & M TUBES’s data sheet or the order are complied with. Otherwise or if demanded by higher-order regulations, the steel has to be normalized.

The hot forming temperature for quenched & tempered steels, starting from FineXcell® 690 should not exceed 1050 °C. After hot forming, quenching & tempering must always be carried out again in accordance with V & M TUBES’s material datasheets. It is advisable to follow the recommendations of sections 3.1 (hot forming) and 3.2 (cold forming) of SEW 088. V & M TUBES engineers are pre-pared to give support for your specific forming requirements.

Machining

FineXcell® series can usually be machined without any particular concern. It is of course important to select the right tools and machining conditions, adapted to each grade mechanical properties.

Page 15: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

11

Page 16: Mechanical Engineering FINEXCELL ® GRADES - … · Mechanical Engineering FINEXCELL ® GRADES ... API 5L, EN 10225 X52, X65, ... It also of course means less material

Vallourec Group

V & M DEUTSCHLAND GmbH Industry Theodorstraße 90 40472 Düsseldorf · Germany telephone +49 211 960-3580 telefax +49 211 960-2373 e-mail [email protected]

Technical Consulting telephone +49 211 960-2860 telefax +49 211 960-2350 e-mail [email protected]

V&

M D

02B0

006B

-12G

B