method of applied mathpioneer.netserv.chula.ac.th/~ksujin/slide02(ise,317).pdflecture1...

28
Lecture 1 Sujin Khomrutai – 1 / 28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function Sujin Khomrutai, Ph.D.

Upload: others

Post on 03-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Lecture 1 Sujin Khomrutai – 1 / 28

Method of Applied MathLecture 2: Legendre’s Equation and Gamma

function

Sujin Khomrutai, Ph.D.

Page 2: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 2 / 28

Plan

✔ Legendre’s equation.✔ Gamma function✔ Applications

Page 3: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 3 / 28

Definition For a number n, the equation of the form

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

is called the Legendre equation of order n.

• n = 0: (1− x2)y′′ − 2xy′ = 0

• n = 1: (1− x2)y′′ − 2xy′ + 2y = 0

• n = 2: (1− x2)y′′ − 2xy′ + 6y = 0

• n = 3: (1− x2)y′′ − 2xy′ + 12y = 0

In most phenomena, n is a non-negative integer. So we restrict tothat n ∈ {0, 1, 2, . . . , }.

Page 4: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 1: (Electrostatics)

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 4 / 28

Example. A two metallic spherical caps are placed so that theupper part stayed at a constant potential 110 V and the lowerpart is grounded. The electrostatic potential at any point in thespace can be calculated by solving the Legendre’s equation.

Page 5: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 5 / 28

Power series method. a = 0 is an ordinary point. Set solutiony to the Legendre’s equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0,

as

y =∞∑

k=0

bkxk

y′ =∞∑

k=0

bk+1(k + 1)xk

y′′ =∞∑

k=0

bk+2(k + 2)(k + 1)xk.

Page 6: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 6 / 28

The first term

(1− x2)y′′ = y′′ − x2y′′

=∞∑

k=0

bk+2(k + 2)(k + 1)xk −∞∑

k=0

bk+2(k + 2)(k + 1)xk+2

=∞∑

k=0

bk+2(k + 2)(k + 1)xk −∞∑

j=2

bjj(j − 1)xj

= b2 · 2 · 1 + b3 · 3 · 2x

+∞∑

k=2

[bk+2(k + 2)(k + 1)− bkk(k − 1)]xk

where we have use shifting and splitting.

Page 7: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 7 / 28

The second term

2xy′ = 2x∞∑

k=0

bk+1(k + 1)xk

=∞∑

k=0

2bk+1(k + 1)xk+1

=∞∑

k=1

2bkkxk

Third term

n(n+ 1)y = n(n+ 1)∞∑

k=0

bkxk =

∞∑

k=0

n(n+ 1)bkxk

Page 8: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 8 / 28

Thus

b2 · 2 · 1 + b3 · 3 · 2x

+∞∑

k=2

[bk+2(k + 2)(k + 1)− bkk(k − 1)]xk

−∞∑

k=1

2bkkxk +

∞∑

k=0

n(n + 1)bkxk = 0

∴ [2b2 + n(n+ 1)b0] + [6b3 − 2b1 + n(n+ 1)b1]x

+∞∑

k=2

[bk+2(k + 2)(k + 1)− bkk(k − 1)

− 2bkk + n(n+ 1)bk]xk = 0

Page 9: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 9 / 28

Finally, we get

[2b2 + n(n+ 1)b0] + [6b3 + (n− 1)(n+ 2)b1]x

+∞∑

k=2

[(k + 2)(k + 1)bk+2 − (n− k)(n+ k + 1)bk]xk

Apply the fact:∑

k=0 ck(x− a)k = 0 ⇔ ck = 0 for all k:

b2 = −n(n+ 1)

2b0

b3 = −(n− 1)(n+ 2)

6b1

bk+2 = −(n− k)(n+ k + 1)

(k + 2)(k + 1)bk ∀ k = 2, 3, . . . .

Page 10: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 10 / 28

Let us consider the case n = 3. Recurrence equations are

b2 = −3 · 42

b0, b3 = −2 · 53!

b1

bk+2 = −(3− k)(3 + k + 1)

(k + 2)(k + 1)bk ∀ k ≥ 2

k = 2 : b4 = −1 · 64 · 3b2 =

1 · 6 · 3 · 44!

b0

k = 3 : b5 = −0 · 75 · 4b3 = 0

k = 4 : b6 = −(−1) · 86 · 5 b4 = −(−1) · 8 · 1 · 6 · 3 · 4

6!b0

k = 5 : b7 = −(−2) · 97 · 6 b5 = 0

Page 11: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Series solutions of Legendre’s equation

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 11 / 28

So in the case n = 3, we obtain the solution

y = b0

[

1− 3 · 42!

x2 +1 · 6 · 3 · 4

4!x4 + · · ·

]

+ b1

[

x− 2 · 53!

x3

]

This is the general solution with fundamental solutions

y1 = 1− 3 · 42!

x2 +1 · 6 · 3 · 4

4!x4 + · · · an infinite series

y2 = x− 2 · 53!

x3 = −5

3x3 + x a polynomial degree 3

For a general n ∈ {0, 1, 2, . . .}, the Legendre equation has onepolynomial solution of degree n and an infinite series solution.

Page 12: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Legendre functions

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 12 / 28

Theorem. For n ∈ {0, 1, 2, . . .}, the general solutions to theLegendre’s equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

is

y = C1Pn(x) + C2Qn(x)

where Pn is a polynomial of degree n, Qn an infinite series.

• Pn = the Legendre polynomial.

• Qn = the Legendre function of the second kind.

Page 13: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Legendre functions

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 13 / 28

Page 14: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Legendre functions

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 14 / 28

Page 15: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Rodrigues’ formula

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 15 / 28

The Legendre’s equation with n = 0 is

(1− x2)y′′ − 2xy′ = 0.

A polynomial of degree n = 0 is constant. It can be easily checkthat y = 1 is a solution. So we put

P0(x) = 1.

Rodrigues’ formula If n ∈ {1, 2, 3, . . .} then

Pn(x) =1

2nn!

dn

dxn(x2 − 1)n

Page 16: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 2

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 16 / 28

EX. Verify Rodigues’ solution formula for n = 1, 2, 3.

n = 1 : P1(x) =1

2

d

dx(x2 − 1) = x

(1− x2)x′′ − 2x · x′ + 2x = 0

(1− x2) · 0− 2x · 1 + 2x = 0 True

n = 2 : P2(x) =1

22 · 2!d2

dx2(x2 − 1)2

=1

8

d2

dx2(x4 − 2x2 + 1) =

3

2x2 − 1

2

(1− x2)(3

2x2 − 1

2)′′ − 2x(

3

2x2 − 1

2)′ + 6(

3

2x2 − 1

2) = 0

(1− x2) · 3− 2x · 3x+ (9x2 − 3) = 0

(3− 3x2)− 6x2 + (9x2 − 3) = 0 True

Page 17: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 2

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 17 / 28

n = 3 : P3(x) =1

23 · 3!d3

dx3(x2 − 1)3

=1

48

d3

dx3(x6 − 3x4 + 3x2 − 1)

=5

2x3 − 3

2x

(1− x2)(5

2x3 − 3

2x)′′ − 2x(

5

2x3 − 3

2x)′ + 12(

5

2x3 − 3

2x) = 0

(1− x2)(15x)− 2x(15

2x2 − 3

2) + (30x3 − 18x) = 0

(15x− 15x3)− (15x3 − 3x) + (30x3 − 18x) = 0 True

Page 18: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 3

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 18 / 28

EX. Solve the Legendre’s equation

(1− x2)y′′ − 2xy′ + 2y = 0.

Sol. We get a solution P1(x) = x. Use the reduction of order

Q1(x) = P1(x)

1

(P1(x))2e−

∫−2x

1−x2dxdx

= x

1

x2e− ln(1−x2)dx

= x

1

x2(1− x2)dx =

x

2ln

(

1 + x

1− x

)

− 1

∴ y = C1x+ C2

[

x

2ln

(

1 + x

1− x

)

− 1

]

Page 19: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

The Gamma function

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 19 / 28

The factorials n! are

0! = 1! = 1

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6,

...

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1

Observe that∫

0

e−tdt =

0

e−ttdt = 1,

0

e−tt2dt = 2 = 2!,

0

e−tt3dt = 6 = 3!.

Page 20: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

The Gamma function

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 20 / 28

Definition For x > 0, the integral

0

e−ttx−1 dt is called the Gamma function denoted Γ(x).

If x < 0 and x 6∈ {−1,−2, . . .} we put

Γ(x) =Γ(x+ n)

(x+ n− 1)(x+ n− 2) · · · (x+ 1)x

where n ∈ {1, 2, . . .} satisfies x+ n > 0.

Consecutive product formula

Γ(x+ n) = (x+ n− 1)(x+ n− 2) · · · (x+ 1)xΓ(x).

Page 21: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

The Gamma function

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 21 / 28

The graph of Gamma function is as shown below

Page 22: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Properties of Gamma function

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 22 / 28

(1) Γ(1) = 1. For x > 0,

Γ(x+ 1) = xΓ(x)

(2) Generally, for n ∈ {1, 2, . . .} we get

Γ(x+ n) = (x+ n− 1) · · · (x+ 1)xΓ(x).

(3) In particular, if n ∈ {0, 1, 2, . . .} then

Γ(n+ 1) = n!.

Page 23: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Properties of Gamma function

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 23 / 28

Proof. (1) For Γ(1), consider

Γ(1) =

0

e−tt1−1dt =

0

e−tdt

= (−e−t)∣

t=0= 0− (−e0) = 1.

Next, for x > 0 consider

Γ(x+ 1) =

0

e−tt(x+1)−1dt =

0

e−ttxdt

= (−e−ttx)∣

t=0−∫

0

(−e−txtx−1)dt (by parts)

= x

0

e−ttx−1dt = xΓ(x).

Page 24: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Properties of Gamma function

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 24 / 28

(2) For n = 2, we use (1) (x → x+ 1):

Γ(x+ 2) = Γ((x+ 1) + 1) = (x+ 1)Γ(x+ 1),

and then use (1) one more time:

Γ(x+ 1) = xΓ(x).

Thus

Γ(x+ 2) = (x+ 1)xΓ(x)

The argument can be extended to n = 3, n = 4, . . ..

(3) Use x = 1 in (2) and that Γ(1) = 1.

Page 25: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 4

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 25 / 28

EX. Evaluate

Γ(1) + Γ(4),Γ(2.8)

Γ(0.8).

Page 26: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 5

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 26 / 28

EX. Given that Γ(0.5) =√π. Evaluate

Γ(−2.5).

Page 27: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 6

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 27 / 28

EX. Express

1

(ν + 1)(ν + 2)(ν + 3)

as a ratio of the Gamma function.

Page 28: Method of Applied Mathpioneer.netserv.chula.ac.th/~ksujin/Slide02(ISE,317).pdfLecture1 SujinKhomrutai–1/28 Method of Applied Math Lecture 2: Legendre’s Equation and Gamma function

Example 7

Legendre’s eqn

Legendre’s eqn

EX 1.

Series Sol

Legendre func

Rodrigues’ form

EX 2.

EX 3.

Gamma function

Properties

EX 4.

EX 5.

EX 6.

EX 7.

Lecture 1 Sujin Khomrutai – 28 / 28

EX. Evaluate the integral

0

t1.35e−tdt.

Express the value in terms of the Gamma function.