mensajero estelar no. 72 octubre

89
S O V A F A A C A Sociedad Venezolana Asociación Carabobeña de de Aficionados a la Astronomía Astronomía Mensajero Estelar Año 39 Nº 72 Octubre- Diciembre de 2014 Contenido: - Noticias - ¿Llego el Voyager a la Heliopausa? - Radiantes del Trimestre - La Supernova más brillante de la historia - Fases de la Luna - Infrared Photometry of the Pleyades - Cúmulo Estelar de las Híades - Nuevo Ciclo del Calendario Maya - Eclipse Total de Luna de Oct. 08 - ¿Por qué la Luna no es una esfera perfecta? - ¿Cuánto de la superficie lunar vemos? - Methane Plumes in the Arctic - Solar Variability and Terrestral Climate - Olas de 5 m de altura erosionan el Hielo Ártico - ¿Pudo el Bosón de Higgs Colapsar el U. - Old pre-main-sequence stars - Ocultación de Marte por la Luna - Temperaturas Anómalas en Julio y Agosto - La GMR de Júpiter se achica - Deflexión de la luz por el Sol - Nuevas Enanas Rojas cercanas al Sol - Born Betwen Nov. 29 and Dec. 18 … - A new wiew of the red planet - Planetas Acuosos - Violenta historia del Sol joven… - Meteorito en Nicaragua - Junio de 2014, el más cálido registrado - Técnica Lucky Image… - Las Geminíadas www.sovafa.com, www.sovafa.org, jesusotero@hotmail.com, @astrorecord, @sovafa

Upload: vongoc

Post on 30-Dec-2016

229 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Mensajero Estelar No. 72 Octubre

S O V A F A A C A Sociedad Venezolana Asociación Carabobeña de

de Aficionados a la Astronomía

Astronomía

Mensajero Estelar

Año 39 Nº 72 Octubre- Diciembre de 2014

Contenido: - Noticias - ¿Llego el Voyager a la Heliopausa?

- Radiantes del Trimestre - La Supernova más brillante de la historia

- Fases de la Luna - Infrared Photometry of the Pleyades

- Cúmulo Estelar de las Híades - Nuevo Ciclo del Calendario Maya

- Eclipse Total de Luna de Oct. 08 - ¿Por qué la Luna no es una esfera perfecta?

- ¿Cuánto de la superficie lunar vemos? - Methane Plumes in the Arctic

- Solar Variability and Terrestral Climate - Olas de 5 m de altura erosionan el Hielo Ártico

- ¿Pudo el Bosón de Higgs Colapsar el U. - Old pre-main-sequence stars

- Ocultación de Marte por la Luna - Temperaturas Anómalas en Julio y Agosto

- La GMR de Júpiter se achica - Deflexión de la luz por el Sol

- Nuevas Enanas Rojas cercanas al Sol - Born Betwen Nov. 29 and Dec. 18 …

- A new wiew of the red planet - Planetas Acuosos

- Violenta historia del Sol joven… - Meteorito en Nicaragua

- Junio de 2014, el más cálido registrado - Técnica Lucky Image… - Las Geminíadas

www.sovafa.com, www.sovafa.org, [email protected], @astrorecord, @sovafa

Page 2: Mensajero Estelar No. 72 Octubre

Noticias

1.- La Corona Solar es mucho más grande que lo que se pensaba. Recientes observaciones realizadas con el satélite

STEREO evidencian que esta se extiende más de 8 millones de km de la superficie del Sol.

2.- Datos obtenidos por la sonda Cassini parecen indicar que el interior de Titán podría contener un océano muy salado,

de acuerdo a mediciones de micro gravedad realizadas por la sonda. Estas sales serían de Azufre, Sodio, y Potasio.

3.- El Observatorio “Athena” fue incorporado a la visión cósmica de la Agencia Espacial Europea, ESA, en su plan 2015

– 2025. El mismo estudiará el Universo caliente y energético, estará en el punto de equilibrio gravitatorio “Lagrange 2

(L2), previéndose su lanzamiento para el año 2028.

4.- Un equipo de investigadores de la Universidad de Nueva Gales del Sur, en Australia, ha descubierto un planeta similar

a la Tierra potencialmente habitable a tan sólo 16 años luz de distancia. Llamado Gliese 832, es una "súper-Tierra" con

una masa 5 veces la de nuestro planeta. Tarda 16 días en completar una órbita alrededor de su estrella; una enana roja

cuyo brillo es menor al del Sol, pero debido al tiempo que tarda en orbitarla tiene aproximadamente la misma energía

estelar que la Tierra.

5.- En Julio la actividad solar volvió a disminuir muy drásticamente. Luego del Máximo a que llegó el año pasado, esta

actividad decayó de manera bastante brusca, para luego, desde abril pasado volver a incrementarse, y en Julio volvió a

caer de manera brusca.

6.- El asteroide 2014 KM4 de 192 metros descubierto, a principios mayo, ha pasado de forma segura por el sistema

Tierra-Luna a 0.17 AU de distancia el 21 de abril. Hasta el momento, la trayectoria lo lleva a una ruta de colisión con el

gigante del Sistema Solar, Júpiter en el año 2022.

7.- El Exoplaneta OGLE-2013-BLG-0341LBb, situado a 3.000 A.L. de la Tierra, posee condiciones muy parecidas a las

del entorno terrestre. Es más frío que la Tierra, pues su estrella es más pequeña que el Sol, pero es un objeto

potencialmente habitable.

8.- El 2 de Septiembre se descubrió un asteroide que nos pasó a unos 38.000 km dos días antes. El objeto mide solo unos

8 m de diámetro y fue catalogado como 2014 RA

9.- El día 3 de Septiembre se observaron 305 bolas de fuego sobre el SE de USA, el número más elevado que se ha

observado hasta ahora. Este año solo el día 13 de Agosto, máximo de las Perseidas se detectaron unos 105 bólidos, y la

gran mayoría de ellos conectados con el radiante.

10.- En Agosto la periodista y locutora Amalia Heller entrevistó a Jesús Otero por Mágica 99.1 FM sobre la lluvia de

estrellas de las Perseidas y la Conjunción de Venus y Júpiter, en su programa La Magia de Amalia Heller que se transmite

de Lunes a Viernes de 7:00 a 8:30 pm

11.- El 04 de Septiembre Amalia Heller nuevamente entrevistó a Jesús Otero, pero esta vez sobre el Asteroide 2014 RC

que nos pasó rozando el día 07 de septiembre.

12.- El 31 de Agosto y el 07 de Septiembre 2 asteroides pasaron a unos 40.000 Km de la Tierra, esto es unos 33.000 km

de la Superficie terrestre, sabemos que estos pasos rasantes son comunes, pero también sabemos que en algún momento

seremos impactados.

13.- Un instrumento de la NASA abordo del orbitador Rosetta de la ESA, ALICE, descubrió que el cometa

67P/Churyumov-Gerasimenko es inusualmente oscuro, muy oscuro. Analizando las ondas ultravioletas de la superficie

del cometa, también detectó la presencia de hidrogeno y oxigeno en su coma y pocas evidencias de hielo de agua

expuesto.

14.- El 6 de septiembre cayó un meteorito en Nicaragua. Hubo un fuerte destello en el cielo, luego una fuerte explosión, e

instantes después un sismo suave producido por el impacto. El objeto dejó un cráter de 12 m de diámetro y unos 5 de

profundidad, el objeto pudo haber tenido casi un metro de diámetro y debe encontrarse bajo los rellenos post impacto del

cráter.

15.- El día 06 de Septiembre se observó un bólido de magnitud -12 con ruido sobre la ciudad de Barcelona, España. En

Agosto y Septiembre la Tierra estuvo pasando por zonas muy densas de restos interplanetarios. De hecho el 03 de

Septiembre se contabilizaron 305 Bolas de Fuego, solo en el SE de USA, y el 06 hubo 68.

16.- El 01 de Sepiembre, en Campinas, Brazil 4 brillantes bolas de fuego cruzaron el cielo con magnitude de -4 a -8,

Agosto y Septiembre registraron muchos meteoros brillantes y la caída de un objeto al Norte de Managua, Nicaragua.

17.- Estudios recientes del USGS demuestran que es alktamente improbable que el volcán de Yosemite haga erpción en el

futuro cercano.

18.- Evidencia de tectónica de placas en la Luna Europa de Júpiter. Se observó lo que parece una tectónica de Subducción

en las capas de hielo del satélite.

19.- La Vía Láctea forma parte de un supercúmulo que ha sido bautizado como Supercúmulo de Laniakea, o cielo

inmenso, que tiene 500 millones de Años Luz de Grosor. Esto fue descubierto con el Green Bank Radiotelescope. Este

filamento contiene al menos 100.000 galaxias.

Page 3: Mensajero Estelar No. 72 Octubre

Radiantes del Trimestre

Radiante Fecha Máximo T. H. Z. A. R. Hora

Oriónidas Octubre 17 - 26 Oct. 19 - 23 20 06h 18m + 15º 02:00

Taúridas del Sur Sept.15-Nov 30 Nov. 3 7 03h 22m + 13.6º 23:00

Taúridas del N. Sept. 19-Dic. 5 Nov. 13 9 03h 53m + 22º 23:00

Leónidas Nov. 14 - 20 Nov. 17 - 18 Var. 10h 12m + 22º 02:00

Androménidas Nov. 4 - 20 Nov. 16 Var. 01h 44m + 25º 21:00

5185C.Minóridas Dic. 1 - 5 Dic. 3 - 4 Var. 07h 36m + 4º 22:00

51 Androménidas Diciembre 04 Dic. 04 ¿40? 19:30

Piscidas Dic. 10 - 14 Dic. 10 +80 19:00

43 Taúridas Dic. ¿? - 13 Dic. 11 ¿97? 04h 10m +19.5º 20:00

Geminíadas Dic. 13 - 16 Dic. 12 - 13 145 07h 28m + 33º 22:30

Púpidas - Vélidas Nov. 24 - Ene 9 Dic. 25 15 09h 03m - 48º 00:00

Las Leónidas, las 43 Taúridas, y las Geminíadas son radiantes que dan meteoros brillantes y su número puede

variar mucho de un año a otro.

Las lluvias de estrellas aquí listadas se encuentran todas activas, algunas de ellas son de difícil observación pues

sus meteoros son de poco brillo.

Hay que ver cuál es la fase lunar el día de la observación, pues la luz de la Luna puede afectar mucho la

observación del radiante.

Máximo es el día en que se espera que la lluvia de estrellas llegue a su máximo número de meteoros.

THZ es el número de meteoros que veríamos del radiante si este se encontrara en el zenit.

α y δ son Ascensión Recta y Declinación.

Hora se refiere a la hora en la cual puede empezar a observarse el radiante. Viene en Hora Legal de Venezuela.

O -4,5h GMT.

Este año las Oriónidas ocurrirán entre Cuarto Menguante y Luna Llena.

Geminíadas y 43 Taúridas no serán molestadas por la Luna.

Las Taúridas del Sur serán molestadas por Luna casi Llena, al igual que 51 Androménidas.

Las Púpidas - Vélidas ocurrirán en Luna Nueva y la Luna no interferirá en su observación

Si observa cualquiera de estos radiantes o una actividad meteórica inusual envíe un informe a

[email protected] o un mensaje al Twitter: αastrorecord

Fases de la Luna

Luna Nueva Cuarto Creciente Luna Llena Cuarto Menguante

Fecha Hora Fecha Hora Fecha Hora Fecha Hora

Sept. 24 06:12 Oct. 01 19:32 Oct. 08 10:49 t Oct.15 19:12

Oct. 23 21:55 P Oct. 31 02:48 Nov. 06 22:22 Nov. 14 15:17

Nov. 22 12:31 Nov. 29 10:06 Dic. 06 12:26 Dic.14 12:53

Dic. 22 01:35 Dic. 28 18:32 Ene. 05 04:53 Ene. 13 09:48

En Luna Nueva la Luna no se puede ver, pues está en Conjunción con el Sol.

En Cuarto Creciente la Luna se observa en la Tarde y primeras horas de la noche.

En Luna Llena la Luna sale al ocultarse el Sol y se observa durante toda la noche.

En Cuarto Menguante la Luna sale tarde, se observa de madrugada y primeras horas de la mañana.

Estos datos son muy importantes a la hora de planificar sus observaciones, ya sean planetarias, de radiantes u

objetos de espacio profundo.

Téngalas en cuenta para la observación de eventos astronómicos.

t = Eclipse Total de Luna y A = Eclipse Anular de Sol

El Eclipse Total de Luna de Octubre 08 podrá observarse alto en el firmamento en el momento de la totalidad.

Este es un proyecto importante de observación y estamos involucrados en un proyecto internacional.

P Significa Eclipse Parcial de Sol. No será visible en Venezuela.

Page 4: Mensajero Estelar No. 72 Octubre

Cúmulo Estelar de las Híades

Con la excepción del

cúmulo de la Osa Mayor, las

Híades es el cúmulo estelar más

cercano a la Tierra, se encuentra a

una distancia de 151 Años Luz

(AL).

Es muy fácil de

identificar en el firmamento por

ser un cúmulo compacto y con una

forma de V muy característica, lo

que lo hace un Asterismo.

El cúmulo se ve alto en

nuestro firmamento, entre las

Pléyades y la Constelación de

Orión. Utilizando la enfilación de

las estrellas del Cinturón de Orión

en sentido Alnitak – Mintaka y

prolongando esta enfilación hacia

el NW llegamos a él.

La estrella más brillante

que vemos en esta V de estrellas es la gigante roja Aldebarán, cuyo nombre

significa el Ojo del Toro, y que en realidad no forma parte de él. Esta estrella

cierra la V al Sur.

De este cúmulo podemos observar a simple vista poco más de una

docena de estrellas, pero varias decenas de ellas pueden observarse con

pequeños binoculares.

Las Híades eran ninfas, según la mitología griega e hijas de Atlas y

Aethra, las cuales lloraban eternamente a su hermano Hyas, quien fue muerto

por un León. Las Híades eran medio hermanas de las Pléyades, hijas de Atlas

con Pleione. Los dioses colocaron a las Híades y a las Pléyades en el

firmamento a propósito, para salvarlas de los deseos lujuriosos de Orión. Al

mismo tiempo convirtió a Hyas en la constelación de Acuario, y al León que

lo mató en la Constelación de Leo, en la parte opuesta del firmamento.

Así cuando una constelación salía al Este, la otra se ocultaba al Oeste.

Este mito muestra una

ambivalencia con el mito de

Orión y el Escorpión Celeste

enviado por la Diosa Diana para

que picara y diera muerte a

Orión.

Zeus da la inmortalidad

a su hijo Orión convirtiéndolo en

Constelación y ubica al

Escorpión en el lado opuesto del

cielo a fin de evitar un nuevo

encuentro. Así cuando Orión sale

al Este, Scorpio desaparece por el

Oeste y viceversa. De esta

manera nunca podemos ver

ambas constelaciones en el

firmamento al mismo tiempo.

Page 5: Mensajero Estelar No. 72 Octubre

Con un telescopio se observan cerca de 100 estrellas de este cúmulo estelar.

Si bien en la Mitología las

Híades y las Pléyades son hermanas, en la

realidad ambos cúmulos son muy

diferentes. Las Pléyades poseen estrellas

Azules muy jóvenes y su edad no supera

los 100 millones de años, por su parte,

Las Híades poseen muchas estrellas rojas,

gigantes rojas y naranjas, así como enanas

blancas, por lo que la edad de este cúmulo

estelar es de más de 700 millones de años.

Pero hay un cúmulo estelar

abierto cuyas características son muy

similares al de las Híades, es el Cúmulo

del Pesebre, en Cáncer. Ambos cúmulos

se mueven en dirección idéntica en el

espacio y sus edades son similares.

Algunos astrónomos creen que a pesar de

encontrarse muy lejos uno del otro, ambos

se formaron en la misma nebulosa hace

unos 700 u 800 millones de años.

Page 6: Mensajero Estelar No. 72 Octubre

Eclipse Total de Luna, Oct. 08, 2014

El 08 de Octubre de 2014 ocurrirá un Eclipse Total de Luna que será visible en Venezuela, desdichadamente la

fase de totalidad no será visible desde Venezuela, pues la Luna se ocultará poco antes de la llegada de la Totalidad. Sin

embargo podremos observar como la Luna se irá eclipsando mientras baja en el horizonte.

Tiempos para Venezuela

El Eclipse Penumbral Empieza: 08:15:33 UT 03:45:33 HLV

El Eclipse Parcial Empieza: 09:14:48 UT 04:44:48 HLV

El Eclipse Total Empieza: 10:25:10 UT 05:55:10 HLV

El Medio del Eclipse: 10:54:36 UT 06:24:36 HLV

El Eclipse Total Finaliza: 11:24:00 UT 06:54:00 HLV:

El Eclipse Parcial Finaliza: 12:34:21 UT 08:04:21 HLV

El Eclipse Penumbral Termina: 13:33:43 UT 09:03:43 HLV

Los próximos Eclipses Lunares observables en Venezuela ocurrirán en Abril 04 de 2015, pero solo podrá el

Inicio del Eclipse y eso con suerte, pues a Luna estará muy cerca del Horizonte. El siguiente será el 28 de Septiembre,

este si será visible en su totalidad desde Venezuela.

El Eclipse de Octubre 08 nos sirve para practicar la observación de este fenómeno, el paso de la sombra sobre

cráteres, y mares, y realizar observaciones. El de Abril 04 no vale la pena observarlo, porque si llegáramos a ver algo

sería el primer contacto, pero la Luna estará ya ocultándose.

Suerte y recuerden enviarme sus observaciones a: [email protected]

Page 7: Mensajero Estelar No. 72 Octubre

¿Cuánto de la Luna podemos ver desde la Tierra?

Jesús H. Otero A. En un momento determinado, nunca

podemos ver más de un 50% de la superficie

lunar, pero debido al movimiento de Libración, a

lo largo del tiempo podemos observar hasta un

59% de la superficie de nuestro compañero

planetario.

Este movimiento que hace cabecear a

nuestro satélite hacia el Norte y el Sur, y hacia los

lados Este y Oeste, nos permite ver un 9% más de

la superficie lunar.

Desde casi su formación, cuando la Luna

estaba unas 10 veces más cerca de la Tierra que

ahora, el movimiento de rotación de la Luna fue

frenado por la fuerza de las mareas gravitatorias,

esto causo que se estableciera una rotación

resonante 1:1, también llamada sincrónica, esto

es, el astro de la noche tarda lo mismo en efectuar

un giro sobre sí mismo, que en girar una vez alrededor de nuestro planeta, enseñándonos por ello siempre la misma cara.

Habiendo así una cara visible y una cara oculta. Algunos dicen la cara oscura de la Luna, pero esto es un error, no hay una

cara oscura, ambos lados reciben por igual luz solar.

Si observamos la Luna

por un tiempo veremos como parecen

moverse los relieves lunares, notándose

estos un poco más al Norte o Sur, o Este

u Oeste. Esto puede notarse fácilmente

en la foto arriba, donde el cráter Tycho

pareciera estar más al Norte en la imagen

de la derecha.

Pero la Luna no solo cambia un

poquito al Este – Oeste, y Norte – Sur,

pues hay varios tipos de libraciones que

hacen a este movimiento más complejo.

Por si esto fuera poco la luna no

exhibe siempre el mismo tamaño. Como

la órbita lunar es elíptica, el tamaño

aparente de la Luna también varía si se

encuentra en Perihelio o Afelio, es decir

en el momento más cercano o más lejano de su órbita.

Page 8: Mensajero Estelar No. 72 Octubre

Solar Variability and Terrestrial Climate

Dr. Tony Phillips, NASA

Jan. 8, 2013: In the galactic scheme of things, the Sun is a remarkably constant star. While some stars exhibit

dramatic pulsations, wildly yo-yoing in size and brightness, and sometimes even exploding, the luminosity of our own

sun varies a measly 0.1% over the course of the 11-year solar cycle.

There is, however, a dawning realization among researchers that even these apparently tiny variations can have a

significant effect on terrestrial climate. A new report issued by the National Research Council (NRC), "The Effects of

Solar Variability on Earth's Climate," lays out some of the surprisingly complex ways that solar activity can make itself

felt on our planet.

These six extreme UV images of the sun, taken by NASA's Solar Dynamics Observatory, track the rising level of solar

activity as the sun ascends toward the peak of the latest 11-year sunspot cycle.

Understanding the sun-climate connection requires a breadth of expertise in fields such as plasma physics, solar

activity, atmospheric chemistry and fluid dynamics, energetic particle physics, and even terrestrial history. No single

researcher has the full range of knowledge required to solve the problem. To make progress, the NRC had to assemble

dozens of experts from many fields at a single workshop. The report summarizes their combined efforts to frame the

problem in a truly multi-disciplinary context.

One of the

participants, Greg Kopp of the

Laboratory for Atmospheric

and Space Physics at the

University of Colorado,

pointed out that while the

variations in luminosity over

the 11-year solar cycle amount

to only a tenth of a percent of

the sun's total output, such a

small fraction is still

important. "Even typical short

term variations of 0.1% in

incident irradiance exceed all

other energy sources (such as

natural radioactivity in Earth's

core) combined," he says.

Of particular

importance is the sun's

extreme ultraviolet (EUV)

radiation, which peaks during

the years around solar

maximum. Within the

relatively narrow band of EUV

wavelengths, the sun’s output varies not by a minuscule 0.1%, but by whopping factors of 10 or more. This can strongly

affect the chemistry and thermal structure of the upper atmosphere.

Space-borne measurements of the total solar irradiance (TSI) show ~0.1 percent variations with solar activity on

11-year and shorter timescales. These data have been corrected for calibration offsets between the various instruments

used to measure TSI. SOURCE: Courtesy of Greg Kopp, University of Colorado.

Several researchers discussed how changes in the upper atmosphere can trickle down to Earth Surface. There are

many “Top Down” pathways for the Sun´s influence. For instance Charles Jackman of the Goddard Space Flight Center

described how Nitrogen Oxides (NOx) created by solar energetic particles and cosmic rays in the stratosphere could

reduce Ozone labels by a few percent. Because Ozone absorbs UV radiation, less Ozone means that more UV rays from

the Sun would reach Earth surface.

Several researchers discussed how changes in the upper atmosphere can trickle down to Earth Surface. Isaac

Held of NOAA took this one step further. He describes how loss of Ozone in the stratosphere could alter the dynamics of

the atmosphere below it. “the cooling of polar stratosphere associated with loss of Ozone increases the horizontal

temperature gradient near the Tropopause”, he explains. “This alter the flux of angular momentum by mid-latitudes

eddies. [Angular momentum is important because] the Angular momentum budget of troposphere controls the surface

Page 9: Mensajero Estelar No. 72 Octubre

westerlies”. In other

words, solar activity

feld in the upper

atmosphere can,

through a complicate

series of influences,

push surface storm

tracks off course.

How incoming galactic cosmic rays and solar protons penetrate the

atmosphere. SOURCE: C.

Jackman, NASA Goddard Space

Flight Center, “The Impact of Energetic Particle Precipitation on the Atmosphere,” presentation to the Workshop on the Effects of Solar Variability on Earth’s Climate, September 9, 2011.

Many of the mechanisms proposed at the workshop had a Rube Goldberg-like quality. They relied on multi-step

interactions between multiple layers of atmosphere and ocean, some relying on chemistry to get their work done, others

leaning on thermodynamics or fluid physics. But just because something is complicated doesn't mean it's not real.

Indeed, Gerald Meehl of the National Center for Atmospheric Research (NCAR) presented persuasive evidence

that solar variability is leaving an imprint on climate, especially in the Pacific. According to the report, when researchers

look at sea surface temperature data during sunspot peak years, the tropical Pacific shows a pronounced La Nina-like

pattern, with a cooling of almost 1o C in the equatorial eastern Pacific. In addition, "there are signs of enhanced

precipitation in the

Pacific ITCZ (Inter-

Tropical Convergence

Zone ) and SPCZ (South

Pacific Convergence

Zone) as well as above-

normal sea-level

pressure in the mid-

latitude North and

South Pacific,"

correlated with peaks in

the sunspot cycle.

The solar cycle

signals are so strong in

the Pacific, that Meehl

and colleagues have

begun to wonder if

something in the Pacific

climate system is acting

to amplify them. "One

of the mysteries

regarding Earth's climate

system ... is how the

relatively small

fluctuations of the 11-

year solar cycle can

produce the magnitude

of the observed climate

signals in the tropical

Pacific." Using

Page 10: Mensajero Estelar No. 72 Octubre

supercomputer models of climate, they show that not only "top-down" but also "bottom-up" mechanisms involving

atmosphere-ocean interactions are required to amplify solar forcing at the surface of the Pacific.

Composite averages for December-January-February for peak solar years. SOURCE: G.A. Meehl, J.M. Arblaster, K. Matthes, F. Sassi, and H. van Loon,

Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science 325:1114-1118,

2009; reprinted with permission from AAAS.

In recent years, researchers have considered the possibility that the sun plays a role in global warming. After all,

the sun is the main source of heat for our planet. The NRC report suggests, however, that the influence of solar variability

is more regional than global. The Pacific region is only one example.

Caspar Amman of NCAR noted in the report that "When Earth's radiative balance is altered, as in the case of a

change in solar cycle forcing, not all locations are affected equally. The equatorial central Pacific is generally cooler, the

runoff from rivers in Peru is reduced, and drier conditions affect the western USA."

Raymond Bradley of UMass, who has studied historical records of solar activity imprinted by radioisotopes in

tree rings and ice cores, says that regional rainfall seems to be more affected than temperature. "If there is indeed a solar

effect on climate, it is manifested by changes in general circulation rather than in a direct temperature signal." This fits in

with the conclusion of the IPCC and previous NRC reports that solar variability is NOT the cause of global warming over

the last 50 years.

Much has been made of the probable connection between the Maunder Minimum, a 70-year deficit of sunspots

in the late 17th

-early 18th century, and the coldest part of the Little Ice Age, during which Europe and North America

were subjected to bitterly cold winters. The mechanism for that regional cooling could have been a drop in the sun’s

EUV output; this is, however, speculative.

The yearly averaged sunspot number for a period of 400 years (1610-2010). SOURCE: Courtesy of NASA Marshall Space Flight Center.

Dan Lubin of the Scripps Institution of Oceanography pointed out the value of looking at sun-like stars

elsewhere in the Milky Way to determine the frequency of similar grand minima. “Early estimates of grand minimum

frequency in solar-type stars ranged from 10% to 30%, implying the sun’s influence could be overpowering. More recent

studies using data from Hipparcos (a European Space Agency astrometry satellite) and properly accounting for the

metallicity of the stars, place the estimate in the range of less than 3%.” This is not a large number, but it is significant.

Page 11: Mensajero Estelar No. 72 Octubre

Indeed, the sun could be on the threshold of a mini-Maunder event right now. Ongoing Solar Cycle 24 is the

weakest in more than 50 years. Moreover, there is (controversial) evidence of a long-term weakening trend in the

magnetic field strength of sunspots. Matt Penn and William Livingston of the National Solar Observatory predict that by

the time Solar Cycle 25 arrives, magnetic fields on the sun will be so weak that few if any sunspots will be formed.

Independent lines of research involving helio seismology and surface polar fields tend to support their conclusion. (Note:

Penn and Livingston were not participants at the NRC workshop.)

“If the sun really is entering an unfamiliar phase of the solar cycle, then we must redouble our efforts to understand the

sun-climate link,” notes Lika Guhathakurta of NASA’s living with a Star Program, which helped fund the NRC study.

“The report offers some good ideas for how to get started.”

This image of the Sun's upper photosphere shows bright and dark magnetic structures responsible for variations

in TSI. SOURCE: Courtesy of P. Foukal, Heliophysics, Inc.

In a concluding panel discussion, the researchers identified a number of possible next steps. Foremost among

them was the deployment of a radiometric imager. Devices currently used to measure total solar irradiance (TSI) reduce

the entire sun to a single number: the total luminosity summed over all latitudes, longitudes, and wavelengths. This

integrated value becomes a solitary point in a time series tracking the sun’s output.

In fact, as Peter Foukal of Heliophysics, Inc., pointed out, the situation is more complex. The sun is not a

featureless ball of uniform luminosity. Instead, the solar disk is dotted by the dark cores of sunspots and splashed with

bright magnetic froth known as faculae. Radiometric imaging would, essentially, map the surface of the sun and reveal

the contributions of each to the sun’s luminosity. Of

particular interest are the faculae. While dark sunspots tend

to vanish during solar minima, the bright faculae do not.

This may be why paleo climate records of sun-sensitive

isotopes C-14 and Be-10 show a faint 11-year cycle at work

even during the Maunder Minimum. A radiometric imager,

deployed on some future space observatory, would allow

researchers to develop the understanding they need to project

the sun-climate link into a future of prolonged spotlessness.

Some attendees stressed the need to put sun-climate

data in standard formats and make them widely available for

multidisciplinary study. Because the mechanisms for the

sun’s influence on climate are complicated, researchers from

many fields will have to work together to successfully model

them and compare competing results. Continued and

improved collaboration between NASA, NOAA and the NSF

are keys to this process.

Hal Maring, a climate scientist at NASA

headquarters who has studied the report, notes that “lots of

interesting possibilities were suggested by the panelists.

However, few, if any, have been quantified to the point that we can definitively assess their impact on climate.”

Hardening the possibilities into concrete, physically-complete models is a key challenge for the researchers.

Finally, many participants noted the difficulty in deciphering the sun-climate link from paleo climate records

such as tree rings and ice cores. Variations in Earth’s magnetic field and atmospheric circulation can affect the deposition

of radioisotopes far more than actual solar activity. A better long-term record of the sun’s irradiance might be encoded in

the rocks and sediments of the Moon or Mars. Studying other worlds

might hold the key to our

own.

The full report,

“The Effects of Solar

Variability on Earth’s

Climate,” is available

from the National

Academies Press at

http://www.nap.edu/catal

og.php?record_id=13519

.

Page 12: Mensajero Estelar No. 72 Octubre

¿Pudo el Bosón de Higgs hacer colapsar el Universo?

Cosmólogos británicos han concluido que el Universo pudo no haber durado más de un segundo luego del Big Bang.

Foto: El Telescopio BICEP 2 en

uno de los dos atardeceres que

ocurren en el año en el Polo Sur.

El observatorio MAPO (hogar de

la Red de telescopios Keck), y la

estación del Polo Sur se pueden

observar en el fondo.

Los cosmólogos británicos están

confundidos, ellos predijeron que

nuestro Universo no debió durar

más de un segundo. Esta extraña

conclusión es el resultado de

combinar las últimas

observaciones del cielo con el

reciente descubrimiento del

Bosón de Higgs. El Dr. Robert

Hogan, del King’s College

London (KCL), presentó el

trabajo en Junio 24, 2014. En la

reunión de la Royal Sociedad

Nacional de Astronomía

Astronomy, en Portsmouth.

Después que nuestro Universo empezó como el Big Bang, se cree que tuvo un corto período de rápida expansión

que conocemos como Inflación Cósmica. Aunque algunos detalles de este proceso no son bien entendidos, los

cosmólogos han sido capaces de hacer predicciones sobre cómo este proceso afecta al Universo que vemos hoy día.

En Marzo de 2014, investigadores colaboradores del BICEP 2 dijeron que habían detectado uno de los efectos

predichos. Si es verdad, estos resultados son un gran avance en nuestra comprensión de la Cosmología y confirmación de

la Teoría de la Inflación, pero esto ha sido muy controversial y no totalmente aceptado por los cosmólogos.

En el estudio, científicos del KCL han investigado lo que las observaciones del BICEP 2 significan para la

estabilidad del Universo. Para hacerlo combinaron los resultados con avances recientes en la Física de Partículas. La

detección del Bosón de Higgs en el Gran colisionador de Hadrones, anunciado en Julio de 2012: desde entonces se ha

aprendido mucho sobre sus propiedades.

Medidas del Bosón de Higgs han permitido a los Físicos de Partículas que nuestro Universo se asienta en un

“Valle del Campo de Higgs”, el cual describe la manera que otras partículas poseen masa. Sin embargo hay un “Valle”

diferente que es mucho más profundo, pero nuestro Universo no cae allí debido a una gran barrera energética.

El problema es que los resultados del BICEP 2 predicen que nuestro Universo ha recibido potentes impulsos

durante la fase de Inflación, empujándolo al otro “Valle” del Campo de Higgs en una fracción de segundo. Si esto hubiera

ocurrido, el Universo habría colapsado en un instante.

Robert Hogan, líder del estudio dice que esto es una predicción inaceptable, pues si esto hubiera ocurrido, no

estaríamos aquí discutiéndolo. Tal vez los resultados del BICEP 2 contienen un error. Si no, debe haber otros procesos,

aun desconocidos, que previnieron que el Universo colapsara. Si los resultados del BICEP 2 son correctos, entonces esto

nos dice que existe una nueva e interesante Física de Partículas más allá del modelo estándar.

NOTA: Ver:

Mensajero 71, Primera Evidencia de la Inflación

Mensajero 68, Física de Partículas

Mensajero 67, Hawkins y el Origen del Universo

Mensajero 66, Bosón de Higgs u otra partícula

Mensajero 64, El Bosón de Higgs

Page 13: Mensajero Estelar No. 72 Octubre

Ocultación de Marte por la Luna, Julio 06, 2014.

Observador: Jorge Luis Salas m / ACA (Asociación Carabobeña de Astronomía) sitio web: 114milimetros.blogspot.com Longitud: -67.960280555556

Latitud: 10.261688888889

Altura: +498.00 metros

Huso horario: UTC-4.5

Contacto Tiempo Estimado

(Velocidad de la luz infinita) Tiempo Estimado (Velocidad de la luz finita)

Contacto 1 (Marte toca la Luna) 2014 JUL 05 22:10:55.84 2014 JUL 05 22:10:45.70

Contacto 1 punto medio (La mitad de Marte esta ocultada) 2014 JUL 05 22:11:51.34 2014 JUL 05 22:11:43.12

Contacto 2 (Marte esta ocultado completamente) 2014 JUL 05 22:12:53.26 2014 JUL 05 22:12:46.99

Contacto 3 (Marte empieza a emerger) 2014 JUL 05 22:27:52.57 2014 JUL 05 22:27:14.77

Contacto 3 punto medio (La mitad de Marte ha emergido) 2014 JUL 05 22:28:51.51 2014 JUL 05 22:28:16.29

Contacto 4 (Fin de la ocultación) 2014 JUL 05 22:29:45.15 2014 JUL 05 22:29:10.78

Duración del evento:+0:16:33.164 horas

Trayectoria de Marte Respecto a la Luna:

Tiempos de contacto para la latitud local, nótese

que será una ocultación rasante. Desapareciendo en T1 Y

reapareciendo en T2

Ubicación: San Diego, Carabobo, Venezuela

Latitud: N 10° 15’ 42.08’’

Longitud: O 67°57’37.01’’

Altitud (msnm) : 498

Equipo utilizado:

Binocular TASCO 10X70

Telescopio reflector newtoniano Celestron Firstscope 76/300

Oculares: 4mm 9mm 20mm 32 mm

Filtro lunar Celestron

Procedimiento: Visual con binocular y Telescopio

Software/ application: GPS STATUS, Time the sat,

cronómetro

Datos de Observación :

En Caracas estuvo nublado y no se realizaron

observaciones, solo Carlos Quintana pudo medir

Contacto TC. HLV (T.U. – 4,5h)

C-1 Marte toca la Luna 22:10:11,778

C 2 ½ Marte ocultado 22:11:27,340

C-3 Marte Ocultado 22:12:39,000

C-4 Marte Sale 22:27:34,795

C-5 ½ Marte emerge 22:28:59,000

C-6 Fin de la Ocultación 22:30:14,540

Page 14: Mensajero Estelar No. 72 Octubre

La gran Mancha Roja de Júpiter está más pequeña que nunca antes

NASA

La Mancha Roja, un ícono del planeta Júpiter, la cual es un sistema de alta presión circular más grande que

nuestro planeta, se ha empequeñecido al menor tamaño jamás medido.

Imagen: NASA, ESA, and A. Simon (Goddard Space Flight Center) Los astrónomos han seguido el empequeñecimiento de la Gran Mancha Roja de Júpiter desde la década de los

años 30. Mediciones recientes realizadas por el Telescopio Espacial Hubble confirman que esta tiene ahora unas 10.250

millas de diámetro, el tamaño más pequeño jamás medido, según Amy Simon del Goddard Space Flight Center de la

NASA en Greenbelt, Md.

Mediciones históricas que van para atrás hasta los últimos años del siglo XIX (1.800´s), muestran una Gran

Mancha Roja de hasta 25.500 millas de diámetro en su eje mayor. Las sondas Voyager 1 y Voyager 2 midieron un

diámetro de 14.500 millas en 1979.

Comenzando en el 2012, observaciones de aficionados revelaron un notable incremento en la taza de

encogimiento. El talle de la GMR se está encogiendo 580 millas por año, y el óvalo de la GMR paso a ser un circulo. La

causa del encogimiento aún no se ha explicado.

En observaciones recientes se han observado pequeños remolinos se están alimentando de la tormenta. Se piensa

que ellas son responsables de los cambios acelerados por alteración de la dinámica y energía interna de la Gran Mancha

Roja.

El equipo de astrónomos liderizado por A. Simon, planea estudiar los pequeños remolinos y estudiar la dinámica

de la GMR para determinar si ellos pueden alimentar o frenar el momentum al entrar en el vórtice.

Comparaciones realizadas con el Hubble tomadas en 1995, cuando el eje mayor de la GMR era 13.020 millas,

con mediciones del 2009, muestran que en este año medía 11.130 millas. Unas 1890 millas menos.

Pero Júpiter es un planeta muy activo en su atmósfera, hace 3 años la Banda Ecuatorial Sur desapareció u estuvo

2 años ausente. Algo así podría estar pasando a la Gran Mancha Roja, o tal vez este rasgo distintivo del planeta este

llegando a su fin. Aún hay mucho que investigar.

Page 15: Mensajero Estelar No. 72 Octubre

La acidificación actual del mar es mucho más rápida que la de hace 56 millones de años

La acidificación actual del mar es mucho más rápida que la de hace 56 millones de años

Hace unos 56 millones de años, hubo un período de calentamiento global abrupto, el cual se conoce como el Máximo

Térmico del Paleoceno-Eoceno (MTPE, o PETM por sus siglas en inglés). Durante esta etapa geológica, un pulso masivo

de dióxido de carbono emitido hacia la atmósfera elevó ostensiblemente las temperaturas a escala global. En los océanos,

los sedimentos del carbonato se disolvieron, algunas especies se extinguieron y otras experimentaron un fuerte cambio de

rumbo evolutivo.

Lejos de ser un fenómeno de interés exclusivo para los estudiosos del pasado, el Máximo Térmico del

Paleoceno-Eoceno es hoy en día un tema de la máxima actualidad, ya que cada vez está más claro que se trata del análogo

más cercano, por similitud y por cercanía en el tiempo, al actual calentamiento global.

Entre los efectos comunes a ambos episodios figura la acidificación oceánica. La comunidad científica ha sospechado

desde hace mucho tiempo que fue la acidificación oceánica la ejecutora de los cambios nocivos en el mar que

perjudicaron a los antiguos ecosistemas marinos. Aquella crisis medioambiental aparece marcada claramente en los

registros fósiles y geológicos.

De manera similar a lo que ocurre hoy, la creciente abundancia del dióxido de carbono propició que éste se

combinase con el agua salada de los océanos de tal modo que alteró las propiedades químicas de ésta.

Ahora unos científicos han logrado cuantificar por primera vez la magnitud de la acidificación de la superficie oceánica

durante el Máximo Térmico del Paleoceno-Eoceno, y las noticias no son buenas: Nuestros océanos actuales están en

camino de acidificarse tanto o más que en aquel entonces, sólo que a una velocidad mucho más rápida, que puede ser

hasta 10 veces más veloz que en esa época de referencia.

[Img #20956]

Los foraminíferos de la especie Aragonia velascoensis se extinguieron, junto con otras criaturas marinas, hace

unos 56 millones de años, por culpa de la acidificación oceánica, rápida para lo que el ritmo de la evolución es capaz de

afrontar, pero que pese a todo fue mucho más lenta que la actual. (Foto: Ellen Thomas / Universidad Yale)

El equipo de la paleoceanógrafa Bärbel Hönisch, del Observatorio Terrestre Lamont-Doherty, adscrito a la Universidad

de Columbia, en la ciudad de Nueva York, y Ellen Thomas, de la Universidad Yale en New Haven, Connecticut, todas

estas entidades en Estados Unidos, estima que la acidez oceánica aumentó en aproximadamente un 100 por cien a lo largo

de un periodo de unos mil años o más, y se quedó así durante los siguientes 70.000 años. En este ambiente alterado

radicalmente, algunas especies se extinguieron inexorablemente mientras que otras se adaptaron y evolucionaron.

Los océanos, cual héroes silenciosos de nuestros tiempos, han absorbido cerca de un tercio de las emisiones de carbono

que los humanos hemos bombeado a la atmósfera desde la industrialización. Con su acción protectora, han ayudado a

mantener la temperatura más baja de lo que habría ya llegado a ser en su ausencia. Pero esa captura del carbono tiene su

precio. Las reacciones químicas causadas por ese exceso de CO2 han hecho que el agua de mar sea más ácida,

desposeyéndola de los iones de carbonato que corales, moluscos y algunas especies de plancton necesitan para desarrollar

sus conchas y esqueletos.

En los últimos 150 años, el pH de los océanos ha descendido de manera significativa (o sea que su agua se ha

vuelto más ácida). Se estima que desde

ahora y hasta finales de este siglo, la

caída del pH oceánico será incluso

mayor que la registrada en el último siglo

y medio. Sumando la caída de los

últimos 150 años con la pronosticada

para el siglo actual, el aumento de acidez

marina resultante es un poco mayor que

el estimado para todo el Máximo

Térmico del Paleoceno-Eoceno. Lo más

inquietante, sin embargo, es que,

mientras que el cambio de pH en el

Máximo Térmico del Paleoceno-Eoceno

se obró a lo largo de unos mil años, el

actual cambio de pH, si se cumplen las

previsiones, se habrá obrado en un

periodo mucho menor, de tan solo unos

250 años.

Page 16: Mensajero Estelar No. 72 Octubre

El Spitzer de NASA, WISE Encuentra un Sol vecino cercano y frío.

NASA Esta concepción artística muestra

al objeto llamado WISE

J085510.83-071442.5, la más fría

enana marrón conocida. Estas

estrellas son pequeños cuerpos

parecidos a estrellas que carecen

de masa para quemar sus

combustibles nucleares.

El NASA's Wide-field

Infrared Survey Explorer (WISE) y

el Spitzer Space Telescope han

descubierto lo que parece ser la más

fría estrella enana marrón conocida,

una estrella muy tenue que

sorprendentemente es tan fría como

los polos terrestres.

Imágenes de telescopios espaciales también descubrieron que su distancia es de solo 7.2 años luz, lo que la

coloca entre los 4 sistemas estelares más cercanos a nuestro Sol. El sistema más cercano es un trío de estrellas que

llamamos Alfa Centauro y que dista a solo 4.3 años luz de nosotros.

"Es muy excitante descubrir un nuevo vecino tan cercano a nuestro Sistema Solar”, dice Kevin Luhman, un

astrónomo de la Universidad de la Pennsyvania State Universitys University Park Center para Exoplanetas y Mundos

Habitable, "Y dada su temperatura extrema, nos puede decir mucho sobre las atmósferas planetarias, las cuales poseen

frecuentemente, temperaturas similares”.

Las estrellas Enanas Marrones comienzan sus vidas como estrellas, bolas de gas que colapsan, pero por no

poseer masa suficiente para encender sus hornos nucleares no pueden radiar energía y brillar como estrellas. La nueva

estrella Enana Marrón, la más fría jamás descubierta es llamada: WISE J085510.83-071442.5. Ella tiene una fría

temperatura entre -54 y 9º Fahrenheit, (-48 y 9º Celsius). Los records anteriores para la enana marrón más fría, también

descubierta por el WISE y el Spitzer, era como la temperatura de una habitación normal.

El WISE fue capaz de captar el raro objeto por realizar dos surveys del cielo en infrarrojo, observando áreas

hasta 3 veces. Objetos fríos como las enanas marrones pueden ser invisibles al observarlas con telescopios de luz visible,

pero su brillo térmico aparece en IR aunque sean objetos fríos. En adición, mientras más cercano sea un objeto, más

parecerá moverse en imágenes tomadas tras varios meses.

Este objeto se movía mucho en los datos del WISE, lo que nos dijo que era muy cercano.

Luego de notar el rápido movimiento del WISE J085510.83-071442.5 en Marzo de 2013, Luhman analizó

imágenes de Spitzer y el Telescopio Géminis Sur en cerro Pachón, chile. Las observaciones del telescopio infrarrojo

Spitzer, ayudaron a determinar la helada temperatura de la enana roja. Combinando las observaciones de WISE y Spitzer,

tomadas en posiciones diferentes alrededor del Sol, realizaron la medición de distancias por efecto de la Paralaje. Este es

el mismo principio que explica el movimiento de un dedo de su mano, cuando lo coloca frente a su rostro y lo mira con el

ojo derecho y luego el izquierdo.

Es interesante que después de décadas estudiando el cielo, aún no poseamos in inventario completo de los

vecinos más cercanos al Sol, de acuerdo a lo dicho por Michael Werner, científico del proyecto Spitzer, del Jet Propulsion

Laboratory, de NASA, en Pasadena, California. El JPL gerencia y maneja el Spitzer. Este nuevo resultado es excitante,

pues demuestra el poder de la exploración astronómica utilizando nuevas herramientas como los telescopios IR Wise y

Spitzer.

El WISE J085510.83-071442.5 se estima que tiene entre 3 y 10 masas de Júpiter. Con esta masa debe ser un

gigante gaseoso igual al planeta, que fue eyectado de su sistema estelar. Algunos científicos creen sin embargo que se

trata de un estrella Enana Marrón y no de un planeta, pues se sabe que estas son muy comunes. Si es así es una de las

Enanas Marrones con menos masa conocida.

En Marzo del 2013, los análisis imágenes de Luhman realizados con el WISE descubrió un par de enanas

marrones más calientes, a una distancia de 6.5 Años Luz, haciendo a este sistema el tercero más cercano al Sol. Su

búsqueda de objetos rápidos también demostró que el sistema solar exterior probablemente no posee un planeta grande no

descubierto y al cual se ha llamado Planeta X o Némesis.

Page 17: Mensajero Estelar No. 72 Octubre

A New View of the Red Planet

Authors: Tenielle Gaither, [email protected]; Kenneth Tanaka, [email protected]; James Skinner, [email protected]; Jennifer LaVista, [email protected]

Get ready, because now you can explore the most comprehensive representation of Mars with a new global

geologic map created by the U.S. Geological Survey. This new view of the “Red Planet’s” surface provides a framework

for continued scientific investigation of Mars as the long-range target for human space exploration.

What Does the New Map Show? The USGS-led mapping effort reveals that the Martian surface is generally older than previously thought. Three

times as much surface area dates to the first major geologic time period – the Early Noachian Epoch – than was

previously mapped. This timeframe is the earliest part of the Noachian Period, which ranges from about 4.1 to about 3.7

billion years ago, and was characterized by high rates of meteorite impacts, widespread erosion of the Martian surface

and the likely presence of abundant surface water.

The map also confirms previous work that suggests Mars had been geologically active until the present day.

There is evidence that major changes in Mars’ global climate supported the temporary presence of surface water and

near-surface groundwater and ice. These changes were likely responsible for many of the major shifts in the environments

where Martian rocks were formed and subsequently eroded. This new map will serve as a key reference for the origin,

age and historic change of geological materials anywhere on Mars.

Why Explore Space? For hundreds of years, geologic maps have helped drive scientific thought. This new global geologic map of

Mars, as well as the recent global geologic maps of Jupiter’s moons Ganymede and Io, also illustrates the overall

importance of geologic mapping as an essential tool for the exploration of the solar system.

“Spacecraft exploration of Mars over the past couple decades has greatly improved our understanding of what

geologic materials, events and processes shaped its surface,” said USGS scientist and lead author, Dr. Kenneth Tanaka.

“The new geologic map brings this research together into a holistic context that helps to illuminate key relationships in

space and time, providing information to generate and test new hypotheses.”

Out of this World Science Takes Time The new map brings together observations and scientific findings from four orbiting spacecraft that have been

acquiring data for more than 16 years. The result is an updated understanding of the geologic history of the surface of

Mars – the solar system’s most Earth-like planet and the only other one in our Sun’s “habitable zone.”

The Martian surface has been the subject of scientific observation since the 1600s, first by Earth-based

telescopes, and later by fly-by missions and orbiting spacecraft. The Mariner 9 and Viking Orbiter missions produced the

first planet-wide views of Mars’ surface, enabling publication of the first global geologic maps (in 1978 and 1986-87,

respectively) of a planetary surface other than the Earth and the Moon. A new generation of sophisticated scientific

Page 18: Mensajero Estelar No. 72 Octubre

instruments flown on the Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter

spacecraft has provided diverse, high quality data sets that enable more sophisticated remapping of the global-scale

geology of Mars.

How the USGS Got Involved in Space Science The production of planetary cartographic products has been a focal point of research at the USGS Astrogeology

Science Center since its inception in the early 1960s. The USGS began producing planetary maps in support of the Apollo

Moon landings, and continues to help establish a framework for integrating and comparing past and future studies of

extraterrestrial surfaces. In many cases, these planetary geologic maps show that, despite the many differences between

bodies in our solar system, there are many notable similarities that link the evolution and fate of our planetary system

together.

The mission of the USGS Astrogeology Science Center is to serve the nation, the international planetary science

community and the general public’s pursuit of new knowledge of our solar system. The team’s vision is to be a national

resource for the integration of planetary geosciences, cartography and remote sensing. As explorers and surveyors with a

unique heritage of proven expertise and international leadership, USGS astrogeologists enable the ongoing successful

investigation of the solar system for humankind.

Enabling Future Exploration “Findings from the map will enable researchers to evaluate potential landing sites for future Mars missions that may

contribute to further understanding of the planet’s history,” said USGS Acting Director Suzette Kimball. “The new Mars

global geologic map will provide geologic context for regional and local scientific investigations for many years to

come.”

The project was funded by NASA through its Planetary Geology and Geophysics Program.

Violenta historia del Sol joven resuelve misterio de los Meteoritos

ESA

Un grupo de astrónomos ha empleado el telescopio espacial

Herschel de ESA para estudiar los violentos comienzos de una

estrella tipo Sol, encontrando indicios de potentes vientos estelares

que podrían resolver un extraño misterio sobre meteoritos.

A pesar de su tranquila apariencia en el cielo nocturno, las

estrellas son hornos abrasadores que llegan a la vida a través de

procesos tumultuosos, y nuestro Sol, de 4500 millones de años de

edad, no es una excepción. Para conocer un poco más sobre sus

duros inicios, los astrónomos recogen pistas, no sólo en el Sistema

Solar, sino también estudiando estrellas jóvenes en otros lugares de

nuestra Galaxia.

Empleando Herschel para estudiar la composición química

de regiones donde las estrellas están naciendo hoy en día, un equipo

de astrónomos ha observado que un objeto en particular es

diferente. La fuente inusual es un prolífico vivero estelar llamado

OMC2 FIR4, una agrupación de estrellas nuevas situadas en el

interior de una nube gaseosa y polvorienta, cerca de la famosa

Nebulosa de Orión.

"Para nuestra sorpresa, descubrimos que la proporción

entre dos especies químicas, una basada en el carbono y oxígeno y

la otra en el nitrógeno, es mucho más pequeña en este objeto que en

cualquier otra protoestrella que conozcamos", afirma la Dra. Cecilia

Ceccarelli, quien dirigió el estudio."La causa más probable en este

ambiente es un violento viento de partículas muy energéticas,

expulsado por lo menos por una de las estrellas embrionarias que

están tomando forma en este huevo protoestelar", añade la Dra.

Ceccarelli.

Los astrónomos piensan que un viento violento parecido

de partículas también barrió el Sistema Solar primitivo, y este

descubrimiento podría finalmente constituir una explicación al origen de un elemento químico particular observado en

meteoritos, el berilio 10.

Page 19: Mensajero Estelar No. 72 Octubre

Junio fue el mes más cálido en la Tierra desde 1880

NOAA

Imagen de la Tierra desde la Estación Espacial Internacional La, Administración Nacional Atmosférica

y Oceánica de EE UU registró que la media del

planeta se colocó en 15,5°C.

El mes de junio registró las temperaturas

globales más cálidas desde que comenzaron los

registros en 1880, al superar la media de 15,5°C

(59,9°F) por 0,72°C (1,30°F), informó hoy la

Administración Nacional Atmosférica y Oceánica

de EEUU, (NOAA, por sus siglas en Inglés), en su

reporte mensual. Tanto la temperatura de la

superficie terrestre como la de los océanos

alcanzaron temperaturas superiores a la media.

No obstante, Jessica Blunden, científica de la NOAA, apuntó que "el calentamiento fue impulsado por las

temperaturas récord en el océano", y agregó que parte de esta subida se debió al comienzo del fenómeno de El Niño, el

calentamiento de las aguas tropicales del Pacífico.

La de la tierra fue 0,95°C (1,71°F) mayor que la media de 13,3°C (55,9°F), y se situó como el séptimo junio más

cálido; mientras que la del océano fue de 0,64°C (1,15°F) por encima de la media de 16,4°C (61,5°F), y se convierte así

en el junio más cálido desde que se empezaron a compilar datos.

Estos datos reflejan también un repunte en las temperaturas globales en los primeros seis meses del año: las

combinadas de tierra y mar fueron 0,67°C (1,21°F) superiores a la media de 13,5°C (56,3°F), las terceras más altas para

un período enero-junio desde 1880.

Esta alza en las temperaturas se produjo de manera general en todo el mundo, ya que se batieron récords en

Groenlandia, el norte de Sudamérica, el este y centro de África y el sudeste asiático, así como en Nueva Zelanda.

La agencia federal de EE.UU. recordó en su reporte mensual que nueve de los diez meses de junio más cálidos

registrados han tenido lugar en el siglo XXI.

Asimismo, indicó que el último mes de junio por debajo de la media se produjo en 1976.

Sonda Voyager 1 podría no haber alcanzado el espacio interestelar.

En 2012, el equipo de la misión Voyager anunció que la nave Voyager 1 había pasado al espacio interestelar,

viajando más lejos de lo que lo ha hecho cualquier objeto de fabricación humana. Pero en los casi dos años que han

transcurrido desde ese anuncio histórico, y a pesar de las observaciones posteriores que lo respaldaban, continúa la

incertidumbre acerca de si la Voyager 1 realmente cruzó la frontera. Hay algunos científicos que dicen que la nave

espacial todavía se encuentra dentro de la heliosfera (la región del espacio dominada por el Sol y su viento de partículas

energéticas) y que aún no ha alcanzado el espacio entre las estrellas.

Ahora, dos científicos del equipo de la Voyager han

desarrollado una prueba que podría demostrar de una vez por

todas si la Voyager 1 ha cruzado la frontera. Los científicos

predicen que en los próximos dos años Voyager 1 cruzará la

capa de corriente eléctrica (la superficie dentro de la heliosfera

donde la polaridad del campo magnético del Sol cambia de

positiva a negativa). La nave detectará una inversión del campo

magnético, demostrando que todavía se encuentra dentro de la

heliosfera. Pero si la inversión del campo magnético no se

produce dentro de un año o dos, tal como se espera, eso

confirmaría que Voyager 1 ya ha pasado al espacio interestelar.

Las naves espaciales Voyager 1 y 2 fueron lanzadas en

1977 hacia Júpiter y Saturno. Desde entonces la misión se ha

extendido a la exploración de los límites más exteriores de la

influencia del Sol y aún más allá. Voyager 2, que también pasó

por Urano y Neptuno, está de camino al espacio interestelar.

Page 20: Mensajero Estelar No. 72 Octubre

La supernova más brillante de la historia

A 7.000 años luz de la Tierra, era tan espectacular que pudo ser contemplada durante más de tres años en el siglo

XI. Ahora, los científicos saben qué la provocó

NASA/NRAO/Middlebury College

El remanente de supernova, a 7.000 años

luz de la Tierra

Una investigación, en la que ha

participado el Consejo Superior de

Investigaciones Científicas (CSIC), ha

descubierto el origen del que hasta ahora

se considera el "evento estelar más

brillante" que ha podido ser contemplado

en la historia desde la Tierra, la supernova

SN1006, que tuvo lugar en el año 1006 a

unos 7.000 años luz de la Tierra, fruto de

la fusión de dos enanas blancas, según ha

publicado la revista Nature en su portada.

De esta forma, el CSIC señala que

este evento estelar se clasifica dentro de las

supernovas de tipo Ia, que son aquellas

generadas por sistemas binarios en los que

dos objetos astronómicos están ligados

entre sí por su fuerza gravitatoria.

Asimismo, apunta que el estudio

calcula que la luz emitida por SN1006 fue

equivalente a "una cuarta parte" de la del

brillo de la Luna, lo que respaldaría los

registros históricos de astrólogos de la

época que indican que la explosión fue visible en distintas partes del mundo durante "más de tres años" y que fue

"aproximadamente" tres veces más brillante que Venus.

Por otro lado, explica que "usualmente" estos sistemas suelen estar formados por una enana blanca y una estrella

normal que le aporta la materia necesaria para alcanzar la "masa crítica" de 1,4 veces la del Sol y, una vez alcanzada, la

enana blanca comienza la fusión de su núcleo que origina una explosión termonuclear. No obstante, ha apuntado que

"también existe la posibilidad de que la supernova se origine a causa de la fusión de dos enanas blancas conectadas entre

sí".

Por su parte, la investigadora del Instituto de Física Fundamental del CSIC Pilar Ruiz-Lapuente, que ha

participado en este estudio, ha manifestado que "la exploración en torno al lugar donde se produjo la supernova SN1006

no ha detectado a ningún candidato a compañero de la enana blanca original, lo que invita a pensar que probablemente se

produjo mediante la fusión de dos enanas blancas conectadas entre sí". Ante esto, el investigador del Instituto de

Astrofísica de Canarias Jonay González, que ha liderado el trabajo, ha argumentado que "existen tres tipos de estrellas en

la región donde tuvo lugar la explosión, las gigantes, sub gigantes y enanas, pero las observaciones sólo detectaron cuatro

estrellas gigantes situadas a la misma distancia que el remanente de la supernova".

Sin dejar pistas

Así, ha planteado que "las simulaciones numéricas no predicen a una compañera de estas características, las

cualidades de una posible estrella compañera". En este sentido, Ruiz-Lapuente ha indicado que "tras la explosión de la

supernova, la estrella compañera de la enana blanca se asemejaría más a una estrella de helio, pero ninguna de este tipo

fue detectada en la región de estudio por lo que se desprende que el origen de SN1006 tuvo lugar en la colisión de dos

enanas blancas, cuyo material fue expulsado sin dejar ningún testigo de la explosión".

Por último, la investigadora del CSIC ha apuntado que "hasta la fecha se habían encontrado algunas supernovas

extra galácticas que no mostraban ninguna señal de la existencia de la estrella compañera". Por ello, considera que estos

"nuevos resultados, junto con otros anteriores, suponen que la fusión de enanas blancas podría ser una vía usual para dar

lugar a estas violentas explosiones termonucleares". En el año 2004, Ruiz-Lapuente ya dirigió la investigación para

descubrir el origen de la supernova del año 1572, donde hallaron la estrella que acompañó a la enana blanca que provoco

este evento estelar.

Page 21: Mensajero Estelar No. 72 Octubre

Near- and

Mid-Infrared

Photometry

of

the

Pleiades

and

a

New

List

of

Substellar

Candidate

Members

1,2

John R. Stauffer

Spitzer Science

Center,

Caltech

314-6,

Pasadena,

CA

91125;

[email protected]

Lee W. Hartmann

Astronomy Department,

University

of

Michigan

Giovanni G. Fazio , Lori E. Allen

, and

Brian M. Patten

Harvard-Smithsonian Center

for

Astrophysics,

60

Garden

Street,

Cambridge,

MA

02138

Patrick J. Lowrance , Robert L. Hurt

, and

Luisa M. Rebull

Spitzer Science

Center,

Caltech,

Pasadena,

CA

91125

Roc M. Cutri and

Solange V. Ramirez

Infrared Processing

and

Analysis

Center,

Caltech

220-6,

Pasadena,

CA

91125

Erick T. Young , George H. Rieke

, Nadya I. Gorlova

,3

and James C. Muzerolle

Steward Observatory,

University

of

Arizona,

Tucson,

AZ

85726

Cathy L. Slesnick

Astronomy Department,

Caltech,

Pasadena,

CA

91125

Michael F. Skrutskie

Astronomy Department,

University

of

Virginia,

Charlottesville,

VA

22903

ABSTRACT

We make use of new near- and mid-IR

photometry of the Pleiades

cluster in order to

help identify proposed

cluster members. We also use

the new photometry with

previously published photometry to

define the single-star main-

sequence locus at the age

of the Pleiades in

a variety of color-magnitude

planes. The new near-

and mid-IR photometry

extend effectively 2 mag deeper

than the 2MASS All-Sky

Point Source catalog, and

hence allow us to

select a new set

of

candidate very low-mass and substellar mass members

of the Pleiades in

the central square degree

of the cluster. We

identify 42 new candidate members fainter than Ks

= 14 (corresponding to

0.1 M ). These candidate

members should

eventually allow a better estimate of

the cluster mass function

to be made down

to of order 0.04

M . We also use

new

IRAC data, in particular the images obtained

at 8 m, in

order to comment briefly

on interstellar dust in

and near the

Pleiades. We confirm, as expected,

that—with one exception—a sample

of low-mass stars recently

identified as having 24

m excesses due to debris disks do not

have significant excesses at

IRAC wavelengths. However, evidence

is also

presented that several of the Pleiades

high-mass stars are found

to be impacting with

local condensations of the

molecular

cloud that is passing through the Pleiades

at the current epoch.

Subject headings: open clusters and associations: individual (Pleiades); stars: low-mass, brown dwarfs

Online material: color figure, machine-readable tables

1 This

work is based (in

part) on observations made

with the Spitzer Space Telescope, which

is operated by the

Jet

Propulsion Laboratory, California

Institute of Technology, under

NASA contract 1407.

2 This publication

makes use of data

products from the Two

Micron All Sky Survey,

which is a joint

project of the

University of Massachusetts and the

Infrared Processing and Analysis

Center/California Institute of Technology,

funded

by the National

Aeronautics and Space Administration

and the National Science

Foundation.

3 Current address: University of

Florida, 211 Bryant Space

Center, Gainesville, FL 32611.

1. INTRODUCTION

Because of its proximity, youth,

richness, and location in

the northern hemisphere, the

Pleiades has long been

a

favorite target of observers. The Pleiades was

one of the first

open clusters to have

members identified via their

common

proper motion (Trumpler 1921), and the cluster

has since then been

the subject of more

than a dozen proper-motion

studies. Some of the earliest photoelectric photometry was

for members of the

Pleiades (Cummings 1921), and

the cluster

has been the subject of dozens

of papers providing additional

optical photometry of its

members. The youth and

nearness

of the Pleiades make it a particularly

attractive target for identifying

its substellar population, and

it was the first

open

cluster studied for those purposes (Jameson &

Skillen 1989; Stauffer et

al. 1989). More than

20 papers have been

subsequently published, identifying additional substellar candidate members of

the Pleiades or studying

their properties.

We have three primary goals for this

paper. First, while extensive

optical photometry for Pleiades

members is

available in the literature, photometry in

the near- and mid-IR

is relatively spotty. We

will remedy this situation

by using

new 2MASS JHKs and Spitzer Infrared

Array Camera (IRAC) photometry

for a large number

of Pleiades members. We

will use these data to help identify cluster

nonmembers and to define

the single-star locus in

color-magnitude diagrams for

stars of 100 Myr age.

Second, we will use

our new IR imaging

photometry of the center

of the Pleiades to

identify a new

set of candidate substellar members

of the cluster, extending

down to stars expected

to have masses of

order 0.04 M .

Third, we will use the

IRAC data to briefly

comment on the presence

of circumstellar debris disks

in the Pleiades and

the

interaction of the Pleiades stars with the

molecular cloud that is

currently passing through the

cluster.

Page 22: Mensajero Estelar No. 72 Octubre

In order to make best use of the

IR imaging data, we

will begin with a

necessary digression. As noted

above, more

than a dozen proper-motion surveys of

the Pleiades have been

made in order to

identify cluster members. However,

no

single catalog of the cluster has been

published that attempts to

collect all of those

candidate members in a

single table and

cross-identify those stars. Another problem

is that, while there

have been many papers

devoted to providing optical

photometry of cluster members, that photometry has been

bewilderingly inhomogeneous in terms

of the number of

photometric systems used. In § 3 and in the

Appendix, we describe our

efforts to create a

reasonably complete catalog of

candidate Pleiades members and to provide optical photometry

transformed to the best

of our ability onto

a single system.

2. NEW OBSERVATIONAL DATA

2.1. 2MASS "6x" Imaging of the Pleiades

During the final months of Two

Micron All Sky Survey

(2MASS; Skrutskie et al.

2006) operations, a series

of

special observations were carried out that employed

exposures 6 times longer

than used for the

primary survey. These so-

called "6x" observations targeted 30

regions of scientific interest

including a 3 ×

2 area centered on

the Pleiades cluster.

The 2MASS 6x data were

reduced using an automated

processing pipeline similar to

that used for the

main survey data,

and a calibrated 6x Image

Atlas and extracted 6x

Point and Extended Source

Catalogs (6x-PSC and 6x-XSC)

analogous to

the 2MASS All-Sky Atlas, PSC, and

XSC have been released

as part of the

2MASS Extended Mission. A

description of

the content and formats of the

6x image and catalog

products, and details about

the 6x observations and

data reduction, are

given in § A3 of

the 2MASS Explanatory Supplement

by Cutri et al.

4 The 2MASS 6x Atlas

and Catalogs may be

accessed

via the online services of the NASA/IPAC

Infrared Science Archive.

5

Figure 1 shows the area on the

sky imaged by the

2MASS 6x observations in

the Pleiades field. The

region was

covered by two rows of scans,

each scan being 1°

long (in declination) and

8.5 wide in right

ascension. Within each row,

the scans overlap by

approximately 1 in right

ascension. There are small

gaps in coverage in the

declination boundary between

the rows, and one

complete scan in the southern row is missing

because the

data in that scan did not

meet the minimum required

photometric quality. The total area covered by the

6x

Pleiades observations is approximately 5.3 deg

2.

(270

kB)

Fig. 1 Spatial coverage of the 6 times

deeper

"2MASS 6x" observations of the Pleiades. The

2MASS survey region is approximately centered

on Alcyone,

the most massive member

of the

Pleiades. The trapezoidal box roughly indicates

the region covered with the shallow IRAC survey

of the cluster core. The star symbols correspond

to the brightest B star members of the

cluster. The

red points

are the location of

objects in the

2MASS 6x Point Source Catalog.

There are approximately 43,000

sources

extracted from the

6x Pleiades observations in

the

2MASS 6x-PSC, and

nearly 1500 in the

6x-XSC.

Because there are at most about 1000

Pleiades members

expected in this region, only 2%

of the 6x-PSC sources

are cluster members, and

the rest are field

stars and background

galaxies. The 6x-XSC objects are

virtually all resolved background

galaxies. Near-infrared color-magnitude and

color-

color diagrams of the unresolved sources from the

2MASS 6x-PSC and all

sources in the 6x-XSC

sources from the

Pleiades region are shown in

Figures 2 and 3,

respectively. The extragalactic sources

tend to be redder

than most stars, and

the galaxies become relatively more numerous toward fainter

magnitudes. Unresolved galaxies dominate

the point sources

that are fainter than Ks

> 15.5 and redder

than J - Ks

> 1.2 mag.

Page 23: Mensajero Estelar No. 72 Octubre

Fig. 2 Color-magnitude diagram

for

the Pleiades derived from the 2MASS

6x

observations. The red dots

correspond to objects identified

as

unresolved, whereas the

green dots

correspond to

extended sources

(primarily background

galaxies). The

lack of green dots fainter than

K = 16 is

indicative that too few

photons are

available to

identify sources as

extended—the extragalactic population

presumably increases

to fainter

magnitudes.

Fig. 3 Same as Fig. 2, except in this

case the

axes are J - H and

H - Ks. The

extragalactic

objects are very red in both colors.

Page 24: Mensajero Estelar No. 72 Octubre

The 2MASS 6x observations were

conducted using the same

freeze-frame scanning technique used

for the

primary survey (Skrutskie et al. 2006).

The longer exposure times

were achieved by increasing

the "READ2-READ1"

integration to 7.8 s from the

1.3 s used for

primary survey. However, the

51 ms "READ1" exposure

time was not changed

for the 6x observations. As a result, there

is an effective "sensitivity

gap" in the 8–11

mag region where objects

may be

saturated in the 7.8 s READ2-READ1

6x exposures, but too

faint to be detected

in the 51 ms

READ1 exposures. Because

the sensitivity gap can result

in incompleteness and/or flux

bias in the photometric

overlap regime, the near-infrared

photometry for sources brighter than J = 11

mag in the 6x-PSC

was taken from the

2MASS All-Sky PSC during

compilation of the catalog of Pleiades candidate members

presented in Table 2 (see

§ 3).

4 See http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html.

5 See http://irsa.ipac.caltech.edu.

2.2. Shallow IRAC Imaging

Imaging of the Pleiades with Spitzer

was obtained in 2004

April as part of

a joint GTO program

conducted by the

IRAC instrument team and the

Multiband Imaging Photometer for

Spitzer (MIPS) instrument team.

Initial results of the

MIPS survey of the Pleiades have already been

reported in Gorlova et

al. (2006). The IRAC

observations were obtained as

two astronomical observing requests (AORs). One of them

was centered near the

cluster center, at R.A.

= 03

h47

m00.0

s and

decl. = 24 07 (J2000.0), and

consisted of a 12

row by 12 column

map, with "frame times"

of 0.6 and 12.0

s and two

dithers at each map position.

The map steps were

290 in both the

column and row direction.

The resultant map covers

a

region of approximately 1 deg

2, and a

total integration time per

position of 24 s

over most of the

map. The second AOR

used the same basic mapping parameters, except it

was smaller (9 rows

by 9 columns) and

was instead centered northwest

from the cluster center at R.A. = 03

h44

m36.0

s and decl. = 25 24 .

A two-band color image

of the AOR covering

the center

of the Pleiades is shown in

Figure 4. A pictorial guide

to the IRAC image

providing Greek names for

a few of the

brightest

stars, and Hertzsprung (1947) numbers for several

stars mentioned in § 6

is provided in Figure 5.

Fig. 4 Two-color (4.5 and 8.0 m)

mosaic of the central square degree

of the

Pleiades from the IRAC

survey. North is approximately

vertical, and east is approximately to

the left. The bright star nearest

the

center is Alcyone; the bright star at

the left of the mosaic is Atlas; and

the bright star at the right of the

mosaic is Electra.

Page 25: Mensajero Estelar No. 72 Octubre

Fig. 5 Finding chart

corresponding approximately to the

region

imaged with IRAC. The large,

five-pointed stars are all of the

Pleiades members brighter than

V = 5.5. The small open circles

correspond

to other cluster members.

Several stars with 8

m excesses are labeled

by their HII numbers

and are

discussed further in § 6. The

short

lines through several of

the stars indicate the size and

position angle

of the residual optical

polarization (after

subtraction of

a constant foreground component),

as

provided in Fig. 6

of Breger (1986).

We began our analysis with the

basic calibrated data (BCDs)

from the Spitzer pipeline,

using the S13 version

of

the Spitzer Science Center pipeline software. Artifact

mitigation and masking was

done using the IDL

tools provided on

the Spitzer contributed software Web

site. For each AOR,

the artifact-corrected BCDs were

combined into single mosaics

for each channel using the post-BCD "MOPEX" package

(Makovoz & Marleau 2005).

The mosaic images were

constructed with 1.22 × 1.22 pixels (i.e., approximately

the same pixel size

as the native IRAC

arrays).

We derived aperture photometry for stars present in

these IRAC mosaics using

both APEX (a component

of the

MOPEX package) and the "phot" routine

in DAOPHOT. In both

cases, we used a

3 pixel radius aperture

and a sky annulus

from 3 to 7 pixels (except that for

channel 4, for the

phot package we used

a 2 pixel radius

aperture and a 2–6

pixel annulus

because that provided more reliable fluxes

at low flux levels).

We used the flux

for zero-magnitude calibrations provided

in the IRAC data handbook (280.9, 179.7, 115.0,

and 64.1 Jy for

channels 1–4, respectively), and

the aperture corrections

provided in the same handbook

(multiplicative flux correction factors

of 1.124, 1.127, 1.143,

and 1.584 for channels

1–4,

inclusive. The channel 4 correction factor is

much bigger because it

is for an aperture

radius of 2 rather

than 3 pixels.).

Figures 6 and 7 provide two

means to assess the

accuracy of the IRAC

photometry. The first figure

compares the

aperture photometry from APEX to that

from phot and shows

that the two packages

yield very similar results

when used in

the same way. For this

reason, we have simply

averaged the fluxes

from the two packages to

obtain our final reported

value. The second

figure shows the difference between

the derived 3.6 and

4.5 m

magnitudes for Pleiades members. Based on

previous studies (e.g.,

Allen et al. 2004), we

expected this difference to

be essentially zero for

most stars, and the Pleiades data corroborate that

expectation. For [3.6]

< 10.5, the rms dispersion

of the magnitude difference

between the two

channels

is 0.024 mag. Assuming

that each channel has

similar

uncertainties, this indicates an internal 1 accuracy of order 0.017

mag. The absolute calibration uncertainty for the IRAC

fluxes is

currently estimated at of order 0.02

mag. Figure 7 also shows

that

fainter than [3.6] = 10.5 (spectral type

later than about M0),

the [3.6] -

[4.5]

color for M dwarfs

departs slightly from zero,

becoming

increasingly redder to the limit of the

data (about M6).

Fig. 6 Comparison of aperture photometry for Pleiades

members

derived

from the IRAC 3.6 m mosaic

using the Spitzer APEX

package and

the IRAF implementation of DAOPHOT.

Page 26: Mensajero Estelar No. 72 Octubre

Fig. 7 Difference between aperture photometry for Pleiades

members for IRAC channels 1 and 2. The

[3.6] - [4.5] color

begins to depart from essentially zero at magnitudes

of 10.5,

corresponding approximately

to spectral type M0

in the

Pleiades.

3. A CATALOG OF PLEIADES CANDIDATE MEMBERS

If one limits oneself to only

stars visible with the

naked eye, it is

easy to identify which

stars are members of

the

Pleiades—all of the stars within a degree

of the cluster center

that have V <

6 are indeed members.

However, if one were

to

try to identify the M dwarf stellar

members of the cluster

(roughly 14 < V

< 23), only of

order 1% of the

stars toward the

cluster center are likely to

be members, and it

is much harder to

construct an uncontaminated catalog.

The problem is

exacerbated by the fact that

the Pleiades is old

enough that mass segregation

through dynamical processes has

occurred,

and therefore one has to survey a

much larger region of

the sky in order

to include all of

the M dwarf members.

The other primary difficulty in

constructing a comprehensive member

catalog for the Pleiades

is that the pedigree

of the candidates varies greatly. For the best-studied

stars, astrometric positions can

be measured over temporal

baselines

ranging up to a century or more,

and the separation of

cluster members from field

stars in a vector

point diagram (VPD)

can be extremely good. In

addition, accurate radial velocities

and other spectral indicators

are available for essentially

all

of the bright cluster members, and these

further allow membership assessment

to be essentially definitive.

Conversely, at

the faint end (for stars near

the hydrogen-burning mass limit

in the Pleiades), members

are near the detection

limit of the

existing wide-field photographic plates, and

the errors on the

proper motions become correspondingly

large, causing the

separation of cluster members from

field stars in the

VPD to become poor.

These stars are also

sufficiently faint that

spectra capable of discriminating members

from field dwarfs can

only be obtained with

8 m class telescopes,

and only a

very small fraction of the

faint candidates have had

such spectra obtained. Therefore,

any comprehensive catalog created

for the Pleiades will necessarily have stars ranging

from certain members to

candidates for which very

little is known and

where the fraction of spurious candidate members increases

to lower masses.

In order to address the membership

uncertainties and biases, we

have chosen a sliding

scale for inclusion in

our

catalog. For all stars, we require that

the available photometry yields

location in color-color and

color-magnitude diagrams

consistent with cluster membership. For the

stars with well-calibrated photoelectric

photometry, this means the

star should

not fall below the Pleiades single-star

locus by more than

about 0.2 mag or

above that locus by

more than about 1.0

mag

(the expected displacement for a hierarchical triple

with three nearly equal

mass components). For stars

with only

photographic optical photometry, where the 1

uncertainties are of

order 0.1–0.2 mag, we

still require the star's

photometry to be consistent with membership, but the

allowed displacements from the

single-star locus are considerably

larger. Where accurate radial velocities are known, we

require that the star

be considered a radial

velocity member based

on the paper where the

radial velocities were presented.

Where stars have been

previously identified as nonmembers

based

on photometric or spectroscopic indices, we adopt

those conclusions.

Two other relevant pieces of information are

sometimes available. In some

cases, individual proper-motion

membership probabilities are provided by

the various membership surveys.

If no other information

is available, and if

the

membership probability for a given candidate is

less than 0.1, we

exclude that star from

our final catalog. However,

often a

Page 27: Mensajero Estelar No. 72 Octubre

star appears in several catalogs; if

it appears in two

or more proper-motion membership

lists, we include it

in the final

catalog even if P <

0.1 in one of

those catalogs. Second, an

entirely different means to

identify candidate Pleiades

members is via flare star

surveys toward the cluster

(Haro et al. 1982;

Jones 1981). A star

with a formally low

membership

probability in one catalog but whose photometry

is consistent with membership

and that was identified

as a flare star

is

retained in our catalog.

Further details of the catalog construction are provided

in the Appendix, as

are details of the

means by which the

B, V, and I photometry have been homogenized.

A full discussion and

listing of all of

the papers from which

we have

extracted astrometric and photometric information is

also provided in the

Appendix. Here we simply

provide a very brief

description of the inputs to the catalog.

We include candidate cluster members from

the following proper-motion surveys:

Trumpler (1921), Hertzsprung

(1947), Jones (1981), Pels &

Lub (as reported in

van Leeuwen et al.

1986), Stauffer et al.

(1991), Artyukhina (1969),

Hambly et al. (1993), Pinfield

et al. (2000), Adams

et al. (2001), and

Deacon & Hambly (2004).

Another important

compilation that provides the initial identification

of a significant number

of low-mass cluster members

is the flare star

catalog of Haro et al. (1982). Table 1 provides

a brief synopsis of

the characteristics of the

candidate member catalogs

from these papers. The Trumpler

paper is listed twice

in Table 1 because there

are two membership surveys

included in

that paper, with differing spatial coverages

and different limiting magnitudes.

Table 1 CITED IN TEXT | ASCII | TYPESET IMAGE Go to: Table 2

Pleiades Membership Surveys Used as Sources

Reference

Area Covered (deg2)

Magnitude Range (and Band)

Number of Candidates

Name Prefix

Trumpler (1921)... 3 2.5 < B < 14.5 174 Tr

Trumpler (1921)a... 24 2.5 < B < 10 72 Tr

Hertzsprung (1947)... 4 2.5 < V < 15.5 247 HII

Artyukhina (1969)... 60 2.5 < B < 12.5 200 AK

Haro et al. (1982)... 20 11 < V < 17.5 519 HCG

van Leeuwen et al. (1986)...

80 2.5 < B < 13 193 Pels

Stauffer et al. (1991)... 16 14 < V < 18 225 SK

Hambly et al. (1993)... 23 10 < I < 17.5 440 HHJ

Pinfield et al. (2000)... 6 13.5 < I < 19.5 339 BPL

Adams et al. (2001)... 300 8 < Ks < 14.5 1200 ...

Deacon & Hambly (2004)...

75 10 < R < 19 916 DH

a The Trumpler paper is listed twice because there are two membership surveys included in that paper, with differing spatial coverages and different limiting magnitudes.

Table 1 Pleiades

Membership Surveys Used as

Sources

Page 28: Mensajero Estelar No. 72 Octubre

In our final catalog, we have attempted to

follow the standard naming

convention whereby the primary

name is

derived from the paper where it

was first identified as

a cluster member. An

exception to this arises

for stars with both

Trumpler (1921) and Hertzsprung (1947) names, where we

use the Hertzsprung numbers

as the standard name

because

that is the most commonly used designation

for these stars in

the literature. The failure

for the Trumpler numbers

to be

given precedence in the literature perhaps

stems from the fact

that the Trumpler catalog

was published in the

Lick

Observatory Bulletins as opposed to a refereed

journal. In addition to

providing a primary name

for each star, we

provide

cross-identifications to some of the other catalogs,

particularly where there is

existing photometry or spectroscopy

of that

star using the alternate names. For

the brightest cluster members,

we provide additional cross-references

(e.g., Greek

names, Flamsteed numbers, HD numbers).

For each star, we attempt to

include an estimate for

Johnson B and V,

and for Cousins I

(IC). Only a very

small

fraction of the cluster members have photoelectric

photometry in these systems,

unfortunately. Photometry for many

of the

stars has often been obtained in

other systems, including Walraven,

Geneva, Kron, and Johnson.

We have used previously

published transformations from the appropriate indices in those

systems to Johnson BV

or Cousins I. In

other cases,

photometry is available in a natural

I-band system, primarily for

some of the relatively

faint cluster members. We

have

attempted to transform those I-band data to

IC by deriving our

own conversion using stars

for which we already

have an IC

estimate as well as the

natural I measurement. Details

of these issues are

provided in the Appendix.

Finally, we have cross-correlated the

cluster candidates catalog with

the 2MASS All-Sky PSC

and also with the

6x-PSC for the Pleiades. For every star in

the catalog, we obtain

JHKs photometry and 2MASS

positions. Where we have

both main survey 2MASS data and data from

the 6x catalog, we

adopt the 6x data

for stars with J

> 11, and data

from the

standard 2MASS catalog otherwise. We verified

that the two catalogs

do not have any

obvious photometric or astrometric

offsets relative to each other. The coordinates we

list in our catalog

are entirely from these

2MASS sources, and hence

they inherit the very good and homogeneous 2MASS

positional accuracies of order

0.1 rms.

We have then plotted the candidate Pleiades

members in a variety

of color-magnitude diagrams and

color-color

diagrams and required that a star must

have photometry that is

consistent with cluster membership.

Figure 8 illustrates this

process and indicates why (for

example) we have excluded

HII 1695 from our

final catalog.

Fig. 8 Ks vs. Ks

- [4.5] CMD for

Pleiades candidate members,

illustrating why we have excluded

HII

1695 from the final catalog of cluster

members. The "X" symbol marks the

location of HII 1695 in this

diagram.

Page 29: Mensajero Estelar No. 72 Octubre

Table 2 provides the collected data for the 1417

stars we have retained

as candidate Pleiades members.

The first two

columns are the J2000.0 right

ascension and declination from

2MASS; the next are

the 2MASS JHKs photometry

and their

uncertainties, and the 2MASS photometric quality

flag ("ph-qual"). If the

number following the 2MASS

quality flag is a

1,

the 2MASS data come from the 2MASS

All-Sky PSC; if it

is a 2, the

data come from the

6x-PSC. The next three

columns

provide the B, V, and IC photometry,

followed by a flag

that indicates the provenance

of that photometry. The

last column

provides the most commonly used names

for these stars. The

hydrogen-burning mass limit for

the Pleiades occurs at

about

V = 22, I = 18, Ks

= 14.4. Fifty-three of

the candidate members in

the catalog are fainter

than this limit and

hence should be

substellar if they are indeed

Pleiades members.

R.A.

(J2000.0)

(deg)

Dec.

(J2000.0)

(deg) J H Ks

ph-

quala B V IC

Referenc

e

Name

s

51.898273.

..

24.52866

0

10.78

1 ±

0.025

10.06

6 ±

0.030

9.892

±

0.017

AAA

1

... ... 11.8

5

22 DH

001

51.925262.

..

23.80368

8

9.066

±

0.013

8.754

±

0.009

8.679

±

0.014

AAA

1

10.9

6

10.3

0

... 4 Pels

121

51.976067.

..

24.93647

8

12.88

0 ±

0.019

12.21

9 ±

0.030

11.98

1 ±

0.016

AAA

1

... ... 14.3

4

22 DH

003

52.006481.

..

23.07849

9

13.52

5 ±

0.022

12.91

9 ±

0.022

12.61

9 ±

0.021

AAA

1

... ... 15.0

5

22 DH

004

52.168613.

..

25.60778

2

10.19

8 ±

0.019

9.883

±

0.029

9.723

±

0.016

AAA

1

12.5

9

11.7

5

... 9 AKIII

59

52.200249.

..

25.57584

2

13.07

2 ±

0.019

12.44

2 ±

0.029

12.15

3 ±

0.015

AAA

1

... ... 14.7

5

22 DH

006

52.203186.

..

26.49935

0

10.42

9 ±

0.019

10.00

6 ±

0.029

9.924

±

0.016

AAA

1

... ... 11.1

6

22 DH

007

52.355843.

..

25.65230

4

8.459

±

0.015

8.314

±

0.059

8.270

±

0.031

AAA

1

9.90 9.43 ... 9 AKIII

79

52.409874.

..

24.51054

6

10.31

8 ±

0.023

9.856

±

0.028

9.698

±

0.016

AAA

1

... ... 11.1

9

22 DH

008

52.494766.

..

23.37185

9

12.79

9 ±

0.018

12.20

6 ±

0.019

11.94

6 ±

0.018

AAA

1

... ... 14.3

9

22 DH

009

52.534420.

..

22.64416

3

13.68

0 ±

12.96

8 ±

12.77

0 ±

AAA

1

... ... 15.1

6

22 DH

010

Table

2 Pleiade

s

Members:

Literature

Photometr

y

Page 30: Mensajero Estelar No. 72 Octubre

0.022 0.024 0.023

52.639614.

..

26.21576

7

11.00

7 ±

0.018

10.40

0 ±

0.027

10.27

9 ±

0.016

AAA

1

... ... 11.8

6

22 DH

011

52.647411.

..

23.05233

4

15.31

9 ±

0.051

14.56

5 ±

0.060

14.26

0 ±

0.073

AAA

1

... ... 16.6

8

22 DH

012

52.656086.

..

26.34610

0

14.23

9 ±

0.026

13.52

4 ±

0.037

13.29

9 ±

0.032

AAA

1

... ... 15.7

3

22 DH

013

52.799591.

..

25.16510

0

11.48

9 ±

0.016

10.78

4 ±

0.020

10.60

2 ±

0.014

AAA

1

... ... 12.6

5

22 DH

014

52.810955.

..

25.98114

8

11.99

1 ±

0.018

11.29

1 ±

0.022

11.09

1 ±

0.018

AAA

1

... ... 13.3

0

22 DH

015

52.873249.

..

26.50352

5

13.61

3 ±

0.022

13.01

8 ±

0.026

12.75

8 ±

0.022

AAA

1

... ... 15.2

8

22 DH

016

52.890076.

..

26.26550

7

9.514

±

0.016

9.222

±

0.021

9.068

±

0.015

AAA

1

11.4

5

10.7

7

... 4 Pels

008

53.001957.

..

23.77490

0

11.32

9 ±

0.017

10.68

6 ±

0.019

10.52

0 ±

0.016

AAA

1

15.2

7

13.9

5

... 4 Pels

109

53.032749.

..

23.23265

5

13.13

5 ±

0.019

12.48

6 ±

0.019

12.25

4 ±

0.018

AAA

1

... ... 14.7

1

22 DH

017

Note.— Table 2 is

available in its entirety

via the link to

the machine-readable version above.

a Standard

2MASS photometric data quality

flag for JHKs, in

that order. If the

number following the

2MASS quality flags is a

1, the 2MASS data

come from the standard

2MASS catalog; if it

is a 2, the

data

come from the deep catalog.

Table 3 provides the IRAC [3.6], [4.5], [5.8], and

[8.0] photometry we have

derived for Pleiades candidate

members

included within the region covered by the

IRAC shallow survey of

the Pleiades (see § 2).

The brightest stars are

saturated

even in our short integration frame data,

particularly for the more

sensitive 3.6 and 4.5

m channels. At the

faint end, we

provide photometry only for 3.6

and 4.5 m because

the objects are undetected

in the two longer

wavelength channels. At

the "top" and "bottom" of

the survey region, we

have incomplete wavelength coverage

for a band of

width about 5 , and

for stars in those areas we report only

photometry in either the

3.6 and 5.8 bands

or the 4.5 and

8.0 bands.

Name [3.6] [4.5] [5.8] [8]

Table 3 Pleiades Members: IRAC Photometry

Page 31: Mensajero Estelar No. 72 Octubre

HHJ 107... 12.550 12.514 12.474 12.388

HCG 96... 11.869 11.881 11.805 11.824

DH 257... 9.604 9.608 9.604 9.554

SK 646... 11.318 11.273 11.204 11.215

HII 97... ... 9.760 ... 9.666

Pels 056... 9.188 9.214 9.164 9.165

HCG 112... 11.711 11.646 11.623 11.620

SK 622... 11.686 11.656 11.699 11.575

HCG 115... 11.450 11.434 11.316 11.437

HII 153... 7.163 7.205 7.183 7.198

HII 174... ... 9.325 ... 9.285

HII 173... 8.798 8.812 8.763 8.768

HCG 125... 11.641 11.594 11.564 11.540

Pels 043... 9.673 ... 9.673 ...

SK 609... 15.572 15.663 15.857 15.685

AK 1B146... 8.189 8.175 8.153 8.166

HHJ 218... 12.309 12.285 12.268 12.494

HCG 126... 11.220 11.205 11.181 11.193

SK 596... 11.141 11.112 11.039 11.061

HCG 129... ... 11.276 ... 11.282

HCG 134... 11.111 11.071 11.032 11.033

HCG 131... 9.941 9.982 9.980 9.911

HII 250... ... 9.083 ... 9.023

Pels 059... 9.950 9.991 9.951 9.934

HHJ 235... 12.167 12.085 11.940 12.080

Page 32: Mensajero Estelar No. 72 Octubre

HCG 138... 11.200 11.132 11.096 11.124

HCG 143... 11.355 11.303 11.258 11.291

HHJ 100... 12.588 12.551 12.462 12.459

HCG 152... 10.858 10.874 10.857 10.846

HHJ 68... 13.007 12.914 13.089 12.688

HCG 157... 12.194 ... 12.045 ...

HII 380... 10.169 10.192 10.173 10.161

HHJ 46... 13.149 13.085 13.170 12.898

Pels 041... 9.740 9.774 9.674 9.698

HII 430... 9.509 9.459 9.356 9.465

HHJ 24... 13.410 13.345 13.298 13.784

HCG 166... 12.168 12.111 11.908 12.291

HII 447... ... ... 5.522 5.528

HII 468... ... ... 4.010 3.910

HHJ 183... 12.458 12.426 12.431 12.207

HII 489... 8.857 8.885 8.864 8.814

DH 367... 12.770 12.717 12.594 12.589

HHJ 139... ... 12.495 ... 12.628

HII 514... 9.019 9.006 8.955 8.978

SK 534... 11.269 11.262 11.163 11.241

HII 531... 7.715 7.731 7.703 7.719

HHJ 164... 12.469 12.381 12.354 12.410

HII 554... ... 10.456 ... 10.427

HII 563... ... ... 4.620 4.580

HHJ 14... 13.479 13.461 13.624 13.430

Page 33: Mensajero Estelar No. 72 Octubre

HCG 180... 12.854 12.775 12.763 12.697

HII 559... ... 10.120 ... 10.097

HII 566... ... 10.722 ... 10.681

HII 571... 9.175 9.151 9.161 9.097

SK 526... ... 10.744 ... 10.698

HCG 181... ... 11.173 ... 11.141

HCG 178... 10.938 10.960 10.774 10.767

HII 590... ... 10.552 ... 10.503

HII 625... 9.317 9.330 9.323 9.250

HHJ 273... ... 12.014 ... 11.962

DH 392... 11.972 11.934 11.827 12.053

HII 652... 7.426 7.455 7.422 7.278

HHJ 99... 13.052 13.021 13.180 13.126

HHJ 106... 12.975 12.923 12.953 12.619

HII 676... 10.149 10.131 10.105 10.132

HII 673... 10.938 10.944 10.910 10.997

HHJ -293... 12.227 ... 12.060 ...

HII 686... 10.100 10.116 10.126 10.084

HII 697... 7.703 7.661 7.656 7.597

HII 708... 8.547 8.507 8.472 8.497

HII 717... 6.538 6.600 6.592 6.611

HCG 196... 10.767 10.810 10.767 10.749

HHJ 130... 12.724 12.695 12.618 12.781

HII 738... 8.819 8.845 8.773 8.762

HII 745... 8.002 8.007 7.975 7.988

Page 34: Mensajero Estelar No. 72 Octubre

HCG 195... 10.648 10.611 10.561 10.587

HII 746... 9.300 9.328 9.292 9.280

HII 740... ... 10.495 ... 10.425

HII 762... 10.556 10.571 10.533 10.479

HII 761... 8.736 8.745 8.722 8.694

HII 793... 10.529 10.621 10.493 10.431

DH 403... 14.486 14.432 14.604 13.951

BPL 77... 11.528 11.500 11.390 55.505

HII 785... ... ... 4.050 4.030

HII 799... 10.140 10.162 10.107 10.178

BPL 79... 14.069 14.009 13.914 13.960

HII 804... 7.345 7.323 7.340 7.338

HHJ 166... 12.469 12.405 12.364 12.410

BPL 81... 14.498 14.477 14.190 14.098

HII 813... 10.355 10.340 10.283 10.288

HII 817... ... 9.900 ... 5.737

BPL 82... 11.539 11.510 11.449 11.582

SK 497... 11.198 11.172 11.112 11.107

HHJ 27... 13.407 13.418 13.113 13.243

DH 412... 13.309 13.297 13.161 13.409

HHJ 127... 12.785 12.736 12.774 12.486

SK 491... 11.042 11.052 10.994 11.016

HII 870... 9.133 9.134 9.109 9.082

HII 859... ... 6.454 ... 6.422

SK 490... 10.656 10.684 10.635 10.672

Page 35: Mensajero Estelar No. 72 Octubre

HHJ 363... 11.628 11.536 11.505 11.552

BPL 88... 12.871 12.811 12.703 12.560

SK 488... ... 11.196 ... 11.137

HHJ 194... 12.575 12.635 12.546 12.712

HII 879... ... 10.081 ... 10.066

HHJ 435... 10.767 10.761 10.733 10.702

HII 883... ... 10.195 ... 10.125

HII 890... 10.727 10.715 10.649 10.696

HII 916... ... 9.524 ... 9.479

HII 930... 10.459 10.472 10.424 10.459

HHJ 56... 12.475 12.422 12.572 12.562

HII 956... 7.092 7.131 7.079 7.069

HII 980... ... ... ... 4.190

HHJ 105... ... 12.724 ... 12.609

DH 441... 11.766 11.693 11.531 11.636

HII 996... ... 8.932 ... 8.878

HCG 218... 12.534 12.462 12.443 12.465

HHJ 249... 12.259 12.254 12.173 12.154

HCG 219... 10.889 10.851 10.794 10.801

HHJ 326... 11.786 11.731 11.618 11.719

HII 1028... 7.078 7.120 7.113 7.085

HII 1015... ... 9.016 ... 8.965

HHJ 161... 12.285 12.181 12.275 12.181

HII 1039... 9.798 ... 9.764 ...

HII 1032... 9.143 9.129 9.144 9.071

Page 36: Mensajero Estelar No. 72 Octubre

HII 1061... 10.298 10.323 10.245 10.240

HII 1084... 7.052 ... 7.043 ...

HHJ 140... 12.439 12.385 12.431 12.409

HII 1094... 10.549 10.546 10.479 10.613

HII 1100... 9.285 9.321 9.302 9.264

HII 1117... 8.497 8.524 8.543 8.482

HII 1110... 10.227 10.284 10.240 10.208

HII 1122... 8.149 8.146 8.174 8.132

HII 1124... 9.858 9.843 9.847 9.785

HHJ 104... 12.705 ... 12.752 ...

DH 467... 11.379 11.297 11.253 11.271

HII 1173... ... 10.855 ... 10.781

HHJ 247... 11.836 ... 11.660 ...

HCG 244... 10.955 10.921 10.873 10.870

HII 1215... 8.997 ... 8.953 ...

HHJ 257... 11.948 11.924 11.906 11.714

HHJ 174... 12.506 ... ... ...

HHJ 299... 11.797 11.744 11.694 11.663

HII 1234... 6.729 6.743 6.712 6.679

HHJ 252... 11.927 11.863 11.740 11.836

HII 1280... 10.548 10.602 10.528 10.575

HII 1286... 10.378 ... 10.289 ...

HII 1284... 7.617 7.627 7.571 7.589

HII 1298... 9.778 9.784 9.800 9.741

HCG 253... 11.625 11.513 11.511 11.559

Page 37: Mensajero Estelar No. 72 Octubre

HII 1306... 9.798 9.811 9.773 9.747

HHJ 37... 13.241 13.158 13.051 13.073

HII 1321... 10.438 10.413 10.361 10.372

HII 1309... 8.270 8.285 8.244 8.259

HHJ 92... 12.816 12.717 12.684 12.753

HII 1332... 9.969 10.016 9.991 9.958

HCG 258... 10.839 10.766 10.673 10.750

HII 1338... 7.463 7.483 7.503 7.476

HII 1348... 9.622 9.651 9.622 9.575

HII 1355... 10.016 10.024 9.991 10.035

HII 1362... 7.637 7.661 7.641 7.618

HII 1380... 6.914 6.952 6.961 6.962

HII 1375... ... 6.323 6.311 6.318

HCG 266... 12.175 12.115 12.078 11.993

HII 1384... ... 6.984 ... 6.979

HII 1397... 7.181 7.196 7.192 7.184

HHJ 198... 12.717 12.668 12.541 12.431

HCG 269... 11.965 ... 11.859 ...

HII 1425... 7.342 ... 7.323 ...

HII 1431... 6.640 6.652 6.644 6.674

HCG 273... 11.175 11.142 11.093 11.240

HCG 277... 10.658 ... 10.553 ...

HII 1454... ... 10.071 ... 10.026

DH 523... 12.495 12.493 12.472 12.348

HII 1516... 10.219 10.252 10.211 10.217

Page 38: Mensajero Estelar No. 72 Octubre

HII 1514... 8.940 8.936 8.910 8.913

HII 1532... 10.510 10.472 10.450 10.403

HII 1531... 10.260 10.275 10.191 10.195

HHJ 26... 13.951 13.840 13.870 13.714

HHJ 152... 12.384 ... 12.228 ...

HHJ 438... 11.138 11.076 11.014 11.048

HCG 295... 11.248 11.254 11.248 11.190

HHJ 122... 12.698 ... 12.635 ...

HII 1613... 8.562 8.565 8.514 8.535

HHJ 240... 12.232 12.184 12.131 12.102

HII 1726... 7.905 7.904 7.883 7.891

HCG 307... 11.929 11.899 11.830 11.887

HHJ 156... 12.458 ... 12.384 ...

HHJ 225... 12.370 12.237 12.267 12.356

DH 555... 13.164 13.108 12.971 13.066

HCG 311... 12.095 12.014 11.969 12.067

HII 1762... 7.306 7.312 7.342 7.332

HCG 315... 11.888 ... 11.717 ...

HHJ 336... 11.528 ... 11.462 ...

HII 1797... 8.729 ... 8.662 ...

HII 1794... 8.871 8.887 8.812 8.797

HII 1785... 10.569 10.594 10.552 10.563

HHJ 188... 12.467 12.384 12.441 12.456

HII 1827... 10.298 10.272 10.163 10.217

HII 1856... 8.648 8.637 8.613 8.626

Page 39: Mensajero Estelar No. 72 Octubre

HCG 328... 12.677 12.611 12.659 12.887

HII 1876... 6.575 6.578 6.595 6.592

HCG 324... 11.169 11.146 11.114 11.146

HCG 327... 12.521 12.483 12.455 12.506

HHJ 184... 12.586 12.555 12.573 12.553

HII 1912... 7.798 7.834 7.783 7.790

HCG 335... 12.866 12.826 12.760 12.820

HCG 337... 11.627 11.558 11.584 11.665

HHJ 44... 13.179 13.093 13.023 12.903

HHJ 207... 12.389 12.304 12.221 12.330

HII 2027... 8.788 8.836 8.774 8.784

HII 2034... 9.878 9.922 9.923 9.865

DH 593... 14.247 14.270 14.972 14.808

HHJ 8... 13.674 13.656 13.473 13.729

HHJ 231... 12.236 12.194 12.171 12.189

HCG 354... 10.566 ... 10.486 ...

HII 2147... 8.558 8.615 8.514 8.549

HII 2168... ... ... 3.840 3.820

HII 2195... 7.600 7.622 7.601 7.588

DH 610... 13.173 ... 13.132 ...

HII 2284... 9.366 9.384 9.353 9.319

HII 2311... 9.445 ... 9.395 ...

HHJ 142... 12.426 ... 12.224 ...

Because Table 2 is an amalgam of many previous

catalogs, each of which

have different spatial coverage,

magnitude

limits, and other idiosyncrasies, it is necessarily

incomplete and inhomogeneous. It

also certainly includes some

nonmembers. For V < 12, we expect very

few nonmembers because of

the extensive spectroscopic data

available for those

stars; the fraction of nonmembers

will likely increase to

fainter magnitudes, particularly for

stars located far from

the

cluster center. The catalog is simply an

attempt to collect all

of the available data,

identify some of the

nonmembers, and

eliminate duplications. We hope that it

will also serve as

a starting point for

future efforts to produce

a "cleaner" catalog.

Page 40: Mensajero Estelar No. 72 Octubre

Figure 9 shows the distribution on the

sky of the stars

in Table 2. The complete

spatial distribution of all

members of

the Pleiades may differ slightly from

what is shown due

to the inhomogeneous properties

of the proper-motion surveys.

However, we believe that those effects are relatively

small and the distribution

shown is mostly representative

of the

parent population. One thing that is

evident in Figure 9 is

mass segregation—the highest mass

cluster members are much

more centrally located than the lowest mass cluster

members. This fact is

reinforced by calculating the

cumulative number

of stars as a function of

distance from the cluster

center for different absolute

magnitude bins. Figure 10 illustrates

this

fact. Another property of the Pleiades illustrated

by Figure 10 is that

the cluster appears to

be elongated parallel to

the

Galactic plane, as expected from n-body simulations

of galactic clusters (Terlevich

1987). Similar plots showing

the

flattening of the cluster and evidence for

mass segregation for the

V < 12 cluster

members were provided by

Raboud &

Mermilliod (1998).

Fig. 9 Spatial

plot of the

candidate

Pleiades members

from Table 2.

The large star

symbols are members brighter

than Ks = 6; the

open circles are

stars with 6 < Ks

< 9; and the

dots are candidate members

fainter than Ks = 9. The solid

line is parallel to the

Galactic

plane.

Page 41: Mensajero Estelar No. 72 Octubre

Fig.

10 Cumul

ative

radial

density

profiles for

Pleiades

members in

several

magnitude

ranges:

heavy,

long-

dashed

line, Ks <

6;

dots, 6

< Ks < 9;

short-

dashed

line, 9 < Ks

< 12; light,

long-

dashed

line, Ks >

12.

4. EMPIRICAL PLEIADES ISOCHRONES

AND COMPARISON TO MODEL ISOCHRONES

Young, nearby, rich open clusters

like the Pleiades

can and should be used

to provide template data

that can help interpret

observations of more distant

clusters or to test

theoretical models. The identification of candidate members of

distant open clusters is

often based on plots

of stars in a

color-magnitude diagram, overlaid on which is a line

meant to define the

single-star locus at the

distance of the cluster.

The stars lying near or slightly above the

locus are chosen as

possible or probable cluster

members. The data we

have

collected for the Pleiades provide a means

to define the single-star

locus for 100 Myr,

solar metallicity stars in

a variety of

widely used color systems down

to and slightly below

the hydrogen-burning mass limit.

Figures 11 and 12

illustrate the

appearance of the Pleiades stars in

two of these diagrams,

and the single-star locus

we have defined. The

curve defining

the single-star locus was drawn entirely

"by eye." It is

displaced slightly above the

lower envelope to the

locus of stars to

account for photometric uncertainties (which increase to fainter

magnitudes). We attempted to

use all of the

information

available to us, however. That is, there

should also be an

upper envelope to the

Pleiades locus in these

diagrams, since

equal-mass binaries should be displaced above

the single-star sequence by

0.7 mag (and one

expects very few systems

of

higher multiplicity). Therefore, the single-star locus was

defined with that upper

envelope in mind. Table 4

provides the

single-star loci for the Pleiades for

BVICJKs plus the four

IRAC channels. We have

dereddened the empirical loci

by the

canonical mean extinction to the Pleiades

of AV = 0.12

(and, correspondingly, AB =

0.16, AI = 0.07,

AJ = 0.03, and

AK =

0.01, as per the reddening law

of Rieke & Lebofsky

1985).

Fig. 11 V vs. (V - I)c CMD for Pleiades

members with photoelectric photometry.

The solid curve is

the "by-eye" fit to

the single-star locus for Pleiades members.

Page 42: Mensajero Estelar No. 72 Octubre

(51 kB)

Fig. 12 Ks vs. Ks - [3.6] CMD for

Pleiades candidate

members from Table 2 (dots) and from

deeper imaging of a

set of Pleiades VLM and brown dwarf candidate

members

from P. Lowrance et al. (2007, in

preparation) (squares).

The solid curve is the single-star

locus from Table 4.

B V IC Ks [3.6] [4.5] [5.8] [8]

6.598... 6.600 6.574 6.592 6.602 6.615 6.602 6.602

6.706... 6.700 6.665 6.671 6.682 6.695 6.682 6.682

6.814... 6.800 6.755 6.750 6.761 6.775 6.762 6.762

6.922... 6.900 6.848 6.834 6.841 6.855 6.841 6.841

7.030... 7.000 6.940 6.910 6.920 6.935 6.921 6.921

7.142... 7.100 7.030 6.982 6.990 7.005 6.991 6.991

7.254... 7.200 7.115 7.039 7.050 7.064 7.050 7.049

7.370... 7.300 7.200 7.104 7.109 7.124 7.108 7.107

7.490... 7.400 7.283 7.162 7.168 7.183 7.165 7.164

7.610... 7.500 7.367 7.228 7.238 7.252 7.233 7.231

7.730... 7.600 7.450 7.287 7.297 7.311 7.291 7.288

7.850... 7.700 7.533 7.345 7.347 7.360 7.339 7.336

7.968... 7.800 7.615 7.387 7.396 7.409 7.387 7.384

8.084... 7.900 7.698 7.428 7.436 7.449 7.426 7.422

8.200... 8.000 7.780 7.469 7.475 7.488 7.465 7.460

Table 4 Single-Star Pleiades Loci

Page 43: Mensajero Estelar No. 72 Octubre

8.320... 8.100 7.840 7.508 7.515 7.527 7.503 7.498

8.440... 8.200 7.900 7.546 7.555 7.567 7.542 7.536

8.564... 8.300 7.975 7.591 7.594 7.606 7.580 7.575

8.692... 8.400 8.050 7.648 7.654 7.665 7.638 7.632

8.820... 8.500 8.125 7.701 7.703 7.715 7.687 7.680

8.936... 8.600 8.200 7.762 7.762 7.774 7.744 7.737

The other benefit to constructing the new catalog

is that it can

provide an improved comparison

data set to test

theoretical isochrones. The new catalog provides homogeneous photometry

in many photometric bands

for stars ranging

from several solar masses down

to below 0.1 M .

We take the distance

to the Pleiades as

133 pc and refer

the reader to

Soderblom et al. (2005) for

a discussion and a

listing of the most

recent determinations. The age

of the Pleiades is

not as

well-defined but is probably somewhere between

100 and 125 Myr

(Meynet et al. 1993;

Stauffer et al. 1999).

We adopt

100 Myr for the purposes of

this discussion; our conclusions

relative to the theoretical

isochrones would not be

affected

significantly if we instead chose 125 Myr.

As noted above, we

adopt AV = 0.12

as the mean Pleiades

extinction and apply

that value to the theoretical

isochrones. A small number

of Pleiades members have

significantly larger extinctions (Breger

1986; Stauffer & Hartmann 1987), and we have

dereddened those stars individually

to the mean cluster

reddening.

Figures 13 and 14 compare theoretical 100 Myr

isochrones from Siess et

al. (2000) and Baraffe

et al. (1998) to

the

Pleiades member photometry from Table 2 for stars

for which we have

photoelectric photometry. Neither set

of isochrones

are a good fit to the

V - I based

color-magnitude diagram. For Baraffe

et al. (1998) this

is not a surprise

because they

illustrated that their isochrones are too

blue in V -

I for cool stars

in their paper and

ascribed the problem as

likely the result

of an incomplete line list,

resulting in too little

absorption in the V

band. For Siess et

al. (2000) the poor

fit in the V

- I

CMD is somewhat unexpected in that

they transform from the

theoretical to the observational

plane using empirical color-

temperature relations. In any event,

it is clear that

neither model isochrones match

the shape of the

Pleiades locus in the

V

versus V - I plane, and therefore

use of these V

- I based isochrones

for younger clusters is

not likely to yield

accurate

results (unless the color-Teff relation is recalibrated,

as described, e.g., in

Jeffries & Oliveira 2005).

On the other hand,

the

Baraffe et al. (1998) model provides a

quite good fit to

the Pleiades single-star locus

for an age of

100 Myr in the

K versus

I - K plane.

6 This perhaps

lends support to the

hypothesis that the misfit

in the V versus

V - I plane

is due to missing

opacity

in their V-band atmospheres for low-mass stars

(see also Chabrier et

al. 2000 for further

evidence in support of

this idea).

The Siess et al. (2000) isochrones

do not fit the

Pleiades locus in the

K versus I -

K plane particularly well,

being too faint

near I - K =

2 and too bright

for I - K

> 2.5.

Page 44: Mensajero Estelar No. 72 Octubre

(74 kB)

Fig. 13 V vs. (V -

I)c CMD for

Pleiades candidate

members from

Table 2 for which

we

have

photoelectric

photometry,

compared

to

theoretical

isochrones from

Siess et al. (2000)

(left) and from

Baraffe

et al.

(1998) (right). For

the left panel, the

curves correspond

to 10, 50, and 100

Myr and a ZAMS;

the right panel

includes curves for

50 and

100 Myr

and a ZAMS.

Page 45: Mensajero Estelar No. 72 Octubre

Fig. 14 K vs. (I - K)

CMD for Pleiades

candidate members

from Table 2,

compared to

theoretical

isochrones from Siess

et al. (2000) (left) and

from

Baraffe et al.

(1998)

(right). The

curves correspond to

50 and 100 Myr and a

ZAMS.

6 These

isochrones are calculated for

the standard K filter,

rather than Ks. However,

the difference in location

of

the isochrones in these plots because of

this should be very

slight, and we do

not believe our conclusions

are significantly

affected.

5. IDENTIFICATION OF NEW VERY LOW-MASS CANDIDATE MEMBERS

The highest spatial density for Pleiades

members of any mass

should be at the

cluster center. However, searches

for substellar members of the Pleiades have generally

avoided the cluster center

because of the deleterious

effects of

scattered light from the high-mass cluster

members and because of

the variable background from

the Pleiades reflection

nebulae. The deep 2MASS and

IRAC 3.6 m imaging

and 4.5 m imaging

provide accurate photometry to

well below

the hydrogen-burning mass limit and are

less affected by the

nebular emission than shorter

wavelength images. We

therefore expect that it should

be possible to identify

a new set of

candidate Pleiades substellar members

by combining our

new near- and mid-infrared photometry.

The substellar mass limit in

the Pleiades occurs at

about Ks = 14.4,

near the limit of

the 2MASS All-Sky PSC.

As

illustrated in Figure 15, the deep 2MASS survey

of the Pleiades should

easily detect objects at

least 2 mag fainter

than the

substellar limit. The key to actually

identifying those objects and

separating them from the

background sources is to

find

color-magnitude or color-color diagrams that separate the

Pleiades members from the

other objects. As shown

in Figure

15, late-type Pleiades members separate fairly well

from most field stars

toward the Pleiades in

a Ks versus Ks

- [3.6] color-

magnitude diagram. However, as illustrated in

Figure 2, in the Ks

magnitude range of interest

there is also a

large

population of red galaxies, and they are

in fact the primary

contaminants to identifying Pleiades

substellar objects in the

Ks

Page 46: Mensajero Estelar No. 72 Octubre

versus Ks - [3.6] plane. Fortunately, most

of the contaminant galaxies

are slightly resolved in

the 2MASS and IRAC

imaging, and we have found that we can

eliminate most of the

red galaxies by their

nonstellar image shape.

Figure 15 shows the first step in

our process of identifying

new very low-mass members

of the Pleiades. The

red

plus symbols are the known Pleiades members

from Table 2. The red

open circles are candidate

Pleiades substellar

members from deep imaging surveys published

in the literature, mostly

of parts of the

cluster exterior to the

central square

degree, where the IRAC photometry is

from P. Lowrance et

al. (2007, in preparation).

The blue, filled circles

are field M

and L dwarfs, placed at

the distance of the

Pleiades, using photometry from

Patten et al. (2006).

Because the Pleiades is

100 Myr, its very low-mass stellar and substellar

objects will be displaced

about 0.7 mag above

the locus of the

field M

and L dwarfs according to the

Baraffe et al. (1998)

and Chabrier et al.

(2000) models, in accord

with the location in

the

diagram of the previously identified, candidate VLM

and substellar objects. The

trapezoidal shaped region outlined

with a

dashed line is the region in

the diagram that we

define as containing candidate

new VLM and substellar

members of the

Pleiades. We place the faint

limit of this region

at Ks = 16.2

in order to avoid

the large apparent increase

in faint, red

objects for Ks > 16.2,

caused largely by increasing

errors in the Ks

photometry. Also, the 2MASS

extended object flags

cease to be useful fainter

than about Ks =

16.

Fig. 15 Ks vs. Ks - [3.6] CMD for the

objects in the central 1 deg

2 of the

Pleiades, combining data from

the

IRAC shallow survey and 2MASS. The

symbols are defined within the

figure

(and see text for details). The dashed-

line box indicates the region

within

which we have

searched for new

candidate

Pleiades VLM and

substellar members. The solid curve

is

a DUSTY 100

Myr isochrone from

Chabrier et al. (2000) for

masses from

0.1 to 0.03 M .

We took the following steps to identify

a set of candidate

substellar members of the

Pleiades:

Page 47: Mensajero Estelar No. 72 Octubre

keep only objects that fall in the trapezoidal

region in Figure 15;

remove objects flagged as nonstellar by

the 2MASS pipeline software;

remove objects that appear nonstellar

to the eye in

the IRAC images;

remove objects that do not fall

in or near the

locus of field M

and L dwarfs in

a J - H

versus H - Ks

diagram;

remove objects that have 3.6 and 4.5 m

magnitudes that differ by

more than 0.2 mag;

remove objects that fall below

the ZAMS in a

J versus J -

Ks diagram.

As shown in Figure 15, all stars earlier

than about mid-M have

Ks - [3.6] colors

bluer than 0.4. This

ensures that

for most of the area of

the trapezoidal region, the

primary contaminants are distant

galaxies. Fortunately, the 2MASS

catalog provides two types of flags for identifying

extended objects. For each

filter, a

2 flag

measures the match between

the objects shape and the instrumental PSF, with

values greater than 2.0

generally indicative of a

nonstellar object. In

order not to be misguided

by an image artifact

in one filter, we

throw out the most

discrepant of the three

flags and average

the other two. We discard

objects with mean

2 greater than 1.9. The

other indicator is the

2MASS extended object flag,

which is the synthesis of several independent tests

of the objects shape,

surface brightness and color

(see Jarrett et al.

2000

for a description of this process). If

one simply excludes the

objects classified as extended

in the 2MASS 6x

image by

either of these techniques, the number

of candidate VLM and

substellar objects lying inside

the trapezoidal region

decreases by nearly a half.

We have one additional means

to demonstrate that many

of the identified objects

are probably Pleiades members,

and that is via proper motions. The mean

Pleiades proper motion is

R.A. = 20 mas

yr

-1 and decl. =

-45 mas yr

-1 (Jones

1973). With an epoch difference of only 3.5

yr between the deep

2MASS and IRAC imaging,

the expected motion for

a

Pleiades member is only 0.07 in right

ascension and -0.16 in

declination. Given the relatively

large pixel size for

the

two cameras, and the undersampled nature of

the IRAC 3.6 and

4.5 m images, it

is not a priori

obvious that one would

expect to reliably detect the Pleiades motion. However,

both the 2MASS and

IRAC astrometric solutions have

been very

accurately calibrated. Also, for the present

purpose, we only ask

whether the data support

a conclusion that most

of the

identified substellar candidates are true Pleiades

members (i.e., as an

ensemble), rather than that

each star is well

enough

separated in a VPD to derive a

high membership

probability.

Figure 16 provides a set of plots

that we

believe support the conclusion that the

majority of

the surviving

VLM and substellar candidates

are

Pleiades members. The first plot shows the

measured

motions between the epoch of the 2MASS

and IRAC

observations for all known Pleiades members

from

Table 2 that lie in the central square

degree region

and have 11 < Ks <

14 (i.e., just brighter

than the

substellar candidates).

The mean offset of

the

Pleiades stellar members

from the background

population is well-defined and is

quantitatively of the

expected

magnitude and sign (+0.07

in right

ascension and

-0.16 in declination). The

rms

dispersion of the coordinate difference for the

field

population in right ascension and declination is

0.076

and 0.062 , supportive

of our claim that

the

relative astrometry for the two cameras is

quite good.

Because we expect that the background

population

should have essentially no mean proper motion,

the

nonzero mean "motion" of the field population

of

about R.A. =

0.3 is presumably not

real.

Instead, the offset is probably due to

the uncertainty

in transferring

the Spitzer coordinate zero

point

between the warm star-tracker and the cryogenic

focal plane. Because it is simply a zero-point

offset

applicable to all the objects in the

IRAC catalog, it

has

no effect on the

ability to separate Pleiades

members from the field star population.

Fig. 16 Proper-motion vector point diagrams (VPDs) for various

stellar samples in the

central 1° field, derived

from

Page 48: Mensajero Estelar No. 72 Octubre

combining the IRAC and 2MASS 6x observations.

Top left: VPD comparing all

objects in the field

(small black dots) to

Pleiades members with 11 < Ks

< 14 (large blue dots). Top right:

Same, except the blue

dots are the new

candidate VLM

and substellar Pleiades members. Bottom left: Same,

except the blue dots

are a nearby, low-mass

field star sample from

a box just blueward of the trapezoidal region

in 15. Bottom right: VPD

just showing a second,

distant field star sample

as described in the text.

The second panel in Figure 16 shows the proper

motion of the candidate

Pleiades VLM and substellar

objects.

While these objects do not show as

clean a distribution as

the known members, their

mean motion is clearly

in the same

direction. After removing 2 deviants, the median offsets

for the substellar candidates

are 0.04 and -0.11

in right

ascension and declination, respectively. The objects

whose motions differ significantly

from the Pleiades mean

may be

nonmembers or they may be members

with poorly determined motions

(since a few of

the high-probability members in

the

first panel also show discrepant motions).

The other two panels in Figure 16

show the proper motions

of two possible control

samples. The first control

sample was defined as the set of stars

that fall up to

0.3 mag below the

lower sloping boundary of

the trapezoid in Figure

15. These objects should be

late-type dwarfs that are

either older or more

distant than the Pleiades

or red galaxies. We

used

the 2MASS data to remove extended or

blended objects from the

sample in the same

way as for the

Pleiades candidates. If

the objects are nearby field

stars, we expect to

see large proper motions;

if galaxies, the real

proper motions would be

small—but relatively large apparent proper motions due to

poor centroiding or different

centroids at different effective

wavelengths could be present. The second control set

was defined to have

-0.1 < K -

[3.6] < 0.1 and

14.0 < K <

14.5 and to

be stellar based on the

2MASS flags. This control

sample should therefore be

relatively distant G and

K dwarfs primarily.

Both control samples have proper-motion

distributions that differ greatly

from the Pleiades samples

and that make sense

for, respectively, a nearby and a distant field

star sample.

Figure 17 shows the

Pleiades

members from Table 2

and the 55

candidate

VLM and substellar members

that survived all of our culling steps. We

cross-correlated this list with the stars from

Table 2 and with a list

of the previously

identified candidate substellar members of

the cluster from other

deep imaging

surveys. Fourteen of the surviving objects

correspond to previously identified

Pleiades VLM and substellar candidates.

We provide the

new list of candidate

members in Table 5. The columns marked

as (R.A.) and (decl.) are the

measured

motions in arcsec over the 3.5 yr

epoch

difference between the

2MASS-6x and

IRAC observations.

Forty-two of these

objects have Ks > 14.0

and hence inferred

masses less than about 0.1

M ; 31 of them

have Ks > 14.4 and hence have inferred

masses below the hydrogen-burning mass

limit.

(130

kB)

Fig. 17 Same as Fig. 15, except

that the new candidate VLM and

substellar objects from Table 5 are

now indicated as small, red squares.

Table 5 New

Candidate Pleiades

Members

Page 49: Mensajero Estelar No. 72 Octubre

ID

R.A.

(J2000.0)

(deg)

Decl.

(J2000.0)

(deg) J H Ks [3.6] [4.5] (R.A.) (decl.)

Previous

ID

SI2M-1... 56.15745 24.42746 14.44 13.79 13.52 13.17 13.10 0.37 -0.01 HHJ 46

SI2M-2... 56.19235 24.38414 14.68 14.10 13.79 13.42 13.36 0.44 -0.19 HHJ 24

SI2M-3... 56.24477 24.27201 17.85 16.83 16.00 15.15 15.15 0.37 0.13 ...

SI2M-4... 56.28952 23.97910 15.46 14.83 14.41 14.05 14.05 0.54 -0.16 ...

SI2M-5... 56.29098 24.07576 14.80 14.16 13.86 13.43 13.37 0.45 -0.17 ...

SI2M-6... 56.30265 23.89584 14.83 14.21 13.88 13.49 13.47 0.37 -0.14 HHJ 14

SI2M-7... 56.32663 23.87112 15.96 15.15 14.79 14.38 14.34 0.18 -0.01 ...

SI2M-8... 56.36751 24.52373 16.84 16.05 15.44 ... 14.79 0.32 -0.05 ...

SI2M-9... 56.39588 23.85472 15.78 15.02 14.65 14.27 14.18 0.37 0.08 ...

SI2M-10... 56.40739 23.73057 14.79 14.15 13.81 13.37 13.40 0.33 -0.23 ...

SI2M-11... 56.42205 23.90273 15.39 14.73 14.28 13.86 13.85 0.41 -0.10 ...

SI2M-12... 56.42644 24.06976 15.27 14.64 14.28 13.89 13.95 0.36 -0.18 ...

SI2M-13... 56.43118 23.64760 15.17 14.43 14.14 13.78 13.76 0.36 -0.22 ...

SI2M-14... 56.44669 24.51118 17.25 16.37 15.75 ... 15.04 0.43 -0.25 ...

SI2M-15... 56.45366 23.64644 17.53 16.49 15.57 14.91 14.62 0.21 -0.04 ...

SI2M-16... 56.45598 23.95163 14.70 14.07 13.83 13.48 13.36 0.37 -0.08 ...

SI2M-17... 56.45634 24.26979 18.11 16.71 16.18 15.38 15.21 0.76 0.10 ...

SI2M-18... 56.46099 23.74362 16.39 15.70 15.28 14.64 14.79 0.34 0.01 ...

SI2M-19... 56.46113 24.15099 15.81 15.06 14.64 14.08 14.02 0.30 -0.20 BPL 79

SI2M-20... 56.46912 23.86272 15.32 14.64 14.31 13.90 13.78 0.47 -0.18 ...

SI2M-21... 56.47910 23.56604 15.57 14.96 14.55 14.18 ... 0.44 -0.34 ...

SI2M-22... 56.49051 24.05142 14.72 14.12 13.79 13.43 13.44 0.37 -0.11 HHJ 27

SI2M-23... 56.49128 24.41130 16.74 16.09 15.54 14.88 14.82 1.17 0.10 ...

SI2M-24... 56.49132 24.14474 14.58 13.99 13.68 13.32 13.32 0.22 -0.06 DH 412

Page 50: Mensajero Estelar No. 72 Octubre

SI2M-25... 56.52133 23.75971 15.56 14.81 14.38 13.98 13.93 0.29 -0.08 ...

SI2M-26... 56.52526 23.97200 14.88 14.22 13.93 13.58 13.53 0.26 -0.14 ...

SI2M-27... 56.57735 23.98407 14.75 14.11 13.86 13.49 13.39 0.30 -0.08 ...

SI2M-28... 56.57843 23.81347 15.83 15.02 14.57 14.06 14.18 0.29 -0.18 ...

SI2M-29... 56.58151 23.56235 15.80 15.08 14.69 14.30 ... 0.23 -0.14 ...

SI2M-30... 56.58557 24.28870 17.05 16.31 15.76 15.09 14.87 -0.10 -0.12 ...

SI2M-31... 56.59283 23.87408 15.59 14.94 14.46 14.10 14.01 0.45 -0.11 ...

SI2M-32... 56.60060 24.50354 14.75 14.14 13.84 13.48 13.42 0.38 -0.22 BPL

101

SI2M-33... 56.60880 24.08598 15.19 14.52 14.15 13.72 13.74 0.40 -0.07 ...

SI2M-34... 56.63392 24.38740 17.25 16.34 15.77 15.13 15.11 0.27 -0.23 ...

SI2M-35... 56.64737 23.95206 15.37 14.77 14.45 14.06 13.97 0.29 -0.22 ...

SI2M-36... 56.67914 24.41405 15.55 14.85 14.42 13.98 14.00 0.26 -0.17 BPL

108

SI2M-37... 56.70850 24.00659 15.69 14.98 14.58 14.05 14.00 0.34 -0.04 ...

SI2M-38... 56.75776 24.22451 14.97 14.41 14.10 13.73 13.62 0.29 -0.06 BPL

122

SI2M-39... 56.77373 24.66767 15.47 14.87 14.51 ... 14.01 0.36 -0.07 ...

SI2M-40... 56.79400 23.90606 15.99 15.28 15.02 14.57 14.54 0.19 0.01 ...

SI2M-41... 56.79446 23.97119 14.95 14.38 14.02 13.66 13.66 0.32 -0.20 ...

SI2M-42... 56.79918 24.22539 14.86 14.23 13.88 13.49 13.38 0.27 -0.08 BPL

130

SI2M-43... 56.80051 24.47547 16.19 15.53 15.05 14.57 14.65 0.41 -0.41 BPL

132

SI2M-44... 56.82203 24.20922 17.54 17.00 15.94 15.23 14.62 -0.05 -0.10 ...

SI2M-45... 56.96009 23.91330 16.41 15.71 15.20 14.51 14.53 0.34 -0.16 ...

SI2M-46... 56.96365 23.73669 17.52 16.67 16.02 15.22 15.11 0.25 -0.04 ...

SI2M-47... 57.00899 24.42107 16.75 16.05 15.42 14.85 14.76 0.23 -0.08 ...

SI2M-48... 57.01952 23.65838 15.28 14.66 14.27 13.78 ... 0.26 -0.15 ...

Page 51: Mensajero Estelar No. 72 Octubre

SI2M-49... 57.07928 24.42024 16.02 15.27 14.95 14.49 14.51 0.36 -0.11 BPL

172

SI2M-50... 57.09851 24.37646 14.92 14.34 13.94 13.58 13.55 0.30 -0.01 BPL

177

SI2M-51... 57.12811 23.70665 16.66 15.85 15.19 14.57 ... 0.32 -0.12 ...

SI2M-52... 57.13138 24.57707 16.78 15.88 15.38 14.70 14.65 0.18 -0.02 ...

SI2M-53... 57.14174 24.08293 15.38 14.67 14.47 14.10 14.00 0.44 -0.16 ...

SI2M-54... 57.23196 24.36115 15.04 14.43 14.10 13.69 13.66 0.36 -0.25 HHJ 8

SI2M-55... 57.28922 23.94612 17.70 16.77 16.09 15.14 15.02 0.54 0.27 ...

Our candidate list could be contaminated by foreground

late-type dwarfs that happen

to lie in the

line of sight to

the Pleiades. How many such objects should we

expect? In order to

pass our culling steps,

such stars would have

to be

mid- to late-M dwarfs, or early

to mid-L dwarfs. We

use the known M

dwarfs within 8 pc

to estimate how many

field M

dwarfs should lie in a 1

deg

2 region and at

distance between 70 and

100 pc (so they

would be coincident in

a CMD with the

100 Myr Pleiades members). The result is 3

such field M dwarf

contaminants. Cruz et al.

(2007) estimate that the

volume density of L dwarfs is comparable to

that for late-M dwarfs,

and therefore a very

conservative estimate is that

there

might also be 3 field L dwarfs

contaminating our sample. We

regard this (6 contaminating

field dwarfs) as an

upper limit

because our various selection criteria would

exclude early-M dwarfs and

late-L dwarfs. Bihain et

al. (2006) made an

estimate of the number of contaminating field dwarfs

in their Pleiades survey

of 1.8 deg

2; for

the spectral type range

of our

objects, their algorithm would have predicted

just one or two

contaminating field dwarfs for

our survey.

How many substellar Pleiades members should there

be in the region

we have surveyed? That

is, of course, part

of the question we are trying to answer.

However, previous studies have

estimated that the Pleiades

stellar mass function

for M < 0.5 M

can be approximated as

a power law with

an exponent of -1

(dN/dM M

-1). Using

the known Pleiades

members from Table 2 that lie

within the region of

the IRAC survey and

that have masses of

0.2 < M/M <

0.5 (as

estimated from the Baraffe et al.

(1998) 100 Myr isochrone)

to normalize the relation,

the M

-1 mass function

predicts about

48 members in our search region

and with 14 <

K < 16.2 (corresponding

to 0.1 < M/M

< 0.035). Other studies

have

suggested that the mass function in the

Pleiades becomes shallower below

0.1 M , dN/dM M

-0.6. Using the same

normalization as above, this functional form for the

Pleiades mass function for

M < 0.1 M

yields a prediction of

20

VLM and substellar members in our survey.

The number of candidates

we have found falls

between these two estimates.

Better proper motions and low-resolution spectroscopy will almost

certainly eliminate some of

these candidates as

nonmembers.

6. MID-IR OBSERVATIONS OF DUST AND POLYCYCLIC AROMATIC HYDROCARBONS IN THE

PLEIADES

Since the earliest days of

astrophotography, it has been

clear that the Pleiades

stars are in relatively

close

proximity to interstellar matter whose optical manifestation

is the spider-web–like network

of filaments seen particularly

strongly toward several of the B stars in

the cluster. High-resolution spectra

of the brightest Pleiades

stars as well as

CO

maps toward the cluster show that there

is gas as well

as dust present and

that the (primary) interstellar

cloud has a

significant radial velocity offset relative

to the Pleiades (White

2003; Federman & Willson

1984). The gas and

dust,

therefore, are not a remnant from the

formation of the cluster

but are simply evidence

of a transitory event

as this small

cloud passes by the cluster

in our line of

sight (see also Breger

1986). There are at

least two claimed morphological

signatures of a direct interaction of the Pleiades

with the cloud. White

& Bally (1993) provided

evidence that the IRAS

60

and 100 m image of the vicinity

of the Pleiades showed

a dark channel immediately

to the east of

the Pleiades, which

they interpreted as the "wake"

of the Pleiades as

it plowed through the

cloud from the east.

Herbig & Simon (2001)

provided a detailed analysis of the optically brightest

nebular feature in the

Pleiades—IC 349 (Barnard's Merope

nebula)—and concluded that the shape and structure of

that nebula could best

be understood if the

cloud was running into

the Pleiades from the southeast. Herbig & Simon

(2001) concluded that the

IC 349 cloudlet, and

by extension the rest

of

the gas and dust enveloping the Pleiades,

are relatively distant outliers

of the Taurus molecular

clouds (see also Eggen

Page 52: Mensajero Estelar No. 72 Octubre

1950 for a much earlier discussion ascribing the

Merope nebulae as outliers

of the Taurus clouds).

White (2003) has more

recently proposed a hybrid model, where there are

two separate interstellar cloud

complexes with very different

space

motions, both of which are colliding simultaneously

with the Pleiades and

with each other.

Breger (1986) provided polarization measurements for

a sample of member

and background stars toward

the

Pleiades and argued that the variation in

polarization signatures across the

face of the cluster

was evidence that some

of the

gas and dust was within the

cluster. In particular, Figure 6

of that paper showed

a fairly distinct interface

region, with little

residual polarization to the NE

portion of the cluster

and an L-shaped boundary

running EW along the

southern edge of the

cluster and then north-south along the western edge

of the cluster. Stars

to the south and

west of that boundary

show

relatively large polarizations and consistent angles (see

also our Fig. 5, where

we provide a few

polarization vectors from

Breger 1986 to illustrate the

location of the interface

region and the fact

that the position angle

of the polarization

correlates well with the location

in the interface).

There is a general correspondence between

the polarization map and

what is seen with

IRAC, in the sense

that

the B stars in the NE portion

of the cluster (Atlas

and Alcyone) have little

nebular emission in their

vicinity, whereas those

in the western part of

the cluster (Maia, Electra,

and Asterope) have prominent,

filamentary dust emission in

their vicinity.

The L-shaped boundary is in fact

visible in Figure 4 as

enhanced nebular emission running

between and below a

line

roughly joining Merope and Electra and then

making a right angle

and running roughly parallel

to a line running

from

Electra to Maia to HII 1234 (see

Fig. 5).

6.1. Pleiades Dust-Star Encounters Imaged with IRAC

The Pleiades dust filaments are most strongly evident

in IRAC's 8 m

channel, as evidenced by

the distinct red

color of the nebular features

in Figure 4. The dominance

at 8 m is

an expected feature of

reflection nebulae, as

exemplified by NGC 7023 (Werner

et al. 2004), where

most of the mid-infrared

emission arises from polycyclic

aromatic

hydrocarbons (PAHs) whose strongest bands in the

3–10 m region fall

at 7.7 and 8.6

m. One might expect

that if

portions of the passing cloud were

particularly near to one

of the Pleiades members,

it might be possible

to identify such

interactions by searching for stars

with 8.0 m excesses

or for stars with

extended emission at 8

m. Figure 18 provides

two such plots. Four stars

stand out

as having significant extended 8 m

emission, with two of those stars also

having

an 8 m excess

based on

their [3.6] - [8.0] color. All

of these

stars, plus

IC 349, are located

approximately along the interface

region identified by Breger (1986).

(67

kB)

Fig. 18 Two plots intended to

isolate Pleiades members with

excess and/or extended 8

m

emission. The plot with [3.6] -

[8.0]

m colors shows data

from Table 3 (and hence is for

aperture sizes of 3 pixel and

2

pixel radius, respectively). The

increased vertical spread in the

plots at

faint magnitudes is

simply

due to decreasing

signal-to-noise at 8 m. The

numbers labeling stars with

excesses are the HII

identification numbers for

those stars.

Page 53: Mensajero Estelar No. 72 Octubre

We have subtracted a PSF from the 8

m images for the

stars with extended emission,

and those PSF-subtracted

images are provided in Figure 19.

The image for HII

1234 has the appearance

of a bow shock.

The shape is reminiscent

of

predictions for what one should expect from

a collision between a

large cloud or a

sheet of gas and

an A star as

described

in Artymowicz & Clampin (1997). The Artymowicz

& Clampin model posits

that A stars encountering

a cloud will carve

a paraboloidal shaped cavity in the cloud via

radiation pressure. The exact

size and shape of

the cavity depend on

the

relative velocity of the encounter, the star's

mass and luminosity and

properties of the ISM

grains. For typical parameters,

the predicted characteristic size of the cavity is

of order 1000 AU,

quite comparable to the

size of the structures

around HII

652 and HII 1234. The observed

appearance of the cavity

depends on the view

angle to the observer.

However, in any

case, the direction from which

the gas is moving

relative to the star

can be inferred from

the location of the

star relative to

the curved rim of the

cavity; the "wind" originates

approximately from the direction

connecting the star and

the apex of the

rim. For HII 1234, this indicates the cloud

that it is encountering

has a motion relative

to HII 1234 from

the SSE, in accord

with a Taurus origin and not in accord

for where a cloud

is impacting the Pleiades

from the west as

posited in White

(2003). The nebular emission for

HII 652 is less

strongly bow-shaped, but the

peak of the excess

emission is displaced

roughly southward from the star,

consistent with the Taurus

model and inconsistent with

gas flowing from the

west.

Fig. 19 Postage stamp images

extracted

from individual, 8 m

BCDs for the stars with extended 8

m emission, from which we

have

subtracted an empirical

PSF.

Clockwise from the upper left, the

stars shown are HII 1234,

HII 859,

Merope, and

HII 652. The five-

pointed

star indicates the

astrometric

position of the star

(often superposed on a few black

pixels where the 8 m image

was

saturated. The circle in the Merope

image is centered on the

location of

IC 349 and has a diameter

of about

25 (the

size of IC 349

in the

optical is of order 10 ×

10 ).

Despite being the brightest part of the Pleiades

nebulae in the optical,

IC 349 appears to

be undetected in the

8

m image. This is not because the

8 m image is

insensitive to the nebular

emission—there is generally good

agreement

between the structures seen in the optical

and at 8 m,

and most of the

filaments present in optical

images of the Pleiades

are also visible on the 8 m image

(see Figs. 4 and

19) and even the

PSF-subtracted image of Merope

shows well-defined

nebular filaments. The lack of enhanced

8 m emission from

the region of IC

349 is probably because

all of the small

particles have been scoured away from this cloudlet,

consistent with Herbig's model

to explain the HST

surface

photometry and colors. There is no PAH

emission from IC 349

because there are none

of the small molecules

that are the

postulated source of the PAH

emission.

IC 349 is very bright in the optical,

and undetected to a

good sensitivity limit at

8 m; it must

be detectable via

imaging at some wavelength between

5000 Å and 8

m. We checked our

3.6 m data for

this purpose. In the

standard

BCD mosaic image, we were unable to

discern an excess at

the location of IC

349 either simply by

displaying the image

with various stretches or by

doing cuts through the

image. We performed a

PSF subtraction of Merope

from the image in

order to attempt to improve our ability to

detect faint, extended emission

30 from Merope—unfortunately, bright

stars

have ghost images in IRAC channel 1,

and in this case

the ghost image falls

almost exactly at the

location of IC 349.

IC

349 is also not detected in visual

inspection of our 2MASS

6x images.

Page 54: Mensajero Estelar No. 72 Octubre

6.2. Circumstellar Disks and IRAC

As part of the Spitzer FEPS (Formation

and Evolution of Planetary

Systems) Legacy program, using

pointed

MIPS photometry, Stauffer et al. (2005) identified

three G dwarfs in

the Pleiades as having

24 m excesses probably

indicative of circumstellar dust disks. Gorlova et al.

(2006) reported results of

a MIPS GTO survey

of the Pleiades and

identified nine cluster members that appear to have

24 m excesses due

to circumstellar disks. However,

it is possible that

in a few cases these apparent excesses could

be due instead to

a knot of the

passing interstellar dust impacting

the cluster

member or that the 24 m

excess could be flux

from a background galaxy

projected onto the line

of sight to the

Pleiades

member. Careful analysis of the IRAC images

of these cluster members

may help confirm that

the MIPS excesses are

evidence for debris disks rather than the other

possible explanations.

Six of the Pleiades members with probable

24 m excesses are

included in the region

mapped with IRAC.

However, only four of them

have data at 8

m—the other two fall

near the edge of

the mapped region and

only have data

at 3.6 and 5.8 m.

None of the six

stars appear to have

significant local nebular dust

from visual inspection of

the IRAC

mosaic images. Also, none of them

appear problematic in Figure 18.

For a slightly more

quantitative analysis of possible

nebular contamination, we also constructed aperture growth curves

for the six stars

and compared them to

other Pleiades

members. All but one of the

six show aperture growth

curves that are normal

and consistent with the

expected IRAC PSF.

The one exception is HII

489, which has a

slight excess at large

aperture sizes, as is

illustrated in Figure 20. Because

HII

489 only has a small 24 m

excess, it is possible

that the 24 m

excess is due to

a local knot of

the interstellar cloud

material and is not due

to a debris disk.

For the other five

24 m excess stars

we find no such

problem, and we conclude

that their 24 m excesses are indeed best

explained as due to

debris disks.

(52 kB)

Fig. 20 Aperture growth curves from the 8

m mosaic for stars with

24 m excesses from

Gorlova et al. (2006) and for a set

of control

objects (dashed curves). All of the objects

have

been scaled to common zero-point magnitudes

for 9 pixel apertures, with

the 24 m excess

stars offset from the control objects by 0.1

mag.

The three Gorlova et al. (2006) stars

with no

excess at 8 m are HII

996, HII 1284, and

HII

2195. The Gorlova et al. (2006) star

with a

slight excess at 8 m is

HII 489.

7. SUMMARY AND CONCLUSIONS

We have collated the primary membership catalogs

for the Pleiades to

produce the first catalog

of the cluster

extending from its highest mass

members to the substellar

limit. At the bright

end, we expect this

catalog to be essentially

complete and with few or no nonmember contaminants.

At the faint end,

the data establishing membership

are much

sparser, and we expect a significant

number of objects will

be nonmembers. We hope

that the creation of

this catalog will

spur efforts to obtain accurate

radial velocities and proper

motions for the faint

candidate members in order

to eventually

provide a well-vetted membership catalog for

the stellar members of

the Pleiades. Toward that

end, it would be

useful to

update the current catalog with other

data—such as radial velocities,

lithium equivalent widths, X-ray

fluxes, H

equivalent widths, etc.—which could be used

to help accurately establish

membership for the low-mass

cluster candidates.

It is also possible to make

more use of "negative

information" present in the

proper-motion catalogs. That is,

if a member

Page 55: Mensajero Estelar No. 72 Octubre

from one catalog is not

included in another study

but does fall within

its areal and luminosity

coverage, that suggests that

it

likely failed the membership criteria of the

second study. For a

few individual stars, we

have done this type

of comparison,

but a systematic analysis of the

proper-motion catalogs should be

conducted. We intend to

undertake these tasks and

plan

to establish a Web site where these

data would be hosted.

We have used the new

Pleiades member catalog to

define the single-star locus

at 100 Myr for

BVICKs and the

four IRAC bands. These curves

can be used as

empirical calibration curves when

attempting to identify members

of less

well-studied, more distant clusters of similar

age. We compared the

Pleiades photometry to theoretical

isochrones from

Siess et al. (2000) and Baraffe

et al. (1998). The

Siess et al. (2000)

isochrones are not, in

detail, a good fit

to the Pleiades

photometry, particularly for low-mass stars.

The Baraffe et al.

(1998) 100 Myr isochrone

does fit the Pleiades

photometry

very well in the I versus I

- K plane.

We have identified 31 new substellar

candidate members of the

Pleiades using our combined

seven-band infrared

photometry and have shown that the

majority of these objects

appear to share the

Pleiades proper motion. We

believe that

most of the objects that may

be contaminating our list

of candidate brown dwarfs

are likely to be

unresolved galaxies, and

therefore low-resolution spectroscopy should be

able to provide a

good criterion for culling

our list of nonmembers.

The IRAC images, particularly the

8 m mosaic, provide

vivid evidence of the

strong interaction of the

Pleiades

stars and the interstellar cloud that is

passing through the Pleiades.

Our data are supportive

of the model proposed

by

Herbig & Simon (2001) whereby the passing

cloud is part of

the Taurus cloud complex

and hence is encountering

the

Pleiades from the SSE direction. White &

Bally (1993) had proposed

a model whereby the

cloud was encountering the

Pleiades from the west and used this to

explain features in the

IRAS 60 and 100

m images of the

region as the wake

of

the Pleiades moving through the cloud. Our

data appear to not

be supportive of that

hypothesis and therefore leave

the

apparent structure in the IRAS maps as

unexplained.

Most of the support for this work was

provided by the Jet

Propulsion Laboratory, California Institute

of

Technology, under NASA contract 1407. This research

has made use of

NASA's Astrophysics Data System

(ADS)

Abstract Service, and of the SIMBAD database,

operated at CDS, Strasbourg,

France. This research has

made use of data

products from the Two Micron All-Sky Survey (2MASS),

which is a joint

project of the University

of Massachusetts and

the Infrared Processing and Analysis

Center, funded by the

National Aeronautics and Space

Administration and the

National Science Foundation. These data

were served by the

NASA/IPAC Infrared Science Archive,

which is operated by

the Jet Propulsion Laboratory, California Institute of Technology,

under contract with the

National Aeronautics and Space

Administration. The research described in this paper was

partially carried out at

the Jet Propulsion Laboratory,

California

Institute of Technology, under contract with the

National Aeronautics and Space

Administration.

This research made use of the SIMBAD database

operated at CDS, Strasbourg,

France, and also of

the NED and

NStED databases operated at IPAC,

Pasadena, CA. A large

amount of data for

the Pleiades (and other

open clusters) can

also be found at the

open cluster database WEBDA

(http://www.univie.ac.at/webda/), operated in Vienna

by Ernst

Paunzen.

APPENDIX

A1. MEMBERSHIP CATALOGS

Membership lists of the Pleiades date

back to antiquity if

one includes historical and

literary references to the

Seven Sisters (Alcyone, Maia, Merope, Electra, Taygeta, Asterope,

and Celeno) and their

parents (Atlas and Pleione).

The

first paper discussing relative proper motions of

a large sample of

stars in the Pleiades

(based on visual observations)

was

published by Pritchard (1884). The best of

the early proper-motion surveys

of the Pleiades derived

from photographic

plate astrometry was that by Trumpler

(1921), based on plates

obtained at Yerkes and

Lick observatories. The candidate

members from that survey were presented in two

tables, with the first

being devoted to candidate

members within about 1°

from the cluster center (operationally, within 1° from

Alcyone) and the second

table being devoted to

candidates further

than 1° from the cluster center.

Most of the latter

stars were denoted by

Trumpler by an S

or R, followed by

an

identification number. We use Tr to designate

the Trumpler stars (hence

Trnnn for a star

from the first table

and the small

number of stars in the

second table without an

"S" or an "R,"

and TrSnnn or TrRnnn

for the other stars).

For the central

region, Trumpler's catalog extends to

V 13, while

the outer region catalog

includes stars only to

about V 9.

The most heavily referenced proper-motion

catalog of the Pleiades

is that provided by

Hertzsprung (1947). That

paper makes reference to two

separate catalogs: a photometric

catalog of the Pleiades

published by Hertzsprung (1923),

whose members are commonly referred to by HI

numbers, and the new

proper-motion catalog from the

1947 paper,

commonly referenced as the HII catalog.

While both HI and

HII numbers have been

used in subsequent observational

papers, it is the HII identification numbers that

predominate. That catalog—derived from

Carte du Ciel blue-sensitive

plates from 14 observatories—includes stars in the central

2 × 2 region

of the cluster and

has a faint limit

of about V =

15.5. Johnson system BVI photometry is provided for

most of the proposed

Hertzsprung members in Johnson

& Mitchell

(1958) and Iriarte (1967). Additional Johnson

B and V photometry

plus Kron I photometry

for a fairly large

number of the

Hertzsprung members can be found

in Stauffer (1980, 1982,

1984). Other Johnson BV

photometry for a scattering

of stars

Page 56: Mensajero Estelar No. 72 Octubre

can be found in Jones (1973),

Robinson & Kraft (1974),

and Messina (2001). Spectroscopic

confirmation, primarily via

radial velocities, that these are

indeed Pleiades members has

been provided in Soderblom

et al. (1993), Queloz

et al.

(1998), and Mermilliod et al. (1997).

Two other proper-motion surveys provide

relatively bright candidate members

relatively far from the

cluster

center: Artyukhina & Kalinina (1970) and van

Leeuwen 1986. Stars from

the Artyukhina catalog are

designated as "AK"

followed by the region from

which the star was

identified followed by an

identification number. The new

members

provided in the van Leeuwen paper were

taken from an otherwise

unpublished proper-motion study by

Pels, where the

first 118 stars were considered

probable members and the

remaining 75 stars were

considered possible members. Van

Leeuwen categorized a number of the Pels stars

as nonmembers based on

the Walraven photometry they

obtained, and we

adopt those findings. Radial velocities

for stars in these

two catalogs have been

obtained by Rosvick et

al. (1992),

Mermilliod et al. (1997), and Queloz

et al. (1998), and

those authors identified a

list of the candidate

members that they

considered confirmed by the high-resolution

spectroscopy. For these outlying

candidate members, to be

included in Table

2 we require that the star

be a radial velocity

member from one of

the above three surveys,

or be indicated as

having "no

dip" in the Coravel cross-correlation (indicating

rapid rotation, which at

least for the later

type stars is suggestive

of

membership). Geneva photometry of the Artyukhina stars

considered as likely members

was provided by Mermilliod

et al.

(1997). The magnitude limit of these

surveys was not well-defined,

but most of the

Artyukhina and Pels stars

are brighter

than V = 13.

Jones (1973) provided proper-motion membership probabilities for

a large sample of

proposed Pleiades members,

and for a set of

faint, red stars toward

the Pleiades. A few

star identification names from

the sources considered by

Jones

appear in Table 2, including MT (McCarthy &

Treanor 1964), VM (van

Maanen 1946), and ALR

(Ahmed et al. 1965;

Jones 1973).

The chronologically next significant source of new

Pleiades candidate members was

the flare star survey

of the

Pleiades conducted at several observatories in

the 1960s, and summarized

in Haro et al.

(1982, hereafter HCG). The

logic

behind these surveys was that even at

100 Myr, late-type dwarfs

have relatively frequent and

relatively high-luminosity

flares (as demonstrated by Johnson &

Mitchell 1958 having detected

two flares during their

photometric observations of

the Pleiades), and therefore wide

area, rapid cadence imaging

of the Pleiades at

blue wavelengths should be

capable of

identifying low-mass cluster members. However, such

surveys also will detect

relatively young field dwarfs,

and therefore

it is best to combine the

flare star surveys with

proper motions. Dedicated proper-motion

surveys of the HCG

flare stars

were conducted by Jones (1981) and

Stauffer et al. (1991),

with the latter also

providing photographic VI photometry

(Kron system). Photoelectric photometry for some of the

HCG stars have been

reported in Stauffer (1982,

1984), Stauffer

& Hartmann (1987), and Prosser et

al. (1991). High-resolution spectroscopy

of many of the

HCG stars is reported

in

Stauffer (1984), Stauffer & Hartmann (1987), and

Terndrup et al. (2000).

Because a number of

the papers providing

additional observational data for the

flare stars were obtained

prior to 1982, we

also include in Table 2

the original flare

star names that were derived

from the observatory where

the initial flare was

detected. Those names are

of the form of

an

initial letter indicating the observatory—A (Asiago), B

(Byurakan), K (Konkoly), T

(Tonantzintla)—followed by an

identification number.

Stauffer et al. (1991) conducted two proper-motion surveys

of the Pleiades over

an approximately 4 ×

4 region

of the cluster based on plates

obtained with the Lick

20 astrographic telescope. The

first survey was essentially

unbiased,

except for the requirement that the stars

fall approximately in the

region of the V

versus V - I

color-magnitude diagram

where Pleiades members should lie. Candidate

members from this survey

are designated by SK

numbers. The second

survey was a proper-motion survey

of the HCG stars.

Photographic VI photometry of

all the stars was

provided as well as

proper-motion membership probabilities. Photoelectric photometry for some of

the candidate members was

obtained as

detailed above in the section on

the HCG catalog stars.

The faint limit of

these surveys is about

V = 18.

Hambly et al. (1991) provided a

significantly deeper, somewhat wider

area proper-motion survey, with

the

faintest members having V 20 and

the total area covered

being of order 25

deg

2. The survey utilized

red sensitive plates

from the Palomar and UK

Schmidt telescopes. Due to

incomplete coverage at one

epoch, there is a

vertical swath slightly

east of the cluster center

where no membership information

is available. Stars from

this survey are designated

by their HHJ

numbers. Hambly et al. (1993)

provide RI photographic photometry

on a natural system

for all of their

candidate members,

plus photoelectric Cousins RI photometry for

a small number of

stars and JHK photometry

for a larger sample.

Some

spectroscopy to confirm membership has been reported

in Stauffer et al.

(1994, 1995, 1999), Oppenheimer

et al. (1997),

and Steele et al. (1995),

although for most of

the HHJ stars there

is no spectroscopic membership

confirmation.

Pinfield et al. (2000) provide the deepest wide-field

proper-motion survey of the

Pleiades. That survey combines

CCD imaging of 6 deg

2 of the Pleiades

obtained with the Burrell

Schmidt telescope (as five

separate, nonoverlapping

fields near but outside the cluster

center) with deep photographic

plates that provide the

first epoch positions. Candidate

members are designated by BPL numbers (for Burrell

Pleiades), with the faintest

stars having I 19.5, corresponding to

V > 23. Only the

stars brighter than about

I = 17 have

sufficiently accurate proper motions

to use to identify

Pleiades

Page 57: Mensajero Estelar No. 72 Octubre

members. Fainter than I = 17, the

primary selection criteria are

that the star fall

in an appropriate place

in both an I

versus I

- Z and an I versus

I - K CMD.

Adams et al. (2001) combined

the 2MASS and digitized

POSS databases to produce

a very wide area

proper-

motion survey of the Pleiades. By design, that

survey was very inclusive—covering

the entire physical area

of the cluster

and extending to the hydrogen-burning

mass limit. However, it

was also very "contaminated,"

with many suspected

nonmembers. The catalog of possible

members was not published.

We have therefore not

included stars from this

study in

Table 2; we have used the proper-motion

data from Adams et

al. (2001) to help

decide cases where a

given star has

ambiguous membership data from the

other surveys.

Deacon & Hambly (2004) provided another deep

and very wide area

proper-motion survey of the

Pleiades. The

survey covers a circular area of

approximately 5° radius to

R 20, or

V 22. Candidate

members are designated by

"DH." Deacon & Hambly (2004) also provide membership

probabilities based on proper

motions for many candidate

cluster members from previous surveys. For stars where

Deacon & Hambly (2004)

derive P < 0.1

and where we have

no

other proper-motion information or where another proper-motion

survey also finds low

membership probability, we

exclude the star from our

catalog. For cases where

two of our proper-motion

catalogs differ significantly in

their

membership assessment, with one survey indicating the

star is a probable

member, we retain the

star in the catalog

as the

conservative choice. Examples of the latter

where Deacon & Hambly

(2004) derive P <

0.1 include HII 1553,

HII 2147,

HII 2278, and HII 2665—all of

which we retain in

our catalog because other

surveys indicate these are

high-probability

Pleiades members.

A2. PHOTOMETRY

Photometry for stars in open cluster

catalogs can be used

to help confirm cluster

membership and to help

constrain physical properties of those stars or of

the cluster. For a

variety of reasons, photometry

of stars in the

Pleiades

has been obtained in a panoply of

different photometric systems. For

our own goals, which

are to use the

photometry to

help verify membership and to define

the Pleiades single-star locus

in color-magnitude diagrams, we

have attempted to

convert photometry in several of

these systems to a

common system (Johnson BV

and Cousins I). We

detail below the

sources of the photometry and

the conversions we have

employed.

Photoelectric photometry of Pleiades members dates back to

at least 1921 Cummings

(1921). However, as far

as

we are aware the first "modern" photoelectric

photometry for the Pleiades,

using a potassium hydride

photoelectric cell, is

that of Calder & Shapley

(1937). Eggen (1950) provided

photoelectric photometry using a

1P21 phototube (but calibrated

to a no-longer-used photographic system) for most of

the known Pleiades members

within 1° of the

cluster center and with

magnitudes <11. The first phototube photometry of Pleiades

stars calibrated more-or-less to

the modern UBV system

was

provided by Johnson & Morgan (1951). An

update of that paper,

and the oldest photometry

included here was reported

in

Johnson & Mitchell (1958), which provided UBV

Johnson system photometry for

a large sample of

HII and Trumpler

candidate Pleiades members. Iriarte (1967)

later reported Johnson system

V - I colors

for most of these

stars. We have

converted

Iriarte's V - I

photometry to estimated Cousins

V - I colors

using a formula from

Bessell (1979):

BVRI photometry for most of the Hertzsprung

members fainter than V

= 10 has been

published by Stauffer (1980,

1982, 1984) and Stauffer & Hartmann (1987). The

BV photometry is Johnson

system, whereas the RI

photometry is on the

Kron system. The Kron V - I colors

were converted to Cousins

V - I using

a transformation provided by

Bessell & Weis

(1987):

Other Kron system V -

I colors have been

published for Pleiades candidates

in Stauffer et al.

(1991, photographic

photometry) and in Prosser et al.

(1991). These Kron-system colors

have also been converted

to Cousins V -

I using the

above formula.

Johnson/Cousins UBVR photometry for a set of low-mass

Pleiades members was provided

by Landolt (1979).

We only use the BV

magnitudes from that study.

Additional Johnson system UBV

photometry for small numbers

of stars is

provided in Robinson & Kraft

(1974), Messina (2001), and

Jones (1973).

Page 58: Mensajero Estelar No. 72 Octubre

Van Leeuwen et al. (1987) provided Walraven

VBLUW photometry for nearly

all of the Hertzsprung

members

brighter than V

13.5 and for the Pels candidate members.

Van Leeuwen provided an

estimated Johnson V derived

from

the Walraven V in his tables. We

have transformed the Walraven

V - B color

into an estimate of

Johnson B - V

using a

formula from

Rosvick et al. (1992):

Hambly et al. (1993) provided

photographic VRI photometry for

all of the HHJ

candidate members and VRI

Cousins photoelectric photometry for a small fraction of

those stars. We took

all of the HHJ

stars with photographic

photometry for which we also

have photoelectric VI photometry

on the Cousins system,

and plotted V(Cousins) versus

V(HHJ) and I(Cousins) versus I(HHJ). While there is

some evidence for slight

systematic departures of the

HHJ

photographic photometry from the Cousins system, those

departures are relatively small

and we have chosen

simply to

retain the HHJ values and treat

them as Cousins system.

Pinfield et al. (2000) reported

their I magnitudes in

an instrumental system that

they designated as Ikp.

We

identified all BPL candidate members for which

we had photoelectric Cousins

I estimates, and plotted

Ikp versus IC. Figure

21 shows this correlation, and

the piecewise linear fit

we have made to

convert from Ikp to

IC. Our catalog lists

these

converted IC measures for the BPL stars

for which we have

no other photoelectric I

estimates.

Fig. 21 Calibration derived relating Ikp

from Pinfield et al. (2000) and IC. The

dots represent stars for which we have

both Ikp and IC measurements

(small dots:

photographic IC; large dots: photoelectric

IC), and the

solid line indicates the

piecewise linear fit we use to convert the

Ikp values to IC for stars for which

we only

have Ikp.

Deacon & Hambly (2004) derived

RI photometry from the

scans of their plates

and calibrated that photometry

by

reference to published photometry from the literature.

When we plotted their

the difference between their

I-band

photometry and literature

values (where available), we

discovered a significant dependence

on right ascension.

Unfortunately, because the DH survey

extended over larger spatial

scales than the calibrating

photometry, we could not

derive a correction that we could apply to

all the DH stars.

We therefore developed the

following indirect scheme. We

used the stars for which we have estimated

IC magnitudes (from photoelectric

photometry) to define the

relation between J

and (IC - J) for

Pleiades members. For each

DH star, we combined

that relation and the

2MASS J magnitude to

yield a

predicted IC. Figure 22 shows a plot

of the difference of

this predicted IC and

I(DH) with right ascension.

The solid line

Page 59: Mensajero Estelar No. 72 Octubre

shows the relation we adopt.

Figure 23 shows the relation

between the corrected I(DH)

values and Table 2 IC

measures

from photoelectric sources. There is still a

significant amount of scatter,

but the corrected I(DH)

photometry appears to be

accurately calibrated to the Cousins system.

Fig. 22 Difference between the predicted IC

and Deacon & Hambly (2004) I

magnitude as

a function of right ascension for

the DH stars.

No

obvious dependence is present

vs.

declination.

Fig. 23 Comparison of the recalibrated DH I photometry

with estimates of IC

for stars in Table 2

with photoelectric

data

In a very few cases (specifically,

just five stars), we

provide an estimate of

IC based on data

from a wide-area

CCD survey of Taurus obtained

with the Quest-2 camera

on the Palomar 48

inch Samuel Oschin telescope

(Slesnick et al.

Page 60: Mensajero Estelar No. 72 Octubre

2006). That survey calibrated their

photometry to the Sloan

i system, and we

have converted the Sloan

i magnitudes to IC.

We intend to make more complete use of

the Quest-2 data in

a subsequent paper.

When we have multiple sources of

photometry for a given

star, we consider how

to combine them. In

most cases,

if we have photoelectric data, that

is given preference. However,

if we have photographic

V and I, and

only a photoelectric

measurement for I, we do

not replace the photographic

I with the photoelectric

value because these stars

are variable and

the photographic measurements are at

least in some cases

from nearly simultaneous exposures.

Where we have multiple

sources for photoelectric photometry, and no strong reason

to favor one measurement

or set of measurements

over another,

we have averaged the photometry for

a given star. In

most cases where we

have multiple photometry the

individual

measurements agree reasonably well but with the

caveat that the Pleiades

low-mass stars are in

many cases heavily spotted

and "active" chromospherically and hence are photometrically variable.

In a few cases,

even given the expectation

that

spots and other phenomena may affect the

photometry, there seems to

be more discrepancy between

reported V

magnitudes than we expect. We note

two such cases here.

We suspect these results

indicate that at least

some of the

Pleiades low-mass stars have long-term

photometric variability larger than

their short period (rotational)

modulation.

HII 882 has at least four presumably accurate

V magnitude measurements reported

in the literature. Those

measures are V = 12.66 Johnson & Mitchell

(1958); V = 12.95

Stauffer (1982); V =

12.898 van Leeuwen et

al. (1986); and

V = 12.62 Messina (2001).

HII 345 has at least

three presumably accurate V

magnitude measurements. Those measurements

are V = 11.65

Landolt (1979); V = 11.73 van Leeuwen et

al. (1986); V =

11.43 Messina (2001).

At the bottom of Table 2, we

provide a key to

the source(s) of the

optical photometry provided in

the table.

REFERENCES

Adams, J., Stauffer, J., Monet, D., Skrutskie, M., & Beichman, C. 2001, AJ, 121, 2053 First citation in article |

IOPscience | ADS

Ahmed, F., Lawrence, L., & Reddish, V. 1965, Publ. R. Obs. Edinburgh, 3, 187 First citation in article | ADS

Allen, L., et al. 2004, ApJS, 154, 363 First citation in article | IOPscience | ADS

Artymowicz, P., & Clampin, M. 1997, ApJ, 490, 863 First citation in article | IOPscience | ADS

Artyukhina, N. 1969, Soviet Astron., 12, 987 First citation in article | ADS

Artyukhina, N., & Kalinina, E. 1970, Trudy Sternberg Astron. Inst., 40, 3 First citation in article | ADS

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. 1998, A&A, 337, 403 First citation in article | ADS

Bessell, M. 1979, PASP, 91, 589 First citation in article | CrossRef | ADS

Bessell, M., & Weis, E. 1987, PASP, 99, 642 First citation in article | CrossRef | ADS

Bihain, G., et al. 2006, A&A, 458, 805 First citation in article | CrossRef | ADS

Breger, M. 1986, ApJ, 309, 311 First citation in article | CrossRef | ADS

Calder, W., & Shapley, H. 1937, Ann. Ast. Obs. Harvard College, 105, 453 First citation in article | ADS

Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464 First citation in article | IOPscience | ADS

Cruz, K., et al. 2007, AJ, 133, 439 First citation in article | IOPscience | ADS

Cummings, E. 1921, PASP, 33, 214 First citation in article | CrossRef | ADS

Deacon, N., & Hambly, N. 2004, A&A, 416, 125 First citation in article | CrossRef | ADS

Eggen, O. 1950, ApJ, 111, 81 First citation in article | CrossRef | ADS

Federman, S., & Willson, R. 1984, ApJ, 283, 626 First citation in article | CrossRef | ADS

Festin, L. 1998, A&A, 333, 497 First citation in article | ADS

Gorlova, N., et al. 2006, ApJ, 649, 1028 First citation in article | IOPscience | ADS

Hambly, N., Hawkins, M. R. S., & Jameson, R. 1991, MNRAS, 253, 1 First citation in article | ADS

———. 1993, A&AS, 100, 607 First citation in article | ADS

Haro, G., Chavira, E., & Gonzalez, G. 1982, Bol. Inst. Tonantzintla, 3, 1 First citation in article | ADS

Herbig, G., & Simon, T. 2001, AJ, 121, 3138 First citation in article | IOPscience | ADS

Hertzsprung, E. 1923, Mem. Danish Acad. 4, 4 First citation in article

———. 1947, Ann. Leiden Obs., 191, 1 First citation in article | ADS

Iriarte, B. 1967, Bol. Obs. Tonantzintla Tacubaya, 4, 79 First citation in article | ADS

Jameson, R., & Skillen, I. 1989, MNRAS, 239, 247 First citation in article | ADS

Jarrett, T., Chester, T., Cutri, R., Schneider, S., Skrutskie, M., & Huchra, J. 2000, AJ, 119, 2498 First citation in article |

IOPscience | ADS

Jeffries, R. D., & Oliveira, J. 2005, MNRAS, 358, 13 First citation in article | CrossRef | ADS

Johnson, H. L., & Mitchell, R. I. 1958, ApJ, 128, 31 (JM) First citation in article | CrossRef | ADS

Johnson, H. L., & Morgan, W. W. 1951, ApJ, 114, 522 First citation in article | CrossRef | ADS

Jones, B. F. 1973, A&AS, 9, 313 First citation in article | ADS

———. 1981, AJ, 86, 290 First citation in article | CrossRef | ADS

Page 61: Mensajero Estelar No. 72 Octubre

Landolt, A. 1979, ApJ, 231, 468 First citation in article | CrossRef | ADS

Makovoz, D., & Marleau, F. 2005, PASP, 117, 1113 First citation in article | CrossRef | ADS

McCarthy, M., & Treanor, P. 1964, Ric. Astron., 6, 535 First citation in article | ADS

Mermilliod, J.-C., Bratschi, P., & Mayor, M. 1997, A&A, 320, 74 First citation in article | ADS

Messina, S. 2001, A&A, 371, 1024 First citation in article | CrossRef | ADS

Meynet, G., Mermilliod, J.-C., & Maeder, A. 1993, A&AS, 98, 477 First citation in article | ADS

Oppenheimer, B., Basri, G., Nakajima, T., & Kulkarni, S. 1997, AJ, 113, 296 First citation in article | CrossRef | ADS

Patten, B., et al. 2006, ApJ, 651, 502 First citation in article | IOPscience | ADS

Pinfield, D., Hodgkin, S., Jameson, R., Cossburn, M., Hambly, N., & Devereux, N. 2000, MNRAS, 313, 347 First

citation in article | CrossRef | ADS

Pritchard, R. 1884, MNRAS, 44, 355 First citation in article | ADS

Prosser, C., Stauffer, J., & Kraft, R. 1991, AJ, 101, 1361 First citation in article | CrossRef | ADS

Queloz, D., Allain, S., Mermilliod, J.-C., Bouvier, J., & Mayor, M. 1998, A&A, 335, 183 First citation in article | ADS

Raboud, D., & Mermilliod, J.-C. 1998, A&A, 329, 101 First citation in article | ADS

Rieke, G., & Lebofsky, M. 1985, ApJ, 288, 618 First citation in article | CrossRef | ADS

Robinson, E. L., & Kraft, R. P. 1974, AJ, 79, 698 First citation in article | CrossRef | ADS

Rosvick, J., Mermilliod, J., & Mayor, M. 1992, A&A, 255, 130 First citation in article | ADS

Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593 First citation in article | ADS

Skrutskie, M., et al. 2006, AJ, 131, 1163 First citation in article | IOPscience | ADS

Slesnick, C., Carpenter, J., Hillenbrand, L., & Mamajek, E. 2006, AJ, 132, 2665 First citation in article | IOPscience |

ADS

Soderblom, D. R., Jones, B. R., Balachandran, S., Stauffer, J. R., Duncan, D. K., Fedele, S. B., & Hudon, J. 1993, AJ,

106, 1059 First citation in article | CrossRef | ADS

Soderblom, D., Nelan, E., Benedict, G., McArthur, B., Ramirez, I., Spiesman, W., & Jones, B. 2005, AJ, 129, 1616 First

citation in article | IOPscience | ADS

Stauffer, J. 1980, AJ, 85, 1341 First citation in article | CrossRef | ADS

———. 1982, AJ, 87, 1507 First citation in article | CrossRef | ADS

———. 1984, ApJ, 280, 189 First citation in article | CrossRef | ADS

Stauffer, J. R., Caillault, J.-P., Gagne, M., Prosser, C. F., & Hartmann, L. W. 1994, ApJS, 91, 625 First citation in article |

CrossRef | ADS

Stauffer, J., Hamilton, D., Probst, R., Rieke, G., & Mateo, M. 1989, ApJ, 344, L21 First citation in article | CrossRef |

ADS

Stauffer, J. R., & Hartmann, L. W. 1987, ApJ, 318, 337 First citation in article | CrossRef | ADS

Stauffer, J. R., Hartmann, L. W., Soderblom, D. R., & Burnham, N. 1984, ApJ, 280, 202 First citation in article |

CrossRef | ADS

Stauffer, J., Klemola, A., Prosser, C., & Probst, R. 1991, AJ, 101, 980 First citation in article | CrossRef | ADS

Stauffer, J. R., Liebert, J., & Giampapa, M. 1995, AJ, 109, 298 First citation in article | CrossRef | ADS

Stauffer, J. R., et al. 1999, ApJ, 527, 219 First citation in article | IOPscience | ADS

———. 2005, AJ, 130, 1834 First citation in article | IOPscience | ADS

Steele, I., et al. 1995, MNRAS, 272, 630 First citation in article | ADS

Terlevich, E. 1987, MNRAS, 224, 193 First citation in article | ADS

Terndrup, D. M., Stauffer, J. R., Pinsonneault, M. H., Sills, A., Yuan, Y., Jones, B. F., Fischer, D., & Krishnamurthi, A.

2000, AJ, 119, 1303 First citation in article | IOPscience | ADS

Trumpler, R. J. 1921, Lick Obs. Bull., 10, 110 First citation in article | CrossRef | ADS

van Leeuwen, F., Alphenaar, P., & Brand, J. 1986, A&AS, 65, 309 First citation in article | ADS

van Leeuwen, F., Alphenaar, P., & Meys, J. J. M. 1987, A&AS, 67, 483 First citation in article | ADS

van Maanen, A. 1946, ApJ, 103, 289 First citation in article | CrossRef | ADS

Werner, M., et al. 2004, ApJS, 154, 309 First citation in article | IOPscience | ADS

White, R. E. 2003, ApJS, 148, 487 First citation in article | IOPscience | ADS

White, R. E., & Bally, J. 1993, ApJ, 409, 234 First citation in article | CrossRef | ADS

Page 62: Mensajero Estelar No. 72 Octubre

Descubren un nuevo ciclo del calendario Maya

Como si fuera un gran rompecabezas de 2 metros de altura por menos de 1 de ancho, el Tablero Este,

descubierto en el edificio I del Grupo XVI de Palenque, Chiapas, en 1993, dio la pista para otro gran hallazgo: Un Ciclo

Calendárico de 63 días. Así, luego de más de 1000 años, La Voz, el discurso de los antiguos Mayas plasmado en Estuco,

volvió a escucharse.

Después del trabajo de campo en tierras chiapanecas, Guillermo Bernal Romero, del Centro de Estudios Mayas

del Instituto Filológicas (IIFL) de la UNAM, (México), volvió a su cubículo y descifró el mensaje; la existencia de este

Ciclo que había pasado desapercibido en los estudios clásicos en torno al calendario.

Al hacer la reconstrucción, Bernal comprobó que el período estuvo asociado con el ritual de Taladrado de fuego,

(joch´K´ahk´), es decir, de generación por fricción de un fuego ritual dedicado al Dios Zarigüeya o Tlacuache.

El Ciclo 63 es una especie de eslabón perdido de un engranaje que faltaba. Se conocían otros de 7; 9, y 819 días.

El descubierto en Abril pasado es el resultado de multiplicar los primeros 2, y el tercero, de multiplicar 819 por 13.

Estos números no fueron un capricho de los Mayas, eran sagrados: Creían en la existencia de un Supra mundo o

región celeste con 13 niveles; de una terrestre, (la nuestra), con 7 estratos; y un inframundo con 9 niveles.

Respecto al 819, se ha propuesto que fue formulado para realizar cómputos de los Períodos Sinódicos, (Tiempo

que tarda un objeto en volver a aparecer en el mismo punto del cielo, con respecto al Sol, al observarlo desde la Tierra),

de Saturno, de 378 días, (63 X 6).

En 1993, Arnaldo González Cruz, Director del Proyecto Arqueológico Palenque, del Instituto Nacional de

Antropología e Historia, de la UNAM, descubrió entre los restos del Edificio I del grupo XVI, conjunto habitacional

sacerdotal, ubicado a un lado del Corazón Ceremonial de la ciudad, los fragmentos de lo que parecía un tablero.

Se encontraban dispersos, sepultados entre los escombros de la derruida construcción, donde los pedazos del

estuco, en el Período Clásico, en la época de K´inich Janahb´Pakal Il, “El Grande”, cubrieron las paredes de 2 pilastras.

Solo algunos cartuchos glíficos estaban pegados a las pilastras en su posición original.

Bernal Romero hizo un primer

estudio de estos fragmentos en 1998.

Allí descubrió un registro de 819 días.

En 2013 hubo una segunda revisión del

material, pero no fue hasta abril de

2014 que la restauradora Luz Lourdes

Herbert, de la Coordinación Nacional

de Conservación del Patrimonio

Cultural del INAH, desplegó

completamente el material en camas de

arena.

Foto: A pesar del desarrollo de la

Epigrafía Maya, y del desciframiento

de los acontecimientos históricos o

míticos que relatan las inscripciones,

el calendario aún tiene aspectos

insospechados. Foto: UNAM)

Ya extendidos los cuadros de

escritura, se determinó que se trataba

de 2 tableros que estuvieron colocados

sobre jambas, pero las piezas estaban revueltas y no se sabía que cartuchos pertenecían a uno u otro “rompecabezas”. Eso

causó

Problemas, pero al observar con más detenimiento se pudo realizar la separación fina. Coincidían y tenían sentido.

Por ejemplo, con el dato del glifo del Dios Zarigüeya, en el extremo superior derecho del Tablero Este, se podía

saber cuántos cartuchos había tenido todo; cuatro columnas (dos dobles) y 14 filas, es decir, 56 espacios de escritura.

Además, el nombre de la deidad va acompañado de otros glifos, como el fuego, y antes de un verbo. A partir de una

esquina se reconstruyó todo, y aunque quedaron algunos huecos, donde ya no existen glifos, se pudo determinar que hubo

allí

El tablero Oeste se recuperó en un 30% y el Este en un 65%. La reconstrucción fue posible por la lógica del texto

del cómputo que posee las formulas bien conocidas de los ciclos calendáricos Mayas.

Page 63: Mensajero Estelar No. 72 Octubre

El segundo comprende una fecha absoluta de cuenta larga, que en nuestro calendario equivales al 28 de junio de

673; de esta los Mayas hicieron un cómputo hacia la fecha anterior, el 28 de mayo, 31 días antes, (habían transcurrido 11

días y un winal…), cuando se taladró el fuego, dedicado a la deidad Zarigüeya o el Tlacuache.

Esa ceremonia es muy significativa en el pensamiento mesoamericano; en la mitología, a ese animal se le

atribuye haber robado el fuego para dárselo al hombre.

Se conocía que los Mayas hacían esta ceremonia de manera sacrilizada, pero ahora se sabe que se realizaban

periódicamente cada 63 días. La comprobación del hecho se hizo en otro monumento, el dintel 29 de Yaxtilán, donde se

observó que un rito de taladro para el mismo Dios se ocurría en un lapso múltiplo de 63 con respecto al registro en

Palenque, es decir 13.230 días. (210 X 63).

Debido a que podía tratarse de una casualidad, se buscó otros registros, encontrándose al menos 8, como el Panel

2 de Laxtinich. El intervalo entre este y la fecha de Yaxchilán es equivalente a 345 ciclos de 63 días, es decir 21.735 días.

Esta periodicidad no podía ser casual, sino intencional. Además, es posible que este ciclo se haya utilizado para estimar el

período Sinódico de Saturno, que es de 378 días.

El ciclo 63 no fue registrado con frecuencia por los Mayas, lo que explica por qué paso desapercibido. No había

mucho elementos pero la reconstrucción de los tableros, en especial el Este, dio la pista para llegar a este período, que

explica cómo se construyeron otros factores numéricos tipo calendáricos.

Eric Thompson en 1943 descubrió que el 819 era resultado de la multiplicación de 3 cifras, 7; 9; y 13, hoy se

sabe que no es de manera serial, sino segmentada, es decir, 9 X 7; y luego 63 X 13.

Para los investigadores es fascinante, pues ahora saben que existen relaciones numéricas insospechadas que

delatan la existencia de otros ciclos. En otras palabras, la compleja maquinaria numérica que se creía resuelta aún no lo

está.

Revelan por qué la Luna no es una esfera perfecta

La Luna se sitúa a una

distancia media de la Tierra de

384.000 km y se aleja de ella

unos 3,8 centímetros por año.

Investigadores afirman

que el satélite sería ligeramente

achatado producto de las

primeras fuerzas de marea

ejercidas por la Tierra hace 4,4

millardos de años

Llena, en cuarto

creciente o menguante, la Luna,

por conocida que resulte para los

terrícolas, tiene sus misterios.

Un equipo de investigadores

propone en la revista Nature una

explicación a su forma, que no

es la de una esfera perfecta.

El satélite natural de la Tierra no es exactamente esférico, sino ligeramente achatado. La Luna presenta una

ligera hinchazón en su cara visible desde la Tierra, y otra en la cara oculta.

El equipo de Ian Garrick-Bethell, de la Universidad de California, explica la forma particular por los “efectos de

marea”, las fuerzas gravitacionales ejercidas por la Tierra durante la infancia de la Luna, hace 4,4 millardos de años.

El Sistema Solar se formó hace aproximadamente 4,5 millardos de años. Conforme al modelo que hoy es

corrientemente admitido, la Luna habría nacido de una colisión masiva padecida por la Tierra, que se acababa de formar.

Según los investigadores, las primeras fuerzas de marea ejercidas por la Tierra, que entonces estaba mucho más

cercana a la Luna, calentaron de forma desigual, según los lugares, la corteza de la Luna, cuando entonces ésta era un

océano de rocas en fusión. Este fenómeno dio a la Luna su forma, ligeramente alargada como un limón.

Más tarde, cuando la Luna se enfriaba, las fuerzas de las mareas deformaron el exterior de la Luna y fijaron sus

irregularidades.

La luna se sitúa a una distancia media de la Tierra de 384.000 km y se aleja de ella unos 3,8 centímetros por año.

Su circunferencia en el ecuador es de 10.920 km, es decir 3,7 veces inferior a la de la Tierra (40.000 km).

Page 64: Mensajero Estelar No. 72 Octubre

Scientists discover vast methane plumes escaping from Arctic seafloor

Scientists aboard the icebreaker Oden observe a methane mega flare.

Methane mega flare

event on the Laptev Sea slope of

the Arctic Ocean, at a depth of

about 62 meters. Image via

Daily Kos via University of

Stockholm.

An international team

of scientists aboard the

icebreaker Oden – currently

north of eastern Siberia, in the

Arctic Ocean – is working

primarily to measure methane

emissions from the Arctic

seafloor. On July 22, 2014, only

a week into their voyage, the

team reported “elevated

methane levels, about 10 times

higher than background

seawater.” They say the culprit

in this release of methane, a

potent greenhouse gas, may be a

tongue of relatively warm water

from the Atlantic Ocean, the last

remnants of the Gulf Stream, mixing into the Arctic Ocean. A press release from University of Stockholm described the

discovery as:

… vast methane plumes escaping from the seafloor of the Laptev continental slope. These early glimpses of

what may be in store for a warming Arctic Ocean could help scientists project the future releases of the strong greenhouse

gas methane from the Arctic Ocean.

The scientists refer to the plumes as methane mega flares.

Expedition of the icebreaker Oden – called the SWERUS expedition – preliminary cruise plan and study areas of

Leg 1 and 2. EEZ=Exclusive Economic Zone; LR=Lomonosov Ridge; MR=Mendeleev Ridge; HC=Herald Canyon;

NSI=New Siberian Islands. Image via Daily Kos via University of Stockholm.

On July 22, 2014, chief scientist Örjan Gustafsson of the University of Stockholm wrote about the methane mega

flare event in his blog. He wrote:

So, what have we found in the first

couple of days of methane-focused

studies?

1) Our first observations of

elevated methane levels, about ten times

higher than in background seawater, were

documented already as we climbed up the

steep continental slope at stations in 500

and 250 meter depth. This was somewhat

of a surprise. While there has been much

speculation of the vulnerability of regular

marine hydrates [frozen methane formed

due to high pressure and low

temperature] along the Arctic rim, very

few actual observations of methane

releases due to collapsing Arctic upper

slope marine hydrates have been made. ¨

It has recently been documented that a

tongue of relatively warm Atlantic water,

Page 65: Mensajero Estelar No. 72 Octubre

with a core at depths of 200–600 meters may have warmed up some in recent years. As this Atlantic water, the last

remnants of the Gulf Stream, propagates eastward along the upper slope of the East Siberian margin, our SWERUS-C3

program is hypothesizing that this heating may lead to destabilization of upper portion of the slope methane hydrates.

This may be what we now for the first time are observing.

2) Using the mid-water sonar, we mapped out an area of several kilometers where bubbles were filling the water

column from depths of 200 to 500 meters. During the preceding 48 hours we have performed station work in two areas on

the shallow shelf with depths of 60-70m where we discovered over 100 new methane seep sites. SWERUS-C3

researchers have on earlier expeditions documented extensive venting of methane from the subsea system to the

atmosphere over the East Siberian Arctic Shelf. On this Oden expedition we have gathered a strong team to assess these

methane releases in greater detail than ever before to substantially improve our collective understanding of the methane

sources and the functioning of the system. This is information that is crucial if we are to be able to provide scientific

estimations of how these methane releases may develop in the future.

While not as long-lasting in the atmosphere as carbon dioxide, methane is much more effective than carbon

dioxide at trapping heat. Glaciologist Jason Box, in a recent and fascinating blog post (Is the climate dragon awakening?)

said: “Atmospheric methane release is a much bigger problem than atmospheric carbon dioxide release, since methane is

~20 times more powerful greenhouse gas”.

Methane has the potential to create a feedback loop in global warming. That is, as Earth’s climate warms,

methane that is frozen in reservoirs stored in Arctic tundra soils – or marine sediments – may be released into the

atmosphere. It does not last long in the atmosphere (on the order of years, rather than centuries as with carbon dixoide).

But its release will cause more warming, which will cause more methane to be released, replenishing that in the

atmosphere … causing more warming and more methane release and so on.

Methane release from the Arctic Ocean is not a new phenomenon; after all, the Stockholm scientists were there

to measure it. U.S. scientists have observed Arctic Ocean methane release, too. For example, NASA reported in April

2012 on a study in which scientists measured surprising levels of methane coming from cracks in Arctic sea ice and areas

of partial sea ice cover. In 2013, Shakova et al (2013) suggested that: … significant quantities of methane are escaping

the East Siberian Shelf as

a result of the degradation

of submarine permafrost

over thousands of years.

We suggest that bubbles

and storms facilitate the

flux of this methane to the

overlying ocean and

atmosphere, respectively.

Glaciologist

Jason Box, in his recent

blog post, pointed out that

methane release tends to

come in spikes, which he

calls “dragon’s breath.”

Jason Box

published the chart above

in his blog. It shows a

possible methane spike.

Box said: “A reasonable

hypothesis for the outliers

[apparent high

measurements of methane,

which Box calls 'dragon's

breath'] … would be:

extreme outlying positive anomalies represent high methane concentration plumes emanating from tundra and/or oceanic

sources. Another reasonable hypothesis would be: extreme outlying positive anomalies represent observational errors.

What NOAA states: the outliers ‘are thought to be not indicative of background conditions, and represent poorly mixed

air masses influenced by local or regional anthropogenic sources or strong local biospheric sources or sinks.’ Fair enough.

But the dragon breath hypothesis has me losing sleep.”

Page 66: Mensajero Estelar No. 72 Octubre

Methane bubbles discovered on Laptev continental slope of

Arctic Ocean by the science team aboard the icebreaker

Oden. Image via University of Stockholm.

On July 23, Ulf Hedman – who is aboard the Oden and who

is Science Coordinator for the Swedish Polar Research

Secretariat – gave a vivid description of the discovery in his

blog:

We are ‘sniffing’ methane. We see the bubbles on video

from the camera mounted on the CTD or the Multicorer. All

analysis tells the signs. We are in a [methane] mega flare.

We see it in the water column we read it above the surface

an we follow it up high into the sky with radars and lasers.

We see it mixed in the air and carried away with the winds. Methane in the air. Where does it come from? Is it from the

old moors and mosses that used to be on dry land but now has sunken into the sea. Does it come from the deep interior of

the Earth following structures in the bedrock up into the sand filled reservoirs collecting oil and gas then leaking out

upwards, as bubbles through the sea bed into the water, into the mid-water sonar, the Niskin bottles the analysis and into

our results?

Where does the methane come from? Is it organic or not? What’s the volume? How much is carried up into the air? Is

there an effect on the climate? One mega flare does not tell the truth. It’s not evidence enough.

We carry on for the next station.

And the next, and next, next…

Bottom line: A team of international scientists aboard the icebreaker Oden has documented “elevated methane levels,

about ten times higher than in background seawater” in the Arctic Ocean. They are calling it a methane mega flare event

and express hopes it will help them project future releases of the strong greenhouse gas methane from the Arctic Ocean,

and to understand the role this released methane might play in global warming.

Follow the SWERUS-C3 expedition – @SWERUSC3 – on Twitter.

Mystery crater in Yamal peninsula probably caused by methane release

Científicos captan olas de cinco metros en Océano Ártico

Jim Thomson, Universidad de Washington

El fenómeno sería consecuencia del calentamiento global, y acentuaría el derretimiento de hielo dentro de la

zona

Un nuevo y preocupante fenómeno ha sido

captado en el Polo Norte, específicamente, dentro del

Océano Ártico, donde no sólo se han registrado

importantes niveles de deshielo sino que ahora también, y

por primera vez, olas de cinco metros de altura.

El suceso fue captado por el experto de la

Universidad de Washington, Jim Thomson, quien detectó

durante septiembre de 2012 estas importantes olas

generadas por el viento, que no sólo serían una evidencia

del calentamiento global sino que podrían ser la causa,

además, de un derretimiento más acelerado en el hielo de

esta zona.

La investigación de Thomson muestra que

durante 2012, se llegaron a formar olas de hasta cinco metros de altura durante la parte más fuerte de una tormenta, que

habrían surgido de vientos habituales en la zona pero con una nueva realidad de mar abierto mucho más amplio en la

zona.

Este fenómeno también responde al retroceso del hielo ártico durante el verano, que sucede en un promedio

habitual de 150 kilómetros de la costa. Sin embargo, en 2012, esta cifra saltó a los 1.500 kilómetros, permitiendo una

mayor temporada de mar abierto y por tanto, un escenario más proclive a generar olas más altas.

Según los expertos, este fenómeno podría significar un importante cambio en las condiciones históricas de esta

zona de hielo y podría traer consecuencias dentro de ese ecosistema como también dentro de la navegación.

El científico junto a un grupo de otros expertos esperan evaluar más a detalle este fenómeno dentro de la zona,

con una serie de instrumentos que serán ubicados en Alaska durante los meses de verano.

Page 67: Mensajero Estelar No. 72 Octubre

Old pre-main-sequence stars

Disc reformation by Bondi-Hoyle accretion

P. Scicluna1,2

, G. Rosotti3,4,5

, J. E. Dale4 and L. Testi

2,4,6

1 ITAP,

Universität zu Kiel, Leibnizstr. 15, 24118 Kiel, Germany e-mail: [email protected]

2 European Southern Observatory, Karl-Schwarzschild-Str. 85748 Garching b München, Germany

3Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany

4 Excellence Cluster Universe, Boltzmannstr. 85748 Garching, Germany

5 Universitats-Sternwarte München, Scheinerstraße81679 München, Germany

6 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy

Abstract

Young stars show evidence of accretion discs which evolve quickly and disperse with an e-folding time of ~3

Myr. This is in striking contrast with recent observations that suggest evidence of numerous >30 Myr old stars with an

accretion disc in large star-forming complexes. We consider whether these observations of apparently old accretors could

be explained by invoking Bondi-Hoyle accretion to rebuild a new disc around these stars during passage through a

clumpy molecular cloud. We combine a simple Monte Carlo model to explore the capture of mass by such systems with a

viscous evolution model to infer the levels of accretion that would be observed. We find that a significant fraction of stars

may capture enough material via the Bondi-Hoyle mechanism to rebuild a disc of mass ≳1 minimum-mass solar nebula,

and ≲10% accrete at observable levels at any given time. A significant fraction of the observed old accretors may be

explained with our proposed mechanism. Such accretion may provide a chance for a second epoch of planet formation,

and have unpredictable consequences for planetary evolution.

Key words: accretion, accretion disks / protoplanetary disks / circumstellar matter / stars: formation / stars: pre-

main sequence

© ESO, 2014

1. Introduction

Circumstellar discs form around protostars as a result of angular momentum conservation during gravitational

collapse (e.g. Shu et al. 1987). In the early phases of star formation, disc material loses angular momentum and is

accreted onto the central star. The most direct observational signature of the presence of a protoplanetary disc is the

excess emission, on top of the expected naked stellar photosphere, at infrared and millimetre wavelengths, in the

ultraviolet and in optical/infrared emission lines. The long wavelength emission is produced by a dusty disc, heated by

internal dissipation processes or reprocessing of stellar radiation (e.g. Dullemond et al. 2007). The short wavelength

excess and the optical/infrared emission lines are thought to be produced by the disc-star interaction as matter accretes

onto the star or is ejected in a wind/jet (Hartmann 2009). Strong observational evidence shows that both the inner dusty

disc and accretion onto the central star quickly disappear during the early stages of pre-main-sequence evolution; the

fractions of stars with near infrared excess and with accretion signatures decay with an e-folding time of 2−3 Myr (Fedele

et al. 2010; Hernández et al. 2007). This disc dissipation timescale, even considering the possible revision by Bell et al.

(2013), sets a stringent constraint on the timescales for planet formation.

Recent work has challenged this paradigm. Sensitive, wide field Hα surveys of large star-forming complexes in

the Magellanic Clouds and our own Galaxy have revealed a population of pre-main-sequence stars that appear to be older

than 10 Myr but still show prominent Hα emission and/or infrared excess (Beccari et al. 2010; De Marchi et al. 2013a,b,

2011a,c). Although some of these “old” accretor candidates in nearby star-forming regions have been shown to be

misclassified young stellar objects (Manara et al. 2013), it is difficult to believe that this is the case for all the candidates;

these populations of old accretors are not as centrally condensed as the young stellar clusters in the same fields (e.g. De

Marchi et al. 2011b). If the line emission is interpreted as due to accretion as in young pre-main-sequence stars, the

implied accretion rates are similar to those derived at early ages, and typically higher than nearby transitional discs1.

These findings are hard to understand in a framework in which the primordial disc is still the reservoir of accreting

material at such old ages; even one disc of age >30 Myr implies an initial population >105 (assuming exponential decay

with an e-folding timescale of 3 Myr).

In this paper we explore the possibility that the old accretors do not have a primordial disc, but a disc that they

re-accreted after the primordial disc had dissipated. Previous studies (Moeckel & Throop 2009; Padoan et al. 2005;

Throop & Bally 2008) have investigated the influence of Bondi-Hoyle accretion on pre-main-sequence mass-accretion

rates and the protoplanetary disc at earlier phases, during the initial evolution of the disc-star system within the progenitor

cloud. Here we investigate the possibility that a star older than 5−10 Myr happens to travel through a clumpy molecular

cloud, typically unrelated to that in which the star formed, and is able to accrete enough material to form a new accretion

disc.

Page 68: Mensajero Estelar No. 72 Octubre

2. Modelling

2.1. Bondi-Hoyle accretion

Hoyle & Lyttleton (1939), Bondi & Hoyle (1944), and Bondi (1952) proposed a mechanism by which objects

can capture matter from the interstellar medium (ISM). A massive object moving through the ISM causes a perturbation,

pulling material toward the object. As the capture of material is roughly symmetrical with respect to the direction of

motion of the star, much of the angular momentum of the material cancels out, and hence it is captured by the star to

eventually be accreted (Davies & Pringle 1980).

The rate at which material is captured is given by (1) where v is the relative velocity between

the star and the ISM, n is the number density of the ISM, and μ is the mean molecular weight (usually taken as 2.3mH).

The gravitational cross-section is given by , where RBH is the Bondi-Hoyle radius (2)cs is

the sound-speed of the ISM, typically 0.3kms-1

. For a 1 M⊙ star moving at 1 km s-1

, RBH ~ 1500 au.

Parameters Values Parameters Values

Fv 10-2

, 10-3

, 10-4

, 10-5

Cs 0.3 km s-1

Nstars 105, 105, 106, 107 σ 1 km s-1

Rd 0.1 pc α 2.35

nd 104 cm-3

Parameters for Monte Carlo models.

To explore the effect of this process in reconstituting discs around young stars, we build a simple Monte Carlo

model to treat interactions between stars and clumps with densities typical for molecular clouds. We assume a stationary

clumpy molecular cloud, which we model as a collection of identical spherical clumps with radius Rcl and density ncl. We

parametrise the density of clumps through a volume filling factor of dense gas fV. We assume a population of “old” young

stars that has lost their primordial disc enters the cloud and moves through the clumpy medium. By randomly generating

stars with masses between 0.7 M⊙ and 3.2 M⊙2 from a Salpeter IMF (M ∝ M

− αSalpeter 1955) and velocities generated

assuming a velocity dispersion of σv = 1kms-1

, we sample the parameters required in Eq. (2) from the values given in

Table 1. The model simulates 10 Myr treated as a series of quasi-static time steps of length tst = 2Rcl/v∗, assuming that

each star is independent. For each star, we calculate RBH, the volume swept out per time-step ,

and hence the probability of encountering a dense clump (3)In each time-step a uniform random

number ζ is drawn, and the star encounters a clump when ζ ≤ p; the impact parameter b of the encounter is given by

drawing a second random number ζ2 from the same generator such that . We then determine the

accretion rate (Eq. (1)) and resolve the stellar accretion and the clump-mass depletion on a finer time-grid of 1000 sub-

steps to accurately determine the accreted mass. Interactions where RBH>Rcl and grazing encounters are treated correctly

by taking the projected area of intersection. By repeating this process for >105 stars we build up meaningful statistics

about the range of possible BH accretion histories and their probabilities. Note that each star is modelled independently,

and mass accreted by a star does not influence the mass-budget available to later stars.

The accretion histories determined by this model are then passed to a viscous evolution model (Sect. 2.2) to

estimate the rate at which material is accreted by the star.

Our choice of fV is based on a reanalysis of SPH simulations of star-forming regions including feedback

mechanisms presented in Dale et al. (2012, 2013) to determine the filling factor of gas at densities higher than 104cm

-3.

We find that for bound clouds of similar stellar mass to the regions observed by Beccari et al. (2010); De Marchi et al.

(2013b), 10-6

<fV ≲ 10-3

irrespective of whether feedback from massive stars is included.

While this provides a useful estimate of the amount of mass captured in this way, it somewhat overestimates the

total as we neglect a number of physical processes. First, we neglect the motion of the clumps and assume that v = v∗ in

Eq. (2). Correct treatment of the relative motions would in general reduce RBH and hence the accretion rates. Second, stars

above 2 M⊙ have significant wind and radiation pressure that will depress the accretion rate (Edgar & Clarke 2004).

Similarly, we do not include the possible influence of the X-ray photoevaporation on the accretion, which may have an

analagous effect for lower mass stars. We also ignore the possible influence of magnetic fields, which recent studies (e.g.

Lee et al. 2014) have shown may reduce accretion rates by a factor of a few. Likewise, we neglect structure on scales

Page 69: Mensajero Estelar No. 72 Octubre

smaller than a single clump; such structure is required for a disc to form, and would reduce accretion rates relative to the

homogeneous clump case treated here. Finally, we do not include binaries. However, the only influence of binarity in the

context of Bondi-Hoyle accretion is to increase RBH, since binaries behave as a single object of mass M = M1 + M2.

Fig. 1

Cumulative fraction of the stellar

population that has accreted mass

as a function of total accreted

mass. The solid blue line indicates

a filling-factor of 10-2

, the dotted

magenta line 10-3

, the dashed red

line 10-4

, and the dot-dashed

green line 10-5

.

2.2. Viscous evolution modelling

Due to the angular momentum of the material accreted from the clump, which may be due to a density gradient

within the clump or the rotation of the clump itself, accretion cannot proceed directly onto the star (Ruffert 1997).

Therefore, the formation of a thin accretion disc is expected as the result of the viscous spreading of a thin ring. Throop &

Bally (2008) described the “buffer” effect of an accretion disc, but did not directly model it. We assume that the material

accreted from the medium circularises at a radius r0 = 0.1RBH. After a single impulse of accretion onto the disc, the

surface density is described by Σ(r) = M0/ (2π)δ(r − r0), where M0 is the deposited mass. Under the influence of an

effective viscosity ν that redistributes the angular momentum in the disc, the spreading ring solution (Lynden-Bell &

Pringle 1974) describes the evolution in time of this initial surface density,

(4)where ν is the kinematic

viscosity of the gas, Ω the Keplerian angular speed, I1/2 the modified Bessel function of order 1/2, λ = 2r3/2

/

(3(GM∗)3/2νtr0), and we have specialized the expression for the ν ∝ r case. From this analytical solution, it is possible to

compute the mass accretion rate onto the star Ṁkernel. To derive the mass accretion rate history onto the star, we convolve

this function with the mass accretion rate history onto the disc:

(5)Given a stellar mass, the loading radius, and a law for viscosity, the evolution in time is now completely determined.

We fix the viscosity by using the well-known Shakura & Sunyaev (1973) prescription, ν = α(h/r)2r

2Ω, where α is the

Shakura-Sunyaev parameter and h/r the aspect ratio of the disc. We choose typical values of α = 0.01 and h/r = 0.05(r/ 1

AU)1/4

(Armitage 2011). Operationally, we sample Eq. (4) numerically on a space and time grid. We integrate over space

to get the mass of the disc and we numerically differentiate the result to get the mass accretion rate kernel, which can be

convolved with the Bondi-Hoyle history (Sect. 2.1).

Page 70: Mensajero Estelar No. 72 Octubre

Fig. 2

Fraction of the population

that would be detected as

an old accretor at a given

time, plotted as a function

of the instantaneous

accretion rate. The

models are indicated

using the same colours

and line-styles as Fig. 1.

3. Results

Our model indicates that a fraction of the population ~ 40−50 × fV encounter dense regions and accrete more than

0.001M⊙ material by the end of the simulation (Fig. 1). The median accreted mass is typically ~0.01 M⊙, similar to the

mass of discs around young pre-main-sequence stars, with strong dependence on the stellar mass. In extreme cases,

however, more massive stars (>2 M⊙) with low v∗ that encounter several clumps can capture ≥M⊙. Our treatment of the

disc formation and evolution is probably inadequate for these extreme cases.

Converting the Bondi-Hoyle accretion into stellar accretion rates, we find Ṁ∗ ≲ 10-6

M⊙yr-1

after the formation of

the disc. Owing to the assumptions inherent in our model, this rate declines from the peak as a power law as in primordial

discs.

By calculating the time each star spends accreting above a certain threshold accretion rate, one can derive a mean

time per star as a function of the threshold and hence an estimate of the fraction of the population which one expects to

observe accreting at a given time. As shown in Fig. 2, for a threshold rate of 10-8

M⊙ yr-1

we typically find that the

cumulative probability is ~20fV, i.e. the fraction of a stellar population that one expects to observe as old accretors at a

given time is an order of magnitude larger than the volume filling-factor of dense clumps.

4. Discussion

Our primary goal is to assess whether the Bondi-Hoyle mechanism can contribute significantly to observations

of old accretors in regions with ongoing star formation, under a number of simple assumptions. This involves stars from a

previous star-formation episode, after their primordial discs have dispersed, interacting with a clumpy molecular cloud.

Our model indicates that up to several percent of the population passing through a region containing dense clumps may

accrete more than 0.001 M⊙ of material. Because of the factors indicated above (Sect. 2.1), the model is likely to

overestimate the total accreted mass. However, since the Bondi-Hoyle accretion is a well-understood process, the largest

sources of uncertainty derive from the parameters assumed as input to the model, and in particular the clump geometry

and filling factor, as well as the assumption that the accreted material will form a thin disc.

Our initial choice of filling factor was based on a reanalysis of the simulations of Dale et al. (2012, 2013) for

clouds similar to those observed to host old accretors. A further estimate can be obtained from the high-resolution sub-

mm maps of the 30 Dor region from Indebetouw et al. (2013). These reveal a wealth of clumpy structures, similar in scale

and density to the clumps in the Monte Carlo model used here. Assuming that the clumps are uniform spheres with an

average radius Rcl = 0.15pc and distributed in a cube whose depth is equal to the projected size of the observed region (10

× 10 × 10pc3) yields a filling factor of fV = 1.5 × 10

-3, at the upper end of our parameter range.

The behaviour of the accretion disc depends strongly on the viscous timescale τν, as parametrised in terms of r0

and α. An order of magnitude change in τν has little effect on the observable old-accretor fractions at low thresholds, but

the fractions at high thresholds decline approximately in proportion to 1 /τν. For larger changes in viscosity, this also

affects the lowest thresholds explored in Sect. 3.

Page 71: Mensajero Estelar No. 72 Octubre

Since we do not include stars down to the peak of IMF (~0.3 M⊙) and Bondi-Hoyle accretion rates are ∝M2, we

may overestimate the total fraction of old accretors by a factor ~3 for the Salpeter IMF assumed here. However, Eq. (3) is

dominated by Rcl for low-mass stars, so one would expect a similar fraction of old accretors when Ṁ is a factor of 4

lower.

Comparisons between our model and the observations of old accretors are difficult, as there are no firm

constraints on the size of the old population (including non-accretors). Nevertheless, from Fig. 2 one can see that without

an unrealistically large filling factor (≫10-3

) of dense clumps, the small, nearby star-forming regions are unlikely to

produce more than one old accretor, as their typical mass is a few hundred M⊙. As no old accretors have been identified

in these regions, this is consistent with our model. From the recent identification of a large (~3 × 103M⊙) diffuse

population with ages ≳10 Myr toward Orion (Bouy et al. 2014) one expects a few tens of reformed discs, although it is

unclear whether there is any overlap between this population and the Orion molecular clouds.

Observations of old accretors in large star-forming complexes typically detect up to several hundred such

sources in each observed region. Given the formation efficiency we have computed and our assumed filling factors, this

requires a total population at least of the order of 104 stars in the mass range of the observed old accretors, or ~3 × 10

4

stars correcting for the IMF, which must have passed through the regions in which the clumps are distributed. In the case

of NGC 3603, which is inferred to have a population ~104.2

M⊙ (Rahman et al. 2013) and ~100 old accretors, this implies

either that the old population was significantly richer, or that fV is or was very high. The 30 Doradus region, on the other

hand, shows a similar total of old accretors, although the total population is likely ~100 times larger than NGC 3603.

Only a small fraction (1%) of the stars in 30Dor need to pass through regions containing dense clumps to produce the

observed numbers. In reality, fV will evolve with time, and it is possible that the difference we observe between these

regions may be due to 30Dor being more evolved, or having evolved more rapidly, than NGC 3603.

In our model, a significant fraction (up to several tens of percent) of stars capture enough material to form a

circumstellar disc of mass similar to primordial protoplanetary discs. This raises a number of interesting questions, such

as whether a second epoch of planet formation is possible, and how the interaction between inflowing material and an

existing planetary system might alter the accretion or the planetary evolution.

The answers to these queries depend strongly on how the inflowing material interacts with the existing system,

which we have not treated. Nevertheless, Bondi-Hoyle accretion presents a mechanism by which a new reservoir of

potentially planet-forming material may be built by up to a few percent of stars. This gives them a second chance to form

planets, from material that is potentially of different composition from the material that formed the star. Another

possibility is that these stars are already surrounded by a planetary system formed out of the primordial disc. If they

accrete new material, typically with an angular momentum different from that of the original planetary system, the

interaction of the new material and the existing planets may have a range of outcomes. Understanding the range of

possible outcomes will require detailed simulations of the accretion process and of the dynamical interactions with the

planetary systems which are beyond the scope of the present paper.

5. Conclusions

We have presented a model in which Bondi-Hoyle accretion by stars passing through dense clumps in the outer

regions of their natal molecular cloud leads to the re-formation of a circumstellar disc. As a result, these stars may

masquerade as pre-main-sequence objects due to ongoing accretion and the presence of infrared excess emission. A

significant part of the observed populations of old accretors in large star-forming regions may be explained by this

mechanism. As it may have wide-ranging consequences for the early evolution of planetary systems in rich stellar

environments, we believe that further investigation of this mechanism is warranted.

1

Although these are systematically lower mass objects. 2

Stars above ~3 M⊙ have strong winds which make a simple model inappropriate, while observations of old

accretors are incomplete for stars below 0.7−1 M⊙ depending on the distance to the observed region.

Acknowledgments

We wish to thank the anonymous referee for her/his careful reading of the text. The idea explored in this paper

came up during discussions at the ESO science days and star formation coffee as well as the Munich Star Formation

workshops. We thank the ESO Office for Science and all the institutes in the Munich area for providing a stimulating

environment. We thank P. Armitage, G. Beccari, G. Costigan, B. Ercolano, G. De Marchi, C. Manara, N. Moeckel, A.

Natta, P. Padoan, R. Siebenmorgen and S. Wolf for discussions and insights on the various aspects discussed in this

paper. P.S. is supported under DFG programme no. WO 857/10-1. G.R. acknowledges the support of the International

Page 72: Mensajero Estelar No. 72 Octubre

Max Planck Research School (IMPRS). This research was supported by the DFG cluster of excellence “Origin and

Structure of the Universe” (JED).

References

- Armitage, P. J. 2011, ARA&A, 49, 195 [NASA ADS] [CrossRef] (In the text)

- Beccari, G., Spezzi, L., De Marchi, G., et al. 2010, ApJ, 720, 1108 [NASA ADS] [CrossRef] (In the text)

- Bell, C. P. M., Naylor, T., Mayne, N. J., Jeffries, R. D., & Littlefair, S. P. 2013, MNRAS, 434, 806 [NASA

ADS] [CrossRef] (In the text)

- Bondi, H. 1952, MNRAS, 112, 195 [NASA ADS] (In the text)

- Bondi, H., & Hoyle, F. 1944, MNRAS, 104, 273 [NASA ADS] (In the text)

- Bouy, H., Alves, J., Bertin, E., Sarro, L. M., & Barrado, D. 2014, A&A, 564, A29 [NASA ADS] [CrossRef]

[EDP Sciences] (In the text)

- Dale, J. E., Ercolano, B., & Bonnell, I. A. 2012, MNRAS, 424, 377 [NASA ADS] [CrossRef] (In the text)

- Dale, J. E., Ercolano, B., & Bonnell, I. A. 2013, MNRAS, 430, 234 [NASA ADS] [CrossRef] (In the text)

- Davies, R. E., & Pringle, J. E. 1980, MNRAS, 191, 599 [NASA ADS] (In the text)

- De Marchi, G., Panagia, N., Romaniello, M., et al. 2011a, ApJ, 740, 11 [NASA ADS] [CrossRef] (In the text)

- De Marchi, G., Panagia, N., & Sabbi, E. 2011b, ApJ, 740, 10 [NASA ADS] [CrossRef] (In the text)

- De Marchi, G., Paresce, F., Panagia, N., et al. 2011c, ApJ, 739, 27 [NASA ADS] [CrossRef] (In the text)

- De Marchi, G., Beccari, G., & Panagia, N. 2013a, ApJ, 775, 68 [NASA ADS] [CrossRef] (In the text)

- De Marchi, G., Panagia, N., Guarcello, M. G., & Bonito, R. 2013b, MNRAS, 435, 3058 [NASA ADS]

[CrossRef] (In the text)

- Dullemond, C. P., Hollenbach, D., Kamp, I., & D’Alessio, P. 2007, in Protostars and Planets V (Tucson:

University of Arizona Press), 555 (In the text)

- Edgar, R., & Clarke, C. 2004, MNRAS, 349, 678 [NASA ADS] [CrossRef] (In the text)

- Fedele, D., van den Ancker, M. E., Henning, T., Jayawardhana, R., & Oliveira, J. M. 2010, A&A, 510, A72

[NASA ADS] [CrossRef] [EDP Sciences] (In the text)

- Hartmann, L. 2009, Accretion Processes in Star Formation, Second Edition (Cambridge University Press) (In the

text)

- Hernández, J., Hartmann, L., Megeath, T., et al. 2007, ApJ, 662, 1067 [NASA ADS] [CrossRef] (In the text)

- Hoyle, F., & Lyttleton, R. A. 1939, Proc. of the Cambridge Philosophical Society, 35, 405 [NASA ADS]

[CrossRef] (In the text)

- Indebetouw, R., Brogan, C., Chen, C.-H. R., et al. 2013, ApJ, 774, 73 [NASA ADS] [CrossRef] (In the text)

- Lee, A. T., Cunningham, A. J., McKee, C. F., & Klein, R. I. 2014, ApJ, 783, 50 [NASA ADS] [CrossRef] (In the

text)

- Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603 [NASA ADS] (In the text)

- Manara, C. F., Beccari, G., Da Rio, N., et al. 2013, A&A, 558, A114 [NASA ADS] [CrossRef] [EDP Sciences]

(In the text)

- Moeckel, N., & Throop, H. B. 2009, ApJ, 707, 268 [NASA ADS] [CrossRef] (In the text)

- Padoan, P., Kritsuk, A., Norman, M. L., & Nordlund, Å. 2005, ApJ, 622, L61 [NASA ADS] [CrossRef] (In the

text)

- Rahman, M., Matzner, C. D., & Moon, D.-S. 2013, ApJ, 766, 135 [NASA ADS] [CrossRef] (In the text)

- Ruffert, M. 1997, A&A, 317, 793 [NASA ADS] (In the text)

- Salpeter, E. E. 1955, ApJ, 121, 161 [NASA ADS] [CrossRef] (In the text)

- Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 [NASA ADS] (In the text)

- Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23 [NASA ADS] [CrossRef] (In the text)

- Throop, H. B., & Bally, J. 2008, AJ, 135, 2380 [NASA ADS] [CrossRef] (In the text)

Page 73: Mensajero Estelar No. 72 Octubre

Temperaturas Anómalas en Julio - Agosto

NOAA

Si usted vive en el Hemisferio

Norte, las semanas pasadas han sido

extrañas. En lugares que son muy cálidos

en esta temporada, Este y Sureste de USA

y Oeste de Europa, las temperaturas han

sido tibias, mientras que zonas con

temperaturas medias en verano, Norte de

Europa y Costa del Pacífico de USA, han

sido ridículamente altas.

Records de altas temperaturas,

(35º C o más), han sido aproximadas o se

han roto en: Lituania, Polonia, Belarus,

Estonia, Latvia, y Suecia, a fines de Julio

y comienzos de agosto. Las altas

temperaturas han secado bosques y creado

incendios de vegetación en Siberia; en los

estados de Oregón, Washington, y

California, USA; y en las provincias de

British Columbia, Alberta y Territorios del

Noroeste de Canadá. Al mismo tiempo,

aire frío llegado de altas latitudes sobre

casi todo USA ha causado records de

bajas temperaturas diurnas y nocturnas

para la época en lugares tan al Sur como

Florida y Georgia. Las temperaturas

alcanzaron las de niveles de invierno en

las montañas de Tennessee.

Los mapas muestran las anomalías en temperaturas superficiales entre Julio 27 y Agosto 03 de 2014. Se

hicieron con los datos colectados por el

satélite MODIS, y comparados con los

datos del mismo período entre 2005 y

2013.

La observación de temperaturas

por satélites alrededor del planeta se hace

por la cantidad de radiación infrarroja

emitida por la superficie terrestre,

calentada por la radiación solar en el día

y enfriada durante la noche. Estas no son

temperaturas absolutas, se refieren a la

temperatura del suelo al tocarse. Ellas

muestran cuanta temperatura esta fuera

del promedio.

Los colores rojos intensos

muestran temperaturas de hasta 10º C por

encima del promedio, los azules cuanto

más frío. Las áreas grises son zonas

donde los datos están incompletos, o

regiones cubiertas por nubes donde no se pudo medir la temperatura durante el período de observación.

Los meteorólogos ven varias posibles causas y relaciones para las ondas de calor y patrones de enfriamiento.

Sistemas de alta presión sobre Escandinavia y Norte de Rusia, así como en el Pacífico Noroeste de Norteamérica,

permitiendo que masas de aire estable construyan domos calientes que bloqueen los frentes de aire que pueden traer

cambios en vientos, precipitación, y temperaturas.

Page 74: Mensajero Estelar No. 72 Octubre

Estos patrones de bloqueo causan juntos inusuales curvaturas y serpenteos en la corriente de chorro, la cual toma

un patrón de dirección Norte – Sur, en el hemisferio Norte. La corriente de Jet mueve aire del Pacífico al Norte y calienta

el Noroeste de Canadá y Costa Oeste de USA; va al Sur desde áreas frías de Canadá al centro y Este de USA; y lleva aire

cálido del Atlántico hacia el Norte europeo. El Jet toma un Zigzag similar en el Oeste y Este de Siberia. Este patrón es

mucho más común en Invierno que en Verano.

References and Related Reading

Accuweather (2014, August 5) Heat Replaced by Storms in Central, Eastern Europe. Accessed August 7, 2014.

Accuweather (2014, July 29) Hot July for Much of Europe. Accessed August 7, 2014.

The Guardian (2014, July 17) Is global warming causing extreme weather via jet stream waves. Accessed August 7,

2014.

NASA Earth Observatory (2014, January 10) What Goes Around Comes Around.

NASA Goddard Institute for Space Studies (2012, August) The New Climate Dice: Public Perception of Climate Change.

Accessed August 7, 2014.

Weather.com (2014, August 1) July Cooldown Part Two: Polar Plunge Return. Accessed August 7, 2014.

Weather.com (2014, July 20) July Chill Brought Record Cold Temperatures. Accessed August 7, 2014.

Weather Extremes Blog, via Weather Underground (2014, August 5) First 100°F Temperature on Record in the Baltics.

Accessed August 7, 2014.

NASA Earth Observatory images by Jesse Allen, using data from the Land Processes Distributed Active Archive Center

(LPDAAC). Caption by Michael Carlowicz, with image interpretation from Bill Patzert (NASA JPL), Jason Samenow

(The Washington Post) and Linus Magnusson (European Centre for Medium-Range Weather Forecasting).

Instrument(s):

Terra - MODIS

Page 75: Mensajero Estelar No. 72 Octubre

Deflexión de la luz por el Sol.

Carlos Gil, ACA Las teorías de la deflexión de la luz por un cuerpo masivo, provienen desde mediado del siglo XVII, cuando el

reverendo John Michell, un clérigo inglés y filósofo natural, razono de que si el sol fuera lo suficiente masivo, la luz no

podría escapar de su superficie.

El pionero de la descripción matemática de la gravedad, Sir Isaac Newton, aparentemente no escribió nada

acerca de los efectos que un cuerpo masivo tendrían sobre la luz, pero existe una nota en su tratado de óptica publicado

en 1.704, sobre las partículas de luz, las cuales podrían ser afectadas por la gravedad, de la misma manera que ocurre con

la materia ordinaria.

El primer cálculo sobre la deflexión de la luz por un cuerpo masivo fue publicado por el astrónomo alemán

Johann Georg von Soldner en 1.801. Soldner demostró que los rayos de luz de una estrella ubicada a una distancia similar

a la del sol, podrían reflectar la luz por un ángulo de acerca 0.90 segundos de arcos, o un cuarto de milésima de un grado.

Este ángulo corresponde a un diámetro aparente de un disco compacto (CD) visto desde una distancia de cerca 30

kilómetros (aproximadamente20 millas)

Los cálculos de Soldner fueron basados en las leyes del movimiento y gravitación de Newton, asumiendo que la

luz estaba constituida por partículas que movían rápidamente. Como sabemos, ni Soldener o astrónomos posteriores

intentaron verificar esta predicción, por una buena razón, realizar este experimento estaba más allá de la capacidad de los

instrumentos astronómicos en los inicios del siglo XIX.

Deflexión de la luz en teoría general de la relatividad

Un siglo después, en los inicios del siglo XX, Einstein desarrolla su teoría general de la relatividad. Einstein

calculo que la deflexión estimada por su teoría seria dos veces el valor establecido por la teoría de Newton.

Figura No. 1

La figuraNo.1, muestra la deflexión de los rayos de luz que pasan cerca de una masa esférica. Para hacer visible

este efecto, esta masa fue calculada haciéndola igual a la del sol, pero teniendo un diámetro, cincuenta mil millones de

vece menor.

De acuerdo a la teoría general de la relatividad, un rayo de luz aproximándose a un cuerpo masivo, tal como el

sol, desde su origen. Su trayectoria es deflectada tal como se observa en la figura No. 2. El valor del ángulo deflectado,

es inversamente proporcional a la distancia (Ro), del centro de masa.

Figura No. 2

Page 76: Mensajero Estelar No. 72 Octubre

La teoría general de la relatividad ofrece la siguiente ecuación general para la trayectoria de un rayo de luz,

afectado por la presencia de un cuerpo masivo tal como el sol

Las raíces de esta ecuación de segundo grado, ubican los valores del ángulo Ø1, en el segundo y tercer cuadrante

como se observa en la figura No.2 y cuyos valores son(

)y

), correspondiendo un valor total del ángulo de

deflexión de:

Cuando G, M y C toman los valores de: - , δtoma el valor de: δ = [radianes] = 1,77 [segundos de arco]

La comprobación observacional de este valor, se realizó en la expedición efectuada en 1.919, organizada y

conducida por Eddigton, al visitar las islas Prince, ubicadas cerca del África, para presenciar y fotografiar un eclipse

total de sol, así como también tomar medidas de las estrellas alrededor del sol durante el eclipse, al respecto de este

resultado existe la siguiente anécdota:

Eddigton le comento a Einstein los resultados obtenidos sobre esta medición, y este simplemente dijo “– Lo sé,

la teoría es correcta - “. ¿Y si no se hubiese deflectado? Einstein: le respondió a Eddington, “Pues lo hubiera sentido por

el buen Dios. La teoría es correcta”.

Tres años antes de esta expedición, en

una carta dirigida a ArnoldSommerfeld,

Einstein escribía: “Usted se convencerá de la

Relatividad General una vez la haya estudiado.

Por consiguiente, no voy a decir una palabra

en su defensa”.

Figura No. 3

La figura No 3, muestra fotografía

tomada con el telescopio Kepler, de un sistema

binario, en el que se puede apreciar

perfectamente como la luz se curva a causa de

la gravedad.

Bibliografía.-

Mathematical Physics by Donald H.

Menzel.- Dover Publications, Inc. New York –

1.961

Introduction to Relativity by H. A.

Atwater – Pergamon Press, Oxford -1.974

A short course in General Relativity – J

Foster and J. D. Nightingale – Springer - New

York – 1.994. Nota del autor.-La fotografía

mostrada como la figura No. 3, ha sido

tomadadel artículo “La expedición de

Eddigthon, Einstein tenía razón” -

www.medciencia.com

Page 77: Mensajero Estelar No. 72 Octubre

Born between November 29 and December 18? Here’s

your constellation

Born somewhere between November 29 and

December 18? If so, chances are the sun passes in front of the

constellation Ophiuchus the Serpent Bearer on your birthday.

Now I can almost hear someone saying:

Wait a minute! There’s no Ophiuchus on the

horoscope page.

You are absolutely correct. That’s because Ophiuchus

is a constellation – not a sign – of the Zodiac. Follow the links

below to learn more about astrological signs versus

astronomical constellations, when and where to locate

Ophiuchus, some deep-sky treasures it contains, its mythology,

its science and more.

On a dark, moonless night, look for Ophichus above the bright ruddy star Antares. Image via Till Grednar.

Astrological signs versus astronomical constellations. The sun is in the sign Sagittarius from November 21 to

December 21. But, in the present-day sky, the sun is in front of the

astronomical constellation Ophiuchus from about November 29 to

December 18. In 2014, the sun enters the constellation Ophiuchus on

November 30 at 7:00 Universal Time (or for the U.S. Central Time

Zone: November 30, at 1:00 a.m. CST). Then the sun enters the

constellation Sagittarius on December 18, 2014, at 13:00 Universal

Time or 7:00 a.m. CST.

Whether you’re speaking about astrological signs or

astronomical constellations, the Zodiac depicts the narrow beltway of

stars on the stellar sphere through which the sun, moon and planets

travel continuously. The Zodiac runs astride the ecliptic – the sun’s

yearly pathway in front of the backdrop stars. The band of the Zodiac

extends some 8o north and south of the ecliptic, spanning a total of 16

o

in width.

The sun is said to enter the sign Sagittarius around November

21, or whenever the sun is precisely 30o west of the December solstice

point. The sun then enters the sign Capricorn on the December 21

solstice. So the sun passes through the sign Sagittarius for the month

period before and up to the December solstice, irrespective of the sun

shining in front of the constellation Ophiuchus from November 29 to

December 18.

By the way, the December solstice point moves one degree

westward in front of the zodiacal constellations – or backdrop stars –

in about 72 years. The December solstice point will finally move

into the constellation Ophiuchus by the year 2269.

When and where to locate Ophiuchus. The best time to

observe Ophiuchus is during a Northern Hemisphere summer or a Southern Hemisphere winter. From the Northern

Hemisphere, late July and early August present this constellation high in the southern sky at nightfall and early evening.

It’s seen in the southwest sky on autumn evenings in the Northern Hemisphere.

This rather large constellation fills the area of sky to the north of the constellation Scorpius the Scorpion and to

the south of the constellation Hercules the Hero. If you’re familiar with Scorpius’ brightest star Antares, try star-hopping

to Ophiuchus from this ruddy gem of a star. The head of Ophiuchus is marked by the star Rasalhague (Alpha Ophiuchi).

Page 78: Mensajero Estelar No. 72 Octubre

Ophiuchus is joined in legend

and in the sky to the constellation of the

Serpent. If you have a dark sky, you

might find this is one constellation that

looks like what it’s supposed to be: a

big guy holding a snake. The name

Ophiuchus comes from two Greek

words meaning serpent and holding.

Can you see the Pipe Nebula a

little to the upper right of center? If not

Ophiuchus the Serpent Bearer.

Deep-sky objects in

Ophiuchus. On a night when the moon

is absent, take your binoculars and use

them to scan Ophiuchus, which lies near

the band of the Milky Way and so has

many deep-sky wonders. Ophiuchus

boasts of numerous globular clusters,

for example. The two easiest globular

clusters to see with ordinary binoculars are M10 and M12, as shown on the above chart. Through binoculars, they look

like faint puffs of light, but with the telescope, you begin to see these globular clusters for what they really are. They are

immense stellar cities spanning a hundred to a few hundred light-years in diameter, teeming with hundreds of thousands

of stars.

Another big deep-sky favorite is the Pipe Nebula, a vast interstellar cloud of gas and dust sweeping across about

7o of sky. At an arm’s length, that’s about the width of three to four fingers. This dark nebula resides at a distance of 600

to 700 light-years in southern Ophiuchus, and can be seen with

the unaided eye in a dark, transparent sky. The Pipe Nebula is

found due east of the star Antares, and due north of the stars

Shaula and Lesath. These two stars (but not the Pipe Nebula) are

shown on the above chart.

The Greek Asclepius or Latin Aesculapius. The

constellation Ophiuchus represents this legendary physician.

Ophiuchus in myth and star lore. In Greek sky lore, Ophiuchus

represents Asclepius – said to have been the first doctor –

always depicted holding a great serpent or snake. Depending on

how it’s used, a snake’s venom can either kill or cure. It’s said

that Asclepius concocted a potion from this snake venom, the

blood of the Gorgon monster and an unknown herb to bring the

dead back to life. This greatly alarmed the gods as it threatened

to undo the natural order of things.

As the good doctor was trying to bring Orion the

Hunter back to life, the god of the Underworld pleaded to Zeus,

the king of the gods, to reconsider the ramifications of the death

of death. Apparently his argument swayed the king of the gods.

Zeus confiscated the potion, removed Asclepius from Earth and

placed the gifted physician into the starry heavens.

We hardly know how the god of the Underworld made his

appeal. Perhaps he said only that which never lives never dies,

and that no mortal can have one without the other. The absence

of death means the absence – not the continuance – of life.

Sophocles may have expressed the myth’s inherent message

when saying:

Better to die, and sleep the never-waking sleep, than linger on and dare to live when the soul’s life is gone.

Possibly, the poet T.S. Eliot reechoed the theme of the ever-living story in his Four Quartets:

Page 79: Mensajero Estelar No. 72 Octubre

We die with the Dying

See they depart and w ego with them

We are born with the dead:

See, they return, and bring us with them.

In any event, the association with Asclepius with snakes is why we sometimes see a staff with a serpent wound around it

at doctor’s offices and hospitals, even today.

The great Johannes Kepler (1571 to 1630). The star known as Kepler’s supernova exploded in 1604, within the

boundaries of the constellation Ophiuchus.

Ophiuchus in history and science. It’s been more than 400 years since anyone has seen a supernova explosion of

a star within our own Milky Way galaxy. But in the year 1604, a supernova known as Kepler’s Supernova exploded onto

the scene, attaining naked-eye visibility for 18 months. It shone in southern Ophiuchus, not all that far from the Pipe

Nebula.

Kepler’s Supernova in 1604 came upon the heels of Tycho’s Supernova that lit up Cassiopeia in 1572. These

supernovae sent shock waves into the intelligentsia of Europe, which firmly believed in the Aristotelian notion of an

immutable universe outside the orbit of the moon. Tycho Brahe took a parallax measurement of the 1572 supernova,

proving that it could not be an atmospheric phenomenon. In fact, the supernova shone well beyond the moon’s orbit.

Shortly thereafter Kepler’s Supernova in 1604 seemed to drive home the point all over again.

Moreover, Tycho Brahe measured the distance of a comet in 1577, also finding it to be farther away than the

moon. Aristotelians wanted to believe comets were gases burning in the atmosphere, but once again, Tycho threw cold

water on the idea of Aristotle’s immutable universe.

What else can we tell you about Ophiuchus? Only that it lies in the direction to Barnard’s Star, which has caused

a gleam in the eye of many an earthly dreamer. This

relatively nearby star – only about six light-years away –

was the center of a controversy about possible planets

during the decade from 1963 to about 1973. Many

astronomers accepted a claim by Peter van de Kamp that

he had detected, by using astrometry, a perturbation in

the proper motion of Barnard’s Star consistent with its

having one or more planets comparable in mass with Jupiter.

Ultimately, that claim was refuted, and to date no planet has

been found for Barnard’s Star – nor are any expected.

Page 80: Mensajero Estelar No. 72 Octubre

Barnard’s Star, located in the

direction to the constellation

Ophiuchus. Our corner of the

universe got a little lonelier

when astronomers determined

in 2012 that that Barnard’s

Star – which is only six light-

years away – has no planets of

Earth’s size or larger in its

habitable zone. Bottom line:

The sun lies within

the boundaries of the

constellation Ophiuchus the

Serpent Bearer for about two

weeks of every year, and thus

Ophiuchus is an informal

member of the Zodiac.

Astrological signs versus

astronomical constellations,

how to locate Ophiuchus,

some deep-sky treasures it

contains, plus charts and more.

Kepler 62e y 62f Planetas Acuosos

"Estos planetas no se

parecen a nada en nuestro sistema

solar. Están cubiertos con océanos

infinitos", dijo Lisa Kaltenegger,

del Instituto de Astronomía Max

Planck, que estudió los planetas.

Se trata de los dos

planetas de la estrella Kepler-62,

que se encuentra a 1200 años luz

de la Tierra, en la constelación

de Lira. Dos de sus cinco planetas,

llamados Kepler-62e y Kepler-62f,

están en la zona habitable de la

estrella, es decir, están a una

distancia de su sol que les permite

mantener la temperatura necesaria

para que exista el agua en estado

Líquido lo que es imprescindible

para la aparición de la vida.

En estos planetas hay

agua y mucha. La vida podría

existir, por tanto, pero no se sabe

si podría existir alguna

civilización.

"La vida en estos planetas debería sobrevivir debajo del agua, lo que hace difícil conseguir los metales,

desarrollar la metalurgia y crear la electricidad requeridos para la existencia de una civilización", señala Kaltnegger.

"Sin embargo, los mundos podrían tener una gran belleza, con un océano azul bajo un sol de color naranja. Y

quién sabe, quizá podría existir vida lo suficientemente inteligente para desarrollar tecnología hasta un nivel que nos

sorprendería", añade Kaltnegger.

Page 81: Mensajero Estelar No. 72 Octubre

Meteorito en Nicaragua? septiembre 7, 2014

Posteado por Julio Vannini en Actualidad Astronómica

Eran las 11:04 pm del Sábado 6 de Septiembre del 2014. Me encontraba procesando unas fotos para mis álbumes

en Flickr cuando de repente las redes sociales en Nicaragua literalmente estallan. Comentarios alarmados tanto en

Facebook como en Twitter de un tremendo sonido semejante a una explosión que se hizo sentir en gran parte de la ciudad

capital, Managua y con repercusiones sísmicas también.

Por espacio de dos horas di seguimiento a las redes sociales en donde todo tipo de especulación salió a flote. No

era de extrañarse ya que un estruendo así de fuerte según los reportes, puso en vilo a casi toda Managua.

Una de las hipótesis que empezó a sonar con fuerza fue que un meteorito había caído sobre Managua. Varios

amigos empezaron a consultarme sobre el tema. Al respecto debo aclarar, que a falta de evidencia solida, cualquier cosas

que se diga no puede ser considerada como algo concreto, hasta que dicha evidencia saliera a la luz. A las consultas

hechas exteriorice mi opinión inicial: un meteorito que hubiese generado semejante estallido debió notarse en el cielo.

Como no había ningún avance en el termino noticioso, decidí dormirme y esperar la postura oficial la cual se

hizo pública después del mediodía de hoy (Domingo 7 de Septiembre). En resumen: se encontró un cráter de 12 metros de

diámetro por unos 5 de profundidad en los terrenos de la Fuerza Aérea de Nicaragua.

El experto de INETER que se presento en la televisión dio a conocer que la versión oficial de los hechos fue la

caída de un meteorito, basado en:

1. El tipo de estallido.

2. Registros en sismógrafos: uno del estallido inicial y otro al momento del impacto.

3. Sus memorias de un evento “similar” ocurrido hace tiempo atrás.

4. El cráter.

Foto tomada del sitio web de periódico Hoy, de

Managua.

Como seguramente habrán notado, el

meteorito resultante de la caída en Peekskill fue

lo suficientemente grande para sobrevivir su

paso ardiente por la atmósfera y caer a tierra sin

necesidad de crear un cráter. La gran mayoría de

rocas que se encuentran de tamaños similares no

han creado cráter alguno y se encuentran

simplemente a flor de suelo. Como habrán

notado también, el paso de esa roca fue bastante,

bastante llamativa. No fue algo de un resplandor sino

un evento que fue rastreable por muchos segundos en

el cielo. En lo personal he presenciado un par de

bólidos que se han quemado sobre la tierra, siendo el

más notable el avistado el 14 de Octubre del 2013

cuando iba rumbo a Granada.

Un recuento en Twitter del avistamiento.

Un cráter de ese tamaño (12 metros de

diámetro y 5.5 metros de profundidad) debió ser

causado por un objeto con suficiente mesa y energía

cinética. Aunque es difícil precisarlo así al aire, uno

puede pensar que el meteorito resultante debe ser

bastante grande. Personalmente mantengo contacto el

Dr. Plait quien por correo me ha sugerido un cuerpo

de al menos un metro de diámetro como el causante

de ese cráter. En otras palabras: pedazo de roca

espacial que se encuentra ahí enterrada!

Pero, realmente es eso lo que ocasiono el

estruendo y el cráter mostrado a los medios?

Antes de continuar quiero dejar bien en claro que lo siguiente es mi opinión personal, basada en los modestos

conocimientos de astronomía que poseo y los estudios realizados sobre cráteres de impacto y comentarios con otros

astrónomos. Soy un astrónomo profesional titulado como tal? No, solo soy un astrónomo amateur que le gusta mucho

investigar y tratar de encontrar la verdad de las cosas por medio de evidencias. No es de mi interés especular sobre qué

Page 82: Mensajero Estelar No. 72 Octubre

fue lo que paso anoche. Lo que planteare son las razones por las cuales no creo que sea un meteorito y porque no me

convence lo anunciado públicamente. Ustedes tienen todo el derecho de llevarme la contraria en esto si así lo desean.

Ok.

1. Un meteoro

lo suficientemente

grande para dejar un

cráter así debió ser

visto por mucho

tiempo en el cielo.

Sábado por la noche

donde miles de

capitalinos se

encuentran afuera de

sus casas y nadie vio

nada salvo un

resplandor a modo de

estallido en la zona de

carretera norte. Pongo

en referencia el video

de Plait. No existe tal

cosa como un

“meteoro sin estela”.

Me atrevo a agregar a esto que no se mostrado video alguno del evento (hasta el momento) que pudiese haber sido

captado por cámaras de seguridad instaladas en Managua.

2. Reporte de resplandor y no de bola de fuego.

3. Según el reporte oficial se registraron dos eventos sísmicos en los sismógrafos de INETER, uno del estallido y

otro del golpe en tierra. Mi pregunta: Como saben que esos registros se deben a eso? Con que otro dato hacen la

correlación? Si no hay video ni registro visual del evento, como saben a ciencia cierta que esos eventos sísmicos

provienen de un meteorito cayendo? Es decir: pudo ser cualquier otra cosa.

4. Si encontraron el cráter. Por qué no han excavado? Un meteorito no es algo peligroso una vez en tierra. Es

algo que se puede tocar inmediatamente. A diferencia de la creencia popular, no necesariamente debe haber indicio de

fuego o cosas quemadas, eso es puro cine. Cuando un meteorito cae, este ha sido frenado tanto por la atmósfera que viene

frió. Eso de estar esperando ayuda internacional para investigar realmente no es necesario. Estamos hablando del Ejercito

Nacional. No costaba nada llegar y excavar para sacar lo que haya estado ahí. Además, tienen expertos en bombas y

personal científico que los atiende y ninguno de ellos pudo saber cómo desenterrar un meteorito? Hasta yo que soy un

amateur sé lo que debo de hacer! Ahí adentro debería de haber una roca bien grande esperando ser rescatada. Dice una

formula muy conocida en el campo de la Física: Fuerza = Masa x Aceleración (F = m.a). Si la aceleración es tal que hace

que la velocidad sea terminal, entonces la masa debe ser muy grande para liberar la Energía (Fuerza de impacto)

suficiente para ese cráter. Además, es terreno blando. ESA PIEDRA DEBE ESTAR AHI!

5. Meteoritos de hielo. De donde sacaron eso? Para saber cuáles son los tipos de meteoritos existentes, les dejo el

siguiente enlace. Wikipedia: Tipos de meteoritos. Yo personalmente poseo algunas muestra pequeñas y he tenido la

oportunidad de estudiar otros más grandes en Boston, Massachussets. Por cierto, cuando traje esas muestras, el personal

de Aduanas me pidió que consiguiera certificación de algún tipo con el MAGFOR para asegurarse que no habría peligro

de contaminación extraterrestre. (Muchos Hombres de Negro o Evolución, por lo visto)

Y bien, estas son las razones por las cuales yo personalmente creo que lo de anoche no fue un meteorito sino otro

evento. ¿Que evento fue ese? No tengo la más mínima idea y como dije, no quiero especular al respecto. Pero si fue otra

cosa, considero como ciudadano Nicaragüense que se nos debe respetar y hablar con la verdad.

Ahora, si en realidad fue un meteorito y se muestra su extracción, análisis y composición, con gusto daré por

cancelada mi postura. Realmente estaría muy contento de que un evento poco probable como ese haya sucedido en

Nicaragua (por la pequeña extensión territorial que poseemos) y sobre todo que no haya causado pérdidas de vidas.

Estaría realmente feliz que se demostrara que estoy equivocado, pero no con palabras, sino con las evidencias

reales de la extracción de ese supuesto meteorito.

Mientras tanto, mis 5 pesos en la bolsa le van a que fue otra cosa.

Y ustedes, que opinan?

Page 83: Mensajero Estelar No. 72 Octubre

Imagen del Busto de Bolívar en el pico Bolívar desde la Hechicera a 15 Kilómetros de distancia con la Técnica de

Lucky Imaging.

Antonio Ballesteros Motín (Centro de Investigaciones de Astronomía, CIDA) Agosto 2014, e-mail : ballesteros @cida.gob.ve

La técnica de Lucky Imaging (L.I.) que se utiliza en astrofotografía, consiste básicamente en tomar muchísimas

imágenes, cientos o mejor miles con tiempos de exposición muy cortos del orden de milisegundos para congelar la

turbulencia atmosférica en algunas tomas dependiendo del seeing del sitio y sumar las mejores imágenes de la serie. Esto

se hace con programas como el AutoStakker y RegiStax. Los profesionales suman desde el uno al cinco por ciento de las

mejores de la serie, porque tienen muchas imágenes que van desde 50.000 o máximo de un millón de cada objeto,

mientras que los aficionados tienen cientos o miles, y suman entre el 10 y el 50 % de las mejores de la serie.

En internet, el término “Lucky Imaging” se usa muy alegremente como, por ejemplo, “Imagen de la nebulosa de

Orión utilizando Lucky Imaging” y cuando uno va a la página donde está la imagen y sus datos uno encuentra lo

siguiente: se sumaron tres imágenes de 42 segundos c/u. Lo que quiere decir que simplemente es una suma de tres

imágenes con un total de 126 segundos de exposición. En otra página conseguimos, El trapecio en Orión con (L.I.):

imagen LRGB L: 300 x 1 seg. R,G,B: 150 x 1 seg. de cada color, que igualmente representa solo la suma de 750

imágenes para un total de 12,5 minutos de exposición.

El poder de L.I. es la selección de las mejores imágenes, porque si uno suma todas las imágenes, las pocas

enfocadas (atmosfera congelada) con las movidas o desenfocadas, que son la mayoría, resulta en una imagen borrosa.

Hagan una prueba con el RegiStax, tomen un video de un detalle de la luna o un planeta y sumen primero todas, después

50% y el 10% de las mejores, y procesen las tres imágenes con los wavelet del RegiStax o PhotoShop (niveles, mascara

de enfoque etc.) y compare las tres imágenes. Noten que los tiempos de exposición deben ser de milisegundos, ya que

tiempos de 42 seg. o de 1 seg. por imagen esto no es L.I.

La imagen que usaremos de referencia la vi en una página de internet, es una sola imagen tomada con una

cámara digital desde el sector de la Hechicera, probablemente hecha con un telescopio de 2.000 milímetros con un barlow

2X. Me pregunté si esto se puede mejorar con la técnica de L.I. considerando varias ventajas: el objeto esta fijo, no

necesito seguimiento con motor y se hace de día, además tengo varios telescopios y cámaras digitales y puedo hacer

pruebas con diferentes equipos. Las desventajas son que el objeto esta en el horizonte donde hay mucha turbulencia, es de

color negro, está a 15 kilómetros de distancia (ver calculo) y es de unos 80 centímetros de altura. Desde la ciudad de

Mérida es solo ocasionalmente temprano en las mañanas que el pico Bolívar (4.978 metros de altura m.s.n.m.) está

despejado y hay mucha nubosidad el resto del día.

Objeto a fotografiar, es la estatua del Libertador Simón Bolívar, en el pico Bolívar, la imagen se vería desde

atrás, vista desde la Hechicera, Mérida. Derecha: Imágenes tomadas de Internet.

Imagen tomada de una página de internet que usaremos de referencia para

compararlas con las nuevas, a la izquierda detalle con ampliación de la misma

imagen.

Page 84: Mensajero Estelar No. 72 Octubre

Los valores dados para la altura sobre el

nivel del mar del pico Bolívar en internet

van desde los 4978 hasta 5,007 metros,

siendo el valor más común el de 4978, de

tal manera que el cálculo nos da

aproximadamente 15 Kilómetros de

distancia al objeto.

Imagen Nº1, es del lugar donde se tomaron las imágenes del artículo, la terraza del CIDA en el sector de la

Hechicera (ver datos de la imagen en la tabla). En una ampliación de la misma imagen, no hay resolución suficiente para

observar el objeto en el pico Bolívar.

Page 85: Mensajero Estelar No. 72 Octubre

Imagen N2º de el

pico Bolívar (ver

datos de la imagen

en la tabla). A la

derecha, en un

detalle ampliado

de la misma

imagen, se nota la

necesidad de

mayor

acercamiento para

obtener mejor

resolución del

objeto.

Imagen Nº3

tomada con un

telescopio, (ver

datos de la imagen

en la tabla). A la

izquierda en

detalle ampliado

de la misma

imagen se observa

una mejora de la

resolución

respecto a la

imagen de

referencia.

Imagen Nº4 fue tomada con un telescopio de 16 pulgadas de diámetro. En el foco primario se colocó una cámara

de video modelo Guppy Pro 503C, a color, de 5 megapixeles, tiempo de exposición de cada cuadro es de 10

milisegundos. Noten que cada cuadro pesa 14 Mb y durante la mayor parte del tiempo del video el sistema guarda los

cuadros en la memoria resultando en un archivo de video de 3,4 Gb. El video es lento de 2.8 FPS para un total de 87

segundos y 243 cuadros, capturado utilizando un programa el FireCapture V2.3. Con RegiStax se sumaron el 30% de los

mejores cuadros y procesado con wavelet. En el momento de la toma, había nubes altas oscureciendo el sitio, pero se nota

Page 86: Mensajero Estelar No. 72 Octubre

una mejora de la resolución. Esta cámara

tiene ROI (región de interés) y se puede

variar la resolución del CMOS, es una

especie de zoom con pérdida de resolución,

pero aumenta la velocidad del video.

La imagen Nº5 es de 1000x1000 pixeles, 10 milisegundos

por cuadro igual que el anterior, pero video más rápido 15 FPS y

un campo menor resultando en un archivo de 2,52 Gb., 904

cuadros, y una duración de 58 segundos. El objeto se ve más

cercano, sin embargo el resultado no fue satisfactorio ya que la

turbulencia se nota mucho más en el video y la imagen resultante

no se percibe mejora. La imagen Nº6, algunos campos con la

cámara Guppy Pro.

Page 87: Mensajero Estelar No. 72 Octubre

La imagen Nº 7 de 800x600 pixeles, se tomo después de varios meses de intentos para lograr el mejor video.

Ese día se tomaron cinco videos y el último fue el mejor de todos, de 11,7 milisegundos por cuadro, duración 116

segundos, 3809 cuadros, 32 FPS y un archivo final de 5,2 Gb. Se utilizó RegiStax V.6 para la suma y el procesado con los

wavelet y ajustes finales con PhotoShop, en este caso, se sumaron solo los mejores 50 cuadros (1,3% del total).

En conclusión, es evidente que la técnica de L.I. funciona, pero la resolución de la imagen depende fuertemente

de las condiciones climáticas del lugar, turbulencia atmosférica, iluminación del objeto, nubosidad, hora del día,

contaminación atmosférica (humo), etc.

Le agradezco a Johnny Cova por su ayuda y paciencia que tuvo durante varios meses que montamos un sin

número de veces el equipo, para lograr el video final.

Distancia Focal Equivalente

Si tenemos una lente de 200 milímetros y le colocamos una

cámara Nikon D700 que tiene el sensor de 35 mm, lo que se llama

comúnmente Full Frame o cámara para lentes Fx y se toma una

imagen cualquiera para calcular el aumento o el campo de la imagen,

se utiliza para el cálculo la focal del lente que es de 200 mm, por que

el factor de multiplicación es de uno pero si la imagen se tomó con

una Nikon D80, que tiene un sensor más pequeño el factor de

multiplicación es 1,5 y el lente tiene una focal equivalente de 300 mm.

Si se coloca una cámara como la Guppy Pro con un sensor mucho más

pequeño, el factor de multiplicación es de 6,08 en la máxima

resolución de la cámara y el lente es de 200 x 6,08 = 1.216 mm. En la

tabla esta el factor de multiplicación para diferentes sensores. La

mayoría de los datos se consiguen en internet.

Un error muy común en los datos de las imágenes de

planetas publicadas en internet que dicen por ejemplo la distancia

focal es de 6 metros con barlow 2x o 9 metros con barlow 3x con un

telescopio de 3 metros de distancia focal pero eso es cierto solo si el

sensor de la cámara es de formato de 35 milímetros que en la mayoría

de los casos no lo es, porque la cámara que utilizaron tiene un sensor de menor tamaño y la distancia focal es mucho

mayor de lo que dicen los datos..

Si coloco la cámara Guppy Pro en un telescopio Meade de 16 pulgadas de diámetro y una focal de 4064

milímetros véase tabla más abajo, calculada por mí, como es una hoja de Excel y es interactiva puedo cambiar la distancia

focal o el tamaño del pixels, si coloco 2800 mm, que es el Celestron 11 pulgadas que tengo en Caracas, los valores

cambian automáticamente en la tabla con una resolución de 800 x 600 pixeles (Véase tabla), con Meade 16 tengo una

distancia equivalente de 80 metros !!! Pero si uso el Celestron 11 me da un distancia focal equivalente de 55 metros,

estas distancias focales parecen grandes pero los aficionados para obtener imágenes de los planetas Marte, Júpiter,

Saturno usan normalmente entre 40 metros o más. Si uno divide el área del sensor de 35 mm (864 mm2) entre el área del

Page 88: Mensajero Estelar No. 72 Octubre

sensor de la Guppy Pro (25 mm2) nos da 36 veces más pequeña el área en la máxima resolución de 2588 x 1940, si utilizo

una resolución de 800 x 600 pixeles el área se reduce a un mas a 372 veces respecto a un sensor de formato de 35 mm.,

full frame (36mm x 24mm).

Referencia: SUMA DE IMÁGENES DIGITALES, partes I y II. El Mensajero Estelar, páginas 20 a la 28, año

37, Nº 68, Octubre-Diciembre 2013.

La desaparición de los géiseres gigantes de una luna de Júpiter desconcierta a los científicos

© NASA Los géiseres gigantes detectados en 2013 por el

Telescopio Espacial Hubble de la NASA en Europa, una de las

lunas de Júpiter, parecen haber desaparecido, algo que ha dejado

desconcertados a los científicos.

Los enormes chorros de vapor de agua se han escondido

de la vista de los observadores de Europa, el más pequeño de los

4 satélites galileanos de Júpiter. Los géiseres detectados por

Hubble en diciembre de 2013 en las imágenes del menor de los

satélites joviales proporcionaban una oportunidad para el

descubrimiento de vida extraterrestre en el Sistema Solar.

Los investigadores sospechaban que el vapor salía de las

grietas que se abrían en el hielo debido a cambios

Provocados por las fuerzas de la Marea, cuando la Luna se alejaba de Júpiter.

De momento, los científicos son incapaces de explicar la desaparición de los géiseres. Las observaciones

posteriores del Hubble llevadas a cabo en enero y febrero de este año no mostraron signos de estas columnas de vapor de

alturas de hasta 200 km.

Según investigadores, los géiseres de Europa pueden ser esporádicos como los volcanes de la Tierra, a diferencia

de los expulsiones de vapor más o menos constantes que tienen lugar en el polo sur de Encélado, una de las lunas de

Saturno que también alberga un océano bajo la superficie.

La NASA busca obtener más datos sobre las expulsiones de agua antes del inicio de la misión espacial que a

mediados de la década de 2020 llevará a cabo la sonda Europa Clipper, que realizará múltiples vuelos sobre la luna helada

de Júpiter.

Page 89: Mensajero Estelar No. 72 Octubre

Lluvia de Estrellas de Las Geminíadas

Por. Jesús H. Otero A. Este 13 de Diciembre ocurrirá la lluvia de estrellas más intensa e interesante del año y podrá verse desde todo el

país.

Las primeras noticias que mencionan esta lluvia de meteoros datan de los años 1860´s. La primera observación

conocida fue realizada por R. P. Greg de Manchester, Inglaterra, en 1862, cuando notó el radiante en la constelación de

Géminis. Casualmente B. V. Marsh and A. C. Twining, de USA, hizo el descubrimiento al mismo tiempo. Entre el 10 y el

12 de Diciembre. Por su parte Herschell las reportó entre Diciembre 12 y 13 de 1863. A partir de aquí empezaron a

hacerse más numerosas y el radiante fue catalogado como un radiante activo.

Normalmente los radiantes están relacionados a las órbitas de los cometas, pero no existe ningún cometa con esta

órbita conocido, en cambio si un asteroide llamado 3200 Phaeton. Las lluvias de estrellas ocurren cuando nuestro planeta

pasa a través del tubo de polvo que va dejando un cometa tras sucesivos pasos, al impactar con las finas partículas de

polvo que han ido siendo arrojadas por el cometa, se produce un fenómeno luminoso que es conocido como meteoro, o

estrella fugaz. Los asteroides no arrojan material, así que lo más probable es que 3200 Phaeton sea un cometa extinto

después de numerosos pasos por el Perihelio. Su período es muy corto, apenas 1.65 años, lo que explica su rápida

extinción

El número de meteoros observados se ha ido incrementando con el paso de los años. Hacia 1900, el radiante

producía unos 20 meteoros por hora, en los años 1950´s unos 65, en los 1980´s la taza horaria era de 85 meteoros por

hora. Pero el incremento sigue. Este año, por características orbitales especiales, se espera que puedan observarse hasta

200 meteoros por hora. Será una lluvia de estrellas fabulosa, con muchos meteoros rápidos, brillantes, y de color azul y

verde.

Se espera que para el 2050 el radiante produzca unos 200 meteoros horarios, pero a partir de aquí irá declinando

poco a poco, hasta desaparecer hacia el año 2100.

Este 13 de Diciembre, si el firmamento se nos presenta despejado, tendremos condiciones ideales para observar

esta hermosa lluvia de estrellas. Habrá Luna a partir de las 11h 30m y chocaremos contra uno de los filamentos más ricos

dejados por el extinto cometa.

Para observarlo hay que mirar después de las 10 pm hacia el Este, punto cardinal hacia donde nace el Sol. Allí

observará 3 estrellas alineadas brillantes y de color azul, este es

el Cinturón de Orión. Estas estrellas están metidas en un

rectángulo de 3 estrellas brillantes y una de brillo medio.

Proyecte una línea desde la estrella más brillante, de color azul

y llamada Rigel, a la segunda estrella más brillante del

rectángulo y de color rojo, Betelgause. Siga esta línea

prolongándola en el cielo, hasta llegar a 2 estrellas con brillo

casi idéntico, ellas son Pollux y Castor, estrellas principales de

Géminis, muy cerca de ellas está el punto de donde parecen

provenir los meteoros. No importa en qué lugar del cielo

aparezca este, si viene de esa dirección pertenece a las

Geminíadas.

Como regalo, a primeras horas de la noche la Tierra

contra un filamento importante del cometa Wirtanen y es muy

posible que se observe una lluvia de Meteoros entre Pegasus y

Piscis que estarán casi sobre nuestra cabeza luego del atardecer.

Esta lluvia de meteoros se estima que produzca entre 40 y 50

meteoros por hora, la Luna no interferirá nada con la

observación.

Esta es la mejor de todas las lluvias de meteoros que

ocurren en el año, pues son meteoros brillantes y se pueden

observar toda la noche.

Miembros de SOVAFA hemos descubierto varios

nuevos radiantes en los últimos años. Ellos son: α Cannis Majoridas A y α Cannis Majoridas B; Colúmbidas-Lepúsidas;

Vélidas; 42 Tauridas; 51 Androménidas y otros tres posibles radiantes aún por confirmar.

Si usted observa esta lluvia de estrellas, cuente cuantos meteoros observa en una hora y por favor envíeme esos

datos a la dirección o teléfono dado.

Si desea aprender ¿cómo observar esta lluvia de estrellas?, puede buscar ¿Cómo observar radiantes meteóricos

en nuestra página web: www.sovafa.com, o www.sovafa.org