mechanical properties of materials -...

34
Mechanical & Thermal Properties of Materials D. Pintea, R. Zaharia University of Timisoara, Romania Kaliske, G. Kaklauskas, D. Bacinskas, V. Gribniak Vilnius Gediminas Technical University, Lithuania Á. Török, M. Hajpál Bd tU i it fT h l dE i H BudapestUniversityofT echnology andEconomics, Hungary

Upload: others

Post on 30-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Mechanical & Thermal Mechanical & ThermalProperties of Materials

D. Pintea, R. ZahariaUniversity of Timisoara, Romania

Kaliske, G. Kaklauskas, D. Bacinskas, V. GribniakVilnius Gediminas Technical University, Lithuania

Á. Török, M. HajpálB d t U i it f T h l d E i HBudapest University of Technology and Economics, Hungary

Page 2: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

2.3 Design values of material properties

Characteristic value of a mechanical property for 

Mechanicalproperties

normal temperature design to EN1993‐1‐1fiMkfid XkX ,, / γθ=

properties

Reduction factor for a mechanical property with respect to temperature= (X / X )

Partial material safety factor for fire situation;

Check NA!

= (Xk,θ / Xk ) factor for fire situation; 1.0 recommended for thermal & mechanical properties

Material property at elevated 

⎪⎧ property the of increase an if/ ,,θ γ fiMkX

temperatures

⎪⎪

⎨= property the of increase an if

safetyfor favourable is,,

,

θ

γ

γ fiMk

fid

XX

Thermal⎪⎪

⎩ safetyfor leunfavourab is property the of increase an if,, θγ kfiM X

www.structuralfiresafety.org

Thermalproperties

Page 3: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

STEEL EN 1993‐1‐2

Page 4: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3. Material Properties Steel

Carbon t l

Annex A EN1993‐1‐1

ambient values

steelStrain‐hardening

Thermal properties

Mechanical properties propertiesproperties

Stress-strain relationships

Stainless steel Thermal elongation

Specific heatElastic modulus

Yield strength

Specific heat

Thermal conductivity

Annex C

www.structuralfiresafety.org

Page 5: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.2.1 Stress‐strain relationships

Stress σf y, θ

2 ~ 50 K/minValid only for heating rates:

f p, θ

Tangent modulus Et,θ

)()()(

22,,,,,

2

θθθ

θθθθθ

εεεεεε

apy

apypy

cEcbEca

+−=+−−=

E a, θ = tan α )(2)(

)()(

,,,,,

2,,

,,,

θθθθθ

θθ

θθθ

εε pyapy

py

apy

ffE

ffc

−−−

−=

Strainε p, θ

α

ε y, θ ε t, θ ε u, θ 0 02 0 15 0 20 f / E = 0.02 = 0.15 = 0.20= fp,θ/ Ea,θ

( ) ( )⎪⎪⎧

−==≤

f

for

22

,,,, εσεεθ

θθθθ

εε y

aatp

bf

bE

EEE( )

( )( )

[ ]⎪⎪

⎪⎪⎪

⎨==≤≤

−−+−=−−

=<<

)/()(1f 0for

for

,,,,

2,

2,2

,2

,,,,

σεεε

εεσεεε

θθθθ

θθ

θ

θθθθ

εε

ytty

yp

y

ytyp

ffE

aa

cfaa

E

[ ]⎪⎪⎪

⎩ =−≥−−−=−<<

0.0for )/()(1for

,

,,,,,,

σεεεεεεσεεε

θ

θθθθθθ

u

tutyut f

www.structuralfiresafety.org

Page 6: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Reduction factors

1Reduction factor

BS5950-8 (2% strain)0.8

BS5950 8 (2% strain)

Yield strength

0 4

0.6k p, θ k E, θ k y, θ

Yield strength

Sl f li

0.2

0.4 Slope of linear elastic rangeproportional

limit

0

0.2 limit

0 200 400 600 800 1000 1200Temperature [ oC]

Page 7: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Stress‐strain curves for S275

[ / 2]300Stress [N/mm2]

200

25020 C200 C300 C

Correlation at all temperatures is in good agreement.150

200 300 C400 C500 C

100

600 C700 C800 C

0

50 Test data

00.0 0.5 1.0 1.5 2.0

Strain [%]

Page 8: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

CONCRETE 1992‐1‐2

Page 9: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3. Material Properties Concrete

EN1992-1-1ambient values

Normal weight Mechanical properties

Stress-strain relationshipsElastic modulus

concreteReinforcing steel +

propertiesYield strength

Thermal elongationPrestressing steel Thermal

properties

Thermal elongationSpecific heatThermal conductivity

High strength concrete

conductivity

Section 6

Lightweight concrete The values of material properties given in this section shall be treatedgiven in this section shall be treated as characteristic values.

www.structuralfiresafety.org

Page 10: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.2.2.1 Concrete under compression

⎪⎪⎨

⎧≤

+=

θθθ

θ εεεεε

ε

θσ,13

,1,1

, for ])/(2[

3

)(c

cc

cf

Stress σ⎪⎪⎩

⎨≤< θθ εεε

θσ

,1,1for modelslinear -nonor Linear )(

cuc

V lid l fStress σ

f c, θ2 ~ 50 K/minValid only for

heating rates:1.

2. The three parameters, fc θ, εc1 θ and εcu1 θ, arefc,θ, εc1,θ and εcu1, θ, are temperature-dependent

www.structuralfiresafety.org

Strain εε c1, θ ε cu 1, θ

Page 11: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Concrete compressive strength parameters

Table 3.1

θSiliceous &calcareous

Siliceous concrete has larger strength reduction than calcareous concrete.

[°C]εc1,θ εcu1,θ

20 0.0025 0.0200

Variation of strains εc1,θ and εcu1,θ with temperatures are the same for both concrete types.

100 0.0040 0.0225

200 0.0055 0.0250

300 0.0070 0.0275

types.

1Reduction factor of compressive strength fc,θ

300 0.0070 0.0275

400 0.0100 0.0300

500 0.0150 0.03250.6

0.8Calcareousaggregate

600 0.0250 0.0350

700 0.0250 0.0375

800 0.0250 0.04000 2

0.4

gg g

Siliceousaggregate

900 0.0250 0.0425

1000 0.0250 0.0450

1100 0 0250 0 0475

0

0.2

0 200 400 600 800 1000 12001100 0.0250 0.0475

1200 - -

0 200 400 600 800 1000 1200

Temperature [oC]

Page 12: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.2.2.2 Concrete under tension

Conservatively, tensile strength of concrete should normally be ignored.

1

Reduction factor of tensile strength If it is necessary to consider the

0.8

1

In absence of more

tensile strength

0 4

0.6In absence of more accurate information, these values should

0.2

0.4 be used.

00 100 200 300 400 500 6000 100 200 300 400 500 600

Temperature [oC]

Page 13: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Factors affecting strength of concreteFactors affecting strength of concrete

• Mix proportions

• Water cement ratioWater cement ratio

• Aggregate cement ratio

• Type of aggregate– (Schneider and Horvath 2003)(Schneider and Horvath 2003)

Page 14: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Comparison exper (1‐3) predicted (4‐9) compressive concrete under fire

1

1,2 Concrete strength, fc,θ/fc siliceous aggregates

0,8

1

0 4

0,6 (1) (2)

(3) (4)

0,2

0,4 (5) (6)(7) (8)

00 200 400 600 800

(9)Temperature, °C

Page 15: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

The strain componentsThe strain components

( ) ( ) ( ),, , , ,tot th tr cr tσε = ε σ σ θ + ε θ + ε σ θ

the total straintotεthe stress–related strain

h h l iσε

the thermal strain

the transient creep strain (load induced thεtr crε p (

thermal strain),tr cr

Page 16: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

The thermal strain of concreteThe thermal strain of concrete

The thermal strain is the free thermal expansion from the firep

Mainly influenced by the type and amount of aggregateaggregate

The coarse aggregate plays an important role (Schneider and Horvath 2003)

Page 17: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Transient creep strainTransient creep straindevelops during first heating under load. It is unique p g g qto concrete. 

Lits is much larger than the elastic strain, contributesLits is much larger than the elastic strain, contributes to a significant relaxation and redistribution of thermal stresses in heated concrete structures.thermal stresses in heated concrete structures. (Khoury 2000). 

factors affecting the transient strain are type offactors affecting the transient strain are type of aggregate, aggregate/cement ratio, curing conditions loading level (Schneider and Horvathconditions, loading level (Schneider and Horvath 2003). Mathematical models for transient thermal strain calculations are reviewed by Youssef andstrain calculations are reviewed by Youssef and Moftah (2007).

Page 18: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Shrinkage strainShrinkage strain

Could be added to the eq. of strain

However, since all experimental highHowever, since all experimental high temperature data are reported from unsealed test conditions the shrinkage component cantest conditions the shrinkage component can be viewed as being included in the thermal strain. 

shrinkage is assumed to be independent ofshrinkage is assumed to be independent of loading (Nielsen et al 2004). 

Page 19: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Explosive spallingExplosive spallingWhen the moisture content is less than 3% by weight explosive spalling is unlikely to occur. Above 3% more accurate assessments, moisture content, type of aggregate, permeability of concrete and heating rate should be considered. 

Spalling can be grouped into four categories: (a) aggregate spalling; (b) explosive spalling; (c) surface spalling; (d) corner/sloughing‐off spalling. The first three occur during the first 20–30 min into a fire and are influenced by the heating rate, while the fourth occurs after 30–60 min of fire and is influenced by the maximum temperature. 

Page 20: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Explosive spalling (contd )Explosive spalling (contd.)The main parameters affecting the spalling effect are p g p gcontent of moisture in concrete, the heating condition, compressive stresses, thickness of pconcrete, position of reinforcement, mix proportion, fibre volume (Schneider and Horvath 2003). ( )

The prediction of spalling is now becoming possible with the development of thermo‐hydro‐mechanicalwith the development of thermo hydro mechanical nonlinear finite element models capable of predicting pore pressures (Khoury 2000).predicting pore pressures (Khoury 2000).

Page 21: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.2.3 Reinforcing steelStress σf y, θ

2 ~ 50 K/minValid only for heating rates:

f p, θ

Tangent modulus Et,θ

)()()(

22,,,,,

2

θθθ

θθθθθ

εεεεεε

apy

apypy

cEcbEca

+−=+−−=

E a, θ = tan α )(2)(

)()(

,,,,,

2,,

,,,

θθθθθ

θθ

θθθ

εε pyapy

py

apy

ffE

ffc

−−−

−=

Strainε p, θ

α

ε y, θ ε t, θ ε u, θ 0 02 0 15 0 20 f / E

Class A reinforcement:ε t θ = 0 05; ε θ = 0 10= 0.02 = 0.15 = 0.20= fp,θ/ Ea,θ

( ) ( )⎪⎪⎧

−==≤

f

for

22

,,,, εσεεθ

θθθθ

εε y

aatp

bf

bE

EEE

εst,θ 0.05; εsu,θ 0.10

( )( )

( )

[ ]⎪⎪

⎪⎪⎪

⎨==≤≤

−−+−=−−

=<<

)/()(1f 0for

for

,,,,

2,

2,2

,2

,,,,

σεεε

εεσεεε

θθθθ

θθ

θ

θθθθ

εε

ytty

yp

y

ytyp

ffE

aa

cfaa

E

[ ]⎪⎪⎪

⎩ =−≥−−−=−<<

0.0for )/()(1for

,

,,,,,,

σεεεεεεσεεε

θ

θθθθθθ

u

tutyut f

www.structuralfiresafety.org

Page 22: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Reduction factors Class N steel

3.2.3 Reinforcing steelTable 3.2a

Without material t t i fi

1

fsy, tension rebar (hot-rolled) for strain >= 2%

Reduction factor

– Class N steel tests in fire

0 8

1)

fsy, tension rebar (coldworked) for strain >= 2%fsy, compression & tensionrebar for strain < 2%

0 6

0.8 rebar for strain < 2%fsp, hot-rolled rebar

fsp, cold worked rebar

0 4

0.6Es, hot-rolled rebar

Es, cold worked rebar

0.2

0.4

0

0.2Class N Reinforcing Steel

www.structuralfiresafety.org

0 200 400 600 800 1000 1200Temperature [oC]

Page 23: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Reduction factors Cl X t l

strength

3.2.3 Reinforcing steelTable 3.2b

1Reduction factor

– Class X steel tested in fire

0.8

1fsy, tension rebar (hotrolled & cold worked) forstrain >= 2%fsy compression & tension

0.6

0.8 fsy, compression & tensionrebar (hot rolled & coldworked) for strain < 2%fsp, hot rolled & coldworked rebar

0.4

0.6 worked rebar

Es, hot rolled & coldworked rebar

0.2

0

Class X Reinforcing Steel

www.structuralfiresafety.org

0 200 400 600 800 1000 1200Temperature [oC]

Page 24: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

Thermal Properties

Page 25: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

STEEL

Page 26: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.4.1.1 Thermal elongation Steel3.4 Thermal properties

The nonlinear model incorporating the effect of phase change in steel crystal structure between 750°C & 860°C.

20Thermal elongation Δl /l [x10-3]

16 Phase change in crystal structure

12

4

8

0

4

0 200 400 600 800 1000 1200Temperature [ oC]

Page 27: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.4.1.2 Specific heat Steel

The model incorporates the effect of phase change in steel crystal structure at 735°C.

Phase change in

5000

Specific heat [J/kg K]Phase change in crystal structure

4000

3000

1000

2000

0

1000

0 200 400 600 800 1000 1200Temperature [ oC]

Page 28: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.4.1.3 Thermal conductivity Steel

Thermal conductivity [W/m K]

50

60

40

20

30

Constant

10

20 Constantafter 800°C

00 200 400 600 800 1000 1200

Temperature [ oC]

Page 29: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

CONCRETE

Page 30: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.3.1 Thermal elongation of concrete3.3 Thermal properties of concrete

It is assumed that siliceous concrete expands more at elevated temperatures than calcareous concrete.

16Thermal strain [x10-3]

12

14

Siliceous

8

10Siliceous

aggregate No further thermal

4

6 Calcareous aggregate

expansion

0

2www.structuralfiresafety.org

0 200 400 600 800 1000 1200

Temperature [oC]

Page 31: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.3.2 Specific heat of concrete3.3 Thermal properties of concrete

The moisture content is modelled by the peak values, situated between 100 °C and 115°C.

2.5Specific heat [kJ/kg K] For both

siliceous and calcareous

2 (Moisture content, u = 3%)

calcareous aggregates

1.5 (u = 1.5%)

0 5

1

(u = 0%)

0

0.5

www.structuralfiresafety.org

0 200 400 600 800 1000 1200Temperature [oC]

Page 32: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.3.2 Density of concrete

3.3 Thermal properties of concrete

Percentage reduction of densitry

y

0 95

1

0.9

0.95

0.8

0.85 Density reduces due to water loss

0.75

0.8

www structuralfiresafety org

to water loss

0.70 200 400 600 800 1000 1200

Temperature [oC]

www.structuralfiresafety.org

Temperature [ C]

Page 33: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.3.3 Thermal conductivity of concrete

3.3 Thermal properties of concrete

Determined between the lower and upper limit values:

2Thermal conductivity [W/m K] Set by NA

1.6

Upper limitFor both siliceous and

0 8

1.2Upper limit siliceous and

calcareous aggregates

0 4

0.8Lower limit

0

0.4

www.structuralfiresafety.org

0 200 400 600 800 1000 1200Temperature [oC]

Page 34: Mechanical Properties of Materials - cvut.czpeople.fsv.cvut.cz/~wald/fire/COST_C26_Prague/08-10-25/... · 2008. 10. 30. · a,θ = 002 0.02 = 015 0.15 = 020 0.20 ( ) ( ) ⎪ ⎪ ⎧

3.4 Thermal elongation of reinforcing and g gprestressing steel

16

18Thermal elongation Δl /l [x10-3]

12

14

16 Prestressing steel

Reinforcing steel

8

10

12 g

Phase change in

4

6Phase change in crystal structure

0

2

0 200 400 600 800 1000 1200

www.structuralfiresafety.org

0 200 400 600 800 1000 1200

Temperature [oC]