membrane potentials: where do they come from?

14
embrane Potentials: Where Do They Come From? K + Na + ATP [Na] o ~150 mM out in [K] o ~15 mM [Na] i ~15 mM [K] i ~150 mM Gibbs Free Energy Concentration Gradients = Potential Energy Chemical potential difference = Influx = Efflux = Equilibrium Separation of Charge = Electrical Potential K + ‘Leak’ Channel + z = charge V for an ion: @ Equilibrium: Nernst Potential F = constant @ 23° z=+1 E m ~ -60mV

Upload: ciaran-lang

Post on 02-Jan-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Na +. ATP. K +. V. Membrane Potentials: Where Do They Come From?. Concentration Gradients = Potential Energy. Gibbs Free Energy. out. in. [Na] i ~15 mM. [Na] o ~150 mM. [K] i ~150 mM. [K] o ~15 mM. Chemical potential difference. –. +. K + ‘ Leak ’ Channel. E m ~ -60mV. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Membrane Potentials: Where Do They Come From?

Membrane Potentials: Where Do They Come From?

K+

Na+

ATP

[Na]o~150 mM

out

in

[K]o ~15 mM

[Na]i ~15 mM

[K]i ~150 mM

Gibbs Free Energy

Concentration Gradients = Potential Energy

Chemical potential difference

= Influx

= Efflux

= Equilibrium

Separation of Charge = Electrical Potential

K+ ‘Leak’ Channel+–

z = charge

V

for an ion:

@ Equilibrium:

NernstPotential

F = constant

@ 23°z=+1

Em~ -60mV

Page 2: Membrane Potentials: Where Do They Come From?

Resting Membrane Potential: Steady State

K+

Na+

ATP

[Na+]o~150 mM

out

in

[K+]o ~15 mM

[Na+]i ~15 mM

[K+]i ~150 mM

= Influx

= Efflux

= Equilibrium

V

Nernst Potential:

[Cl-]o ~150 mM[Cl-]i ~15 mM

PNa

PK

PCl

Em~ -55mV

ENa = ~ +60 mV

EK = ~ -60 mV

ECl = ~ -60 mV

Relative Permeabilities @ Rest (varies) PK : PNa : PCl = ~ 1 : 0.01 : 0.001

Net Fluxes => Steady State @ rest

Goldman-Hodgkin-Katz Potential:

Electromotive Force EMF = Em - Eequil

EMF < 0

EMF > 0

EMF = 0

for cations:

EMFNa = Na/glucose co-transport?

=> ~ 100x glucose gradient!(Em – ENa) = -55mV – 60 mV = -115 mV

Page 3: Membrane Potentials: Where Do They Come From?

Em

Distance from stimulus

‘space constant’ ~1-10 µm

Na+

Na+

K+ K+K+K+

Emrest

~ -55mV

Stimulus = Open Na Channel (typically)

= ⇑ PNa EMFNa <<0

Emrest

Emstim

K+ K+K+K+

Electrotonic Conduction

Fast IonicCurrent

out

in

Fast Spread of Depolarization!

= “electrotonic conduction”

“Depolarize”= Signal

Decay ofDepolarization= Short RangeConduction

K+ efflux = negative feedback

EMFK > 0

Page 4: Membrane Potentials: Where Do They Come From?

V

Graded Potentials = Graded ResponseNa+

K+ K+K+K+ Ca+2Voltage Gated Calcium Channel

Erest

100%

0%

openchannels

E50

large stimulus

small stimulusEm

rest

Depolarization w/o Action Potential

- Small Cells

• Smooth Muscle Cells

• Tonic Muscle Fibers

• Sensory & Brain Cells (Ca+2 => signaling)

• Endocrine Cells (Ca+2 => secretion)

Em dependson stimulus!

= “graded potential”

Retinal Amacrine cells

out

in

Em

?

depolarization

Page 5: Membrane Potentials: Where Do They Come From?

V

Na+

K+K+

Ca+2

Action Potentials = Long Distance Conduction

V

Ca+2

V

Ca+2

V

Ca+2

V

Ca+2

V

Ca+2

Em

out

in

Initial Depolarization

Open Voltage Gated Channels

Electrotonic Conduction

Po

siti

ve F

eed

bac

k!

Electrotonic Conduction

Na+ Ca+2Ca+2 Ca+2Ca+2Ca+2 Ca+2

Distance from stimulus

• Not Graded! “All-or-Nothing” Em

Depolarization

• No Distance Limit!

Erest

Estim

• Depends on High Density VG Channels

E50

Page 6: Membrane Potentials: Where Do They Come From?
Page 7: Membrane Potentials: Where Do They Come From?

V

Na+

K+K+

Ca+2

V

Ca+2

V

Ca+2

V

Ca+2

V

Ca+2

V

Ca+2

out

in

Na+ Ca+2Ca+2 Ca+2Ca+2Ca+2 Ca+2

Action Potentials = Pos + Neg Feedback

V

Em

time

+ feedback Neg feedback:

- Ca-dependent VGCC Inactivation- Ca-dependent K-Channels- Voltage Gated K-Channels

“Ca+2 Action Potential”

Low [Ca+2]i @rest -> Hi [Ca+2]i @stim => Must Pump Out!

- Embryonic & Smooth Muscle- Cardiac Muscle (sort of)- Crustacean Muscle- Plants, Paramecia

Slow!

K+

V

K+

V

Page 8: Membrane Potentials: Where Do They Come From?

Ventricle

Cardiac Action Potentials = Ca+2 & Na+ Currents

Fast AP Component!Voltage Gated Sodium Channels

VG Sodium Channel:FastInactivation

Slow AP Component: VGCC

PCa

PNa

SA node

AV node

Purkinje

Ca+2 AP

Page 9: Membrane Potentials: Where Do They Come From?

Na+ Na+ Na+Na+Na+Na+K+K+

Na+

V

Na+

K+K+

V VVV Vout

in

V

V

Na+ Na+ Na+Na+Na+Na+

V

Em

time

PNaPK

Erest

Ethreshold

Refractory period:

Na+ Action Potentials: Skeletal Muscle & Neurons

Neg feedback:

- Voltage Gated K-Channels

- VGNaC Inactivation

- VGNaC Re-activate

- VGKC Close

Page 10: Membrane Potentials: Where Do They Come From?

Na+K+ K+K+K+

Emrest

out

in

How Many Na+ Ions Does it Take to Depolarize?

Emstim

Q = Em Cm

# of charges(Coulombs)

Capacitance (Farads)

Q = (0.100 V) (10-6 F cm-2)

-55mV

+40mV

= 10-7 C cm-2

(96,500 C/mol)

= ~ 10-12 mol Na+ cm-210 µm cell? [Na+]i

Does Depolarization Run Down the Gradients?

K+

Na+

ATP

= ~ 10-8 mM

[Na+]i << [Na+]i (~ 10 mM)

Na+ ? Very Slowly!

Page 11: Membrane Potentials: Where Do They Come From?

Action Potentials: Long Distance Depolarizations

Axon = AP(VGSC)

Soma = Electrotonic

Axon Terminals = Electrotonic

(→ VGCC)

‘Typical’’ Motor Neuron (AP):

Inverts: 1-4 m/secVerts: 10-100 m/sec

Limit to Velocity of Conduction?

Motor Neuron: Sensory Neuron:

Dendrite/Axon= AP (VGSC)

motor neurons

sensory neurons

interneuronsinterneurons

Dendrites,

Page 12: Membrane Potentials: Where Do They Come From?

Na+ Na+ Na+

VV Vout

in

Na+ Na+ Na+

Na+ Action Potentials: Velocity of Conduction?

Electrotonic Conduction FAST⇒

ChannelPermeation

⇒ SLOW

Velocity VGNaC spacing∝

Na+

V V

K+

Em

?

gi = 1/Ri ∝ r2

Internal Na+

Conductance (gi)gm = 1/Rm

∝ 2r

Membrane K+

Conductance (gm)

VGNaC spacing ∝

?Ethreshold

Page 13: Membrane Potentials: Where Do They Come From?

Na+ Action Potentials: Fast Enough?

Typical Axon ~10µm ⇒ < 5 m/sec

Giant Axon ~500µm ⇒ 10-50 m/sec

Invertebrates:

Vertebrates: 10-100 m/sec

Myelin (Schwann Cells)

Na+

1 -2 mm internodal

⇓ gm

⇑ r

~10 µmV VV

Na+

Page 14: Membrane Potentials: Where Do They Come From?

AP Initiation: Cardiac Pacemaker

V VV

Em

Na+

Ca+2 Ca+2

K+ K+ SA Node

Neural Modulation:

• Sympathetic (accelerans)⇒Norepinephrine-adrenergic receptor G-protein, etc⇒ SR Ca-ATPase⇒⇑

• Parasympathetic (vagus)⇒Acetylcholinemuscarinic Ach receptor G-protein, etc⇒ open ⇒ K+ channel

+–

Na+ ‘Leak’ Channel(“Funny” Channel)

⇒slow depolarization

Ca+2 AP

Otto Loewi 1921 (Nobel 1936)

VGCC InactivationVGKC Opening

Ethreshold

Purkinje fibers:Na/Ca AP conduction