mining impacts and wetlands_crandon_experience

32
Determining Indirect Impacts to Wetland Plant Communities resulting from Mine-induced changes to Groundwater Hydrology The Crandon Mine Experience Jim Arndt, Ph.D., Westwood Professional Services John Almendinger, Ph.D., Mn Dept. Natural Resources History: 7 years Scoping, 20 years data collection Exxon, Crandon Mining Company, Nicollet Minerals COE Lead Agency, EPA, WiDNR, Tribes, Public Interveners

Upload: jlarndt51

Post on 19-Jun-2015

192 views

Category:

Documents


1 download

DESCRIPTION

Preseted at the 2010 TESNAR COnference.

TRANSCRIPT

Page 1: Mining Impacts and Wetlands_Crandon_Experience

Determining Indirect Impacts to Wetland Plant Communities resulting from Mine-induced changes to

Groundwater Hydrology

The Crandon Mine Experience

Jim Arndt, Ph.D., Westwood Professional Services

John Almendinger, Ph.D., Mn Dept. Natural Resources

History: 7 years Scoping, 20 years data collectionExxon, Crandon Mining Company, Nicollet Minerals

COE Lead Agency, EPA, WiDNR, Tribes, Public Interveners

Page 2: Mining Impacts and Wetlands_Crandon_Experience

• Promote informed federal agency decision-making by ensuring that detailed information concerning significant environmental impacts is available to both agency leaders and the public.

• An EIS is the most detailed NEPA instrument that is reserved for projects that have a substantial potential for adverse environmental impact.

• Lead and reviewing agencies identify and evaluate the likelihood and magnitude of significant impacts.

• If potential impacts cannot be identified or their magnitude determined, informed decisions regarding the nature of the impacts, and the potential for avoidance, minimization, and mitigation cannot be made

National Environmental Policy Act

Page 3: Mining Impacts and Wetlands_Crandon_Experience

Mine FacilitiesMine Infrastructure

• Facilities (119 acres)• Access Roads• Power Transmission• Pipelines• Tailings Management

Area (292 acres)• Soil Absorption System

(SAS)• Surface Water

Supplementation• Rail lines

Proposed Action: 3 years construction, 28 years mining, 4 year reclamation

Page 4: Mining Impacts and Wetlands_Crandon_Experience

Wetland Resources Analysis Plan: Issues

• Direct and indirect impacts on wetland hydrology, plants, soils, and functions

• Direct fill impacts• Indirect impacts on wetlands and

wetland plant communities from mine de-watering, supplementation well(s), and SAS operation, reclamation and recovery of watertables.

Page 5: Mining Impacts and Wetlands_Crandon_Experience

Significance Criteria (Easy):

Hydrology, Vegetation, Soils

•• Wetland hydrology is removed (WT not > 12 inches for Wetland hydrology is removed (WT not > 12 inches for greater than 5% of the growing season.greater than 5% of the growing season.

• Wetland vegetation removed. Hydrophytes less than 50 percent (aerial coverage) using vegetation assessments stipulated in the 1987 Wetlands Delineation Manual.

•• Wetland soils removed. Wetland soils removed. Would no longer have the Would no longer have the moisture regime required of hydric soilsmoisture regime required of hydric soils

Result in change in wetland jurisdictional status

Page 6: Mining Impacts and Wetlands_Crandon_Experience

Significance Criteria (Hard): Wetland

Functions• Percentage reduction or increase in raw

scores of functional assessments performed on wetlands that could be affected by the project

• Percentage to be determined from distribution of wetland functions in individual wetlands and throughout the impact area of influence

Indirect impact, losses and gains in functions

Page 7: Mining Impacts and Wetlands_Crandon_Experience

Impact Area of Influence

•• Most conservative estimate of Most conservative estimate of 0.250.25--foot contour of estimated foot contour of estimated steady state water table steady state water table drawdown with mine dedrawdown with mine de--watering and supplementation watering and supplementation well using USACE modelwell using USACE model

•• Most conservative estimate of Most conservative estimate of 0.250.25--foot contour of estimated foot contour of estimated steady state water table rise in steady state water table rise in the SAS area using USACE the SAS area using USACE modelmodel

Page 8: Mining Impacts and Wetlands_Crandon_Experience

Methodology: Define Baseline Conditions

• Existing wetland delineations, wetland hydrogeologic settings, and wetland function assessments

• Baseline conditions assumed to represent No Action conditions

• Baseline data entered into a database for GIS analysis

Page 9: Mining Impacts and Wetlands_Crandon_Experience

Impacts on Wetland Plant CommunitiesBaseline Plant Community Data

• 46 detailed semi-quantitative samples (PEC)

• 9 Detailed Species Lists (Foth & Van Dyke)

• 15 quantitative transects (Normandeau)

• 158 Functions Assessments (Normandeau)

• ~ 20 wetland delineations

• ~100 photo-interpretations to class

Page 10: Mining Impacts and Wetlands_Crandon_Experience

Site Characteristics

• Sub-glacially molded till

• Lots of outwash, complex stratigraphy

• Underlying sandy unit (layer 2) of concern

• Wetland at varying elevations

• Wetlands of varying characteristics

• Three recharge types with respect to interactions with layer 2

• Five condition classes with respect to inlets and outlets, surface water interactions.

Page 11: Mining Impacts and Wetlands_Crandon_Experience

PEC Functions Database (Demo, Output)

Page 12: Mining Impacts and Wetlands_Crandon_Experience

Hydrology– Determine impacts of groundwater drawdown and

mounding on wetland hydrology– Compare baseline hydrologic regimes to steady state

cone of depression or groundwater mound from USACE groundwater model (controversial)

• Impact assessment performed in a GIS

Page 13: Mining Impacts and Wetlands_Crandon_Experience

Groundwater Drawdown Modeling (per EarthTec)

Page 14: Mining Impacts and Wetlands_Crandon_Experience

Step 1: Assignment of Wetlands to NPC Classes: Reclassification

• Compare existing plant communities to those adapted to conditions under the Proposed Action

• Existing plant data from ecological plot studies in Minnesota and Wisconsin were used to rank native plant species and the Crandon wetlands by affinity for specific hydrologic regimes

Ordination Example

Page 15: Mining Impacts and Wetlands_Crandon_Experience

Minnesota Native Plant Classification SystemWFn53a

WFn53aClass Code

Ecological System – Wet ForestFloristic region – Northern

Moisture (0 driest – 9 wettest) Nutrients (0 poorest-9 richest)Type (a driest/poorest in class)

WFn53a Northern Wet Cedar Forest

– Other Similar Classes• FPn63 – Northern Cedar Swamp, wetter, peat

dominated, different understory plants.• WFn64 – Very Wet Ash Swamp, more ash, wetter,

richer.

Page 16: Mining Impacts and Wetlands_Crandon_Experience

Portion of Class Description

Page 17: Mining Impacts and Wetlands_Crandon_Experience

Fieldwork: Crandon Wetlands to Mn NPC Classes

Page 18: Mining Impacts and Wetlands_Crandon_Experience

PEC Project Field Database (Demo, Output)

Page 19: Mining Impacts and Wetlands_Crandon_Experience

Air Photo Interpretation and Field Verification Used to Place Crandon Wetlands In Minnesota’s

NPC Classification

Page 20: Mining Impacts and Wetlands_Crandon_Experience

Step 2: Ordination (DCA Decorana)– Non-metric, multi-dimensional ecological statistics. Similar samples

are near each other and dissimilar objects are farther from each other. – These relationships are then characterized numerically and/or

graphically.

– John Almendinger (MnDNR) very familiar with DCA ordination and used extensive dataset developed on 1,079 (now over 2000) releve plots in Minnesota to develop classifications on wetlands for which we had detailed Crandon Data

• MnDNR data with functional understanding of how the vegetation relates to water-table, nutrient status, substrate, and hydrology.

• Representative wetlands in the Crandon Mine Project• Data accumulated, plant community numbers/distribution, soils,

hydrology, classification• Placed in a relational database

Page 21: Mining Impacts and Wetlands_Crandon_Experience

MnDNR Data with Wetlands

in Crandon Area

Page 22: Mining Impacts and Wetlands_Crandon_Experience

Ordination FAQshttp://ordination.okstate.edu/

Page 23: Mining Impacts and Wetlands_Crandon_Experience

Step 3: Assessment of Indirect Impacts to Plant Communities

• Estimate new plant community composition assuming the rate of the change agent (e.g., groundwater drawdown) would result in converting one adapted native plant community to another

Page 24: Mining Impacts and Wetlands_Crandon_Experience

Watertable Data for Wetland Classes in the Crandon Area

Page 25: Mining Impacts and Wetlands_Crandon_Experience

Hydrologic Impact Sensitivity Groups• None-to-Slight HSIG. Monitoring or mitigation is not anticipated.

Sufficient habitat variability exists for most plants to persist within a wetland basin subject to falls or rises in WT position and variance. Changes in species’ abundance may occur, but significant loss of species or invasions of weedy species capable of dominating the wetland are unlikely.

• Moderate HISG. Monitoring is recommended, and mitigation would depend upon the monitoring results. Turnover in species (losses and invasions) or changes in physical site properties are likely to cause slow recovery to the community’s initial state. Permanent changes in site properties or the invasion of ecologically dominant plants are possible. Wetlands sensitive to modest changes in mean WT position or altered variance were placed in this category when these modest changes were small compared to the predicted accuracy of the groundwater model.

• Severe HSIG. Mitigation likely required. Class-level, System-level, or irreversible changes in the vegetation are expected, even after restoration of the groundwater regime. Permanent alteration of physical site properties, high turnover in species and invasion of ecologically dominant plants expected. Not applicable to recharge or supplemented wetlands.

Page 26: Mining Impacts and Wetlands_Crandon_Experience

Example: WFn53, Northern Wet Cedar Forest

– Vegetation: Patchy to interrupted canopy (25-75% cover) dominated by white cedar. Black ash may also be abundant. The groundlayer is herb-dominated and very rich, with 50-100% cover in a typical stand.

– Soils: Layer of well-decomposed organic material 25-150 cm deep over mineral soil. Underlying mineral soil can be of almost any texture, but medium and fine textures are common.

– Hydrology: wet throughout most of the growing season, but dry sufficiently often to prevent further accumulation of peat. Frequently in areas of groundwater discharge evident as seepage areas, spring runs, or cold-water streams. (Mean WL 2.2 feet +/- 2.4 feet)

Page 27: Mining Impacts and Wetlands_Crandon_Experience

Example: WFn53, Northern Wet Cedar ForestSensitivity to Groundwater Drawdown

• None-to-Slight HSIG; < 2.0 foot drawdown; remains in WFn53– Class has sufficient habitat variability for most plants to persist within

a wetland basin subject to falls in WT position under 56cm (~2 feet).

• Moderate HISG; 2-4 foot drawdown, conversion to Northern Wet Ash Swamp (WFn55)– WFn55 has similar variance in WT compared to Northern Very Wet

Cedar Forest but the mean WT position is significantly deeper.

• Severe HSIG; > 4 foot drawdown, conversion to Wet-MesicHardwood Forest– The mean WT position at top of gray (gleyed) horizons at about

150cm with bright iron-rich mottles, which indicate soil aeration, were used to estimate the variance in WT position as about 130cm. This would be sufficient to convert most very wet cedar forests to a community that is essentially terrestrial.

Page 28: Mining Impacts and Wetlands_Crandon_Experience

Demonstration: Appendix B

Page 29: Mining Impacts and Wetlands_Crandon_Experience

Step 4: Summarize Data: Hydrologic Impact

Sensitivity Classes for Discharge Wetlands

Page 30: Mining Impacts and Wetlands_Crandon_Experience

Hydrologic Impact Sensitivity Classes for

Recharge Type 3 Wetlands

Page 31: Mining Impacts and Wetlands_Crandon_Experience

Hydrologic Impact Sensitivity Classes for

Soil Absorption System Wetlands

(Groundwater Rise)

Page 32: Mining Impacts and Wetlands_Crandon_Experience

Suggestions, Issues

• Groundwater hydrology: variability, scale, accuracy

• Function and value assessments: limited categories, resolution, not available for all wetlands– Use accepted model, incorporate recent literature, new

data, airphoto interpretation, interpolation• Plant community assessments: Need for

quantitative data– Detailed assessment of representative wetlands– Monitoring plots