missile impact 1

6
7/29/2019 Missile Impact 1 http://slidepdf.com/reader/full/missile-impact-1 1/6 Nuclear Engineering and Design 64 (1981) 33-38 North-Holland Publishing Company DEVELOPMENT OF NON-LINEAR FLOOR RESPONSE SPECTRA G. VITI, M. OLIVIERI and S. TRAVI AMN S.p.A. 1-16121 Genova, Italy Received 3 April 1980 A computational scheme for the development of non-linear floor response spectra is presented. Results in the case of an assumed missile impact on a reactor building are shown. Expected reductions, with respect to the linear case, for seismic or missile impact excitations are discussed. I. Introduction Inelastic response spectra, obtained with an ideal elastoplastic single degree of freedom model, have been discussed in the past by some authors: Newmark presented applications to the development of seismic inelastic design response spectra [1] and considerations for inelastic equipment behaviour under seismic excitations [21. Danisch and Graubner [3] examined the ap- plication of inelastic spectra to the design of reinforced concrete structures submitted to in- duced vibrations of aircraft impact or gas cloud explosion and Kamil et al. [4] stressed the im- portance of inelastic spectra for verification of ductile components under pulsive loading. Basically Newmark showed that, in the low frequency range of the design seismic response spectra (typically below 3 Hz), the accelerations of the inelastic case are reduced almost directly by the assumed ductility factor/z; for the in- termediate range of frequencies (typically be- tween 3 and 8 Hz) the reduction factor is ap- proximately given by V~ - 1; in the relatively high frequency range (higher than 8 Hz) prac- tically no reduction occurs. Other mentioned authors evidence that the higher frequency con- tent of excitations other than the seismic one, causes significant reductions of the inelastic spectra, even for frequencies up to 30 Hz. Furthermore they point out that building response to shock type excitations, at some dis- tance from the impact region, are characterized by high frequency components and only one (or in any case a very limited number) excursion to peak value, so that they result less damaging than corresponding random vibrations associ- ated with an earthquake. In such cases a very slight amount of inelastic yielding will be sufficient to accommodate the small displacements associated with the high frequency acceleration response. The allowable amount of inelastic yielding for a structural element, a component or its supporting structure is specified by proper duc- tility factors. In this paper the main characteristics of a numerical procedure for the development of non-linear floor response spectra are described and finally the application to the case of an assumed missile impact on the reactor building of a nuclear power plant, now under construc- tion in Italy, is shown. 2. Numerical procedure Inelastic response spectra are obtained con- sidering the single degree of freedom system of fig. 1. The elasto-plastic stiffness of the spring is represented in fig. 2, where Yem is the m aximum elastic displacement, yp the inelastic displace- ment, F'em = Kyem the maximum spring force. 33

Upload: nasrullahk24

Post on 14-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Missile Impact 1

7/29/2019 Missile Impact 1

http://slidepdf.com/reader/full/missile-impact-1 1/6

Nuclear Engineering and D esign 64 (1981) 33-38North-Holland Publishing Com pany

D E V E L O P M E N T O F N O N - L I N E A R F L O O R R E S P O N S E S P E C T R A

G . V I T I , M . O L I V I E R I a n d S. T R A V I

A M N S . p . A . 1 -1 6 12 1 G e n o v a , I ta ly

Received 3 April 1980

A com putational scheme for the d evelopm ent of non-linear floor response spectra is presented. Re sults in the c ase ofan assum ed missile impact on a reactor building are shown. Expected redu ctions, with respect to the linear ca se, forseismic or m issile impa ct excitations are discussed.

I . I n t r o d u c t i o n

I n e l a s t i c r e s p o n s e s p e c t r a , o b t a i n e d w i t h a n

i d e a l e l a s t o p l a s t i c s i n g l e d e g r e e o f f r e e d o m

m o d e l , h a v e b e e n d i s c u s s e d i n t h e p a s t b y s o m e

a u t h o r s: N e w m a r k p r e s e n t e d a p p l i c a t io n s to t he

d e v e l o p m e n t o f s e i s m i c i n e l a s t i c d e s i g n r e s p o n s e

s p e c t r a [ 1 ] a n d c o n s i d e r a t i o n s f o r i n e l a s t i c

e q u i p m e n t b e h a v i o u r u n d e r s e is m i c e x c i ta t io n s

[ 2 1 .D a n i s c h a n d G r a u b n e r [3 ] e x a m i n e d t h e a p -

p l i c a t i o n o f i n e l a s t i c s p e c t r a t o t h e d e s i g n o fr e i n f o r c e d c o n c r e t e s t r u c t u r e s s u b m i t t e d t o i n -

d u c e d v i b r a t i o n s o f a i r c r a f t i m p a c t o r g a s c l o u d

e x p l o s i o n a n d K a m i l e t a l . [ 4 ] s t r e s s e d t h e i m -

p o r t a n c e o f i n e l a s t i c s p e c t r a f o r v e r i f i c a t i o n o f

d u c t i l e c o m p o n e n t s u n d e r p u l s i v e l o a d i n g .

B a s i c a l ly N e w m a r k s h o w e d t h a t , i n t h e l o w

f r e q u e n c y r a n g e o f t h e d e s i g n s e i s m i c r e s p o n s e

s p e c t r a ( t y p ic a l ly b e l o w 3 H z ) , t h e a c c e l e r a t i o n s

o f t h e i n e l as t ic c a s e a r e r e d u c e d a l m o s t d i r e c t ly

b y th e a s s u m e d d u c t i li t y f a c t o r / z ; f o r t h e i n-

t e r m e d i a t e r a n g e o f f r e q u e n c i e s ( t y p i c a ll y b e -t w e e n 3 a n d 8 H z ) t h e r e d u c t i o n f a c t o r i s a p -

p r o x i m a t e l y g i v e n b y V ~ - 1 ; i n t h e r e l a t iv e l y

h i g h f r e q u e n c y r a n g e ( h i g h e r t h a n 8 H z ) p r a c -

t ic a ll y n o r e d u c t i o n o c c u r s . O t h e r m e n t i o n e d

a u t h o r s e v i d e n c e t h a t t h e h i g h e r f r e q u e n c y c o n -

t e n t o f e x c i ta t i o n s o t h e r t h a n t h e s e i s m i c o n e ,

c a u s e s s i g n i f i c a n t r e d u c t i o n s o f t h e i n e l a s t i c

s p e c t r a , e v e n f o r f r e q u e n c i e s u p t o 3 0 H z .

F u r t h e r m o r e t h e y p o i n t o u t t h a t b u i l d i n g

r e s p o n s e t o s h o c k t y p e e x c i t a t i o n s , a t s o m e d i s -

t a n c e f r o m t h e i m p a c t r e g i o n , a r e c h a r a c t e r i z e d

b y hi gh f r e q u e n c y c o m p o n e n t s a n d o n l y o n e ( o r

i n a n y c a s e a v e r y l im i t e d n u m b e r ) e x c u r s i o n t o

p e a k v a l u e , s o t h a t t h e y r e s u l t l e s s d a m a g i n g

t h a n c o r r e s p o n d i n g r a n d o m v i b r a t i o n s a s s o c i -

a t e d w i t h a n e a r t h q u a k e . I n s u c h c a s e s a v e r y

s l i g h t a m o u n t o f i n e l a s t i c y i e l d i n g w i l l b e

s u f f i c i e n t t o a c c o m m o d a t e t h e s m a l l d i s p l a c e m e n t s

a s s o c i a t e d w i t h t h e h i g h f r e q u e n c y a c c e l e r a t i o n

r e s p o n s e .

T h e a l l o w a b l e a m o u n t o f i n e l a s t i c y i e l d i n gf o r a s t r u c t u r a l e l e m e n t , a c o m p o n e n t o r i t s

s u p p o r t i n g s t r u c t u r e i s s p e c i f i e d b y p r o p e r d u c -

t i l i t y f a c t o r s .

I n t h i s p a p e r t h e m a i n c h a r a c t e r i s t i c s o f a

n u m e r i c a l p r o c e d u r e f o r th e d e v e l o p m e n t o f

n o n - l i n e a r f l o o r r e s p o n s e s p e c t r a a r e d e s c r i b e d

a n d f i n a l l y t h e a p p l i c a t i o n t o t h e c a s e o f a n

a s s u m e d m i s s i l e i m p a c t o n t h e r e a c t o r b u i l d i n g

o f a n u c l e a r p o w e r p l a n t , n o w u n d e r c o n s t r u c -

t i o n i n I t a l y , i s s h o w n .

2 . N u m e r i c a l p r o c e d u r e

I n e l a s t i c r e s p o n s e s p e c t r a a r e o b t a i n e d c o n -

s i d e r i n g th e s i n gl e d e g r e e o f f r e e d o m s y s t e m o f

f i g . 1 . T h e e l a s t o - p l a s t i c s t i f f n e s s o f t h e s p r i n g i s

r e p r e s e n t e d i n f ig . 2 , w h e r e Yem i s t h e m a x i m u m

e l a s t i c d i s p l a c e m e n t , y p t h e i n e l a s t i c d i s p l a c e -

m e n t , F 'e m = K ye m t h e m a x i m u m s p r i n g f o r c e .

33

Page 2: Missile Impact 1

7/29/2019 Missile Impact 1

http://slidepdf.com/reader/full/missile-impact-1 2/6

34 G. Vi t i e t a l . / No n - l in ear f loor re sponse spec t ra

. . . . . Y b

F i g . I .

F ~

% ' - - ? " 7,i /

i / / /

F i g . 2 .

T h e e q u a t i o n s o f m o t i o n o f t h e s y s t e m , d e s -

c r i b in g t h e e l a st i c b e h a v i o u r :

y + 2 1 to o y ~ + t o g ( y - yp) = --j;b,

Yp - - Yem <-- Y ~ Yp + Yem

a n d t h e p l a s t i c o n e :

+ 2 1 t o o ~ + Fern = - - Y b ,

~ . ~ , _ > o ,

( 1 )( l a )

( 2 )( 2 a )

w he re t o, , = ( k / M ) ' n , l : ½ ( c 2 / k M ) 1 /2 , IFem[ = F'em

a n d )~, i s t h e v e l o c i t y a t t h e t r a n s i t i o n f r o m t h e

e l a s t i c b e h a v i o u r t o t h e p l a s t i c o n e , a r e i n -

t e g r a t e d a s s u m i n g t h e b a s e a c c e l e r a t i o n j~b t o b e

a p i e c e - w i s e l i n e a r f u n c t i o n o f t i m e t a b u l a t e d a t

e q u a l i n t e r v a l s A . W i t h t h e a b o v e a s s u m p t i o n

t h e d i s p l a c e m e n t i s e x p r e s s e d b y a f u n c t i o n o f

t h e t y p e

y = e - t ~ ( K i s in t o t + K 2 c o s t o t ) + K 3 t + K 4 , (3 )

( e l a s t i c r e s p o n s e ) o r

y = h t e ~' + h 2 t 2 + h 3 t + h 4 , (4 )

( p l as t ic r e s p o n s e ) w h e r e s = l w o , w = t o0 ( l - / 2 ) i n

an d ~r = 21too . E x p r e s s i o n s f o r v e l o c i t y a n d a c -

c e l e r a t i o n a r e d e r i v e d f r o m t h e s e . T h e d i s -

c r e t i s a ti o n i n t e r v a l A is c h o s e n t o b e o n e t e n t h

o f t h e p e r i o d T = 2 7 r/ to , o f t h e s y s t e m a n d t h e

r e s p o n s e i s c o m p u t e d a t t h e e n d o f e a c h i n t e rv a la s s u m i n g a s i n i t i a l c o n d i t i o n s t h o s e c o m p u t e d a t

t h e e n d o f t h e p r e c e d i n g o n e . W h e n t r a n s it i o n

f r o m e l a s t i c ( p l as t i c ) t o p l a s t i c ( e l a s ti c )

b e h a v i o u r i s d e t e c t e d , t h e i n s t a n t o f t r a n s i t i o n i s

e v a l u a t e d b y i te r a t i o n a n d t h e n t h e r e s p o n s e i s

c o m p u t e d a t t h e e n d o f e a c h s u b - i n te r v a l . T h i s

t e c h n i q u e p r o v e d t o b e v e r y a c cu r a t e a n d

s t a b le : n o p r a c t i ca l d i f f e r e n c e s w e r e o b s e r v e d

p e r f o r m i n g c o m p u t a t i o n s i n s i n g l e a n d d o u b l e

p r e c i s i o n a n d r e d u c i n g t h e d i s c r e t i s a t i o n i n t e r v a l

A.

R e s p o n s e s p e c t r a S ( l , w o , I x ) a r e c o m p u t e d a t

d i s c r e t e v a l u e s o f d a m p i n g l, f r e q u e n c y f =

~ o0 /27r a nd duc t i l i t y f a c t o r :

Ix = ym/yem (5 )

w h e r e Y m is t h e m a x i m u m d i s p l a c e m e n t , u t i l iz -

i n g a s b a s i c a l g o r i t h m t h e a b o v e i n t e g r a t i o n

t e c h n i q u e . S i n c e t h e d u c t i l i t y f a c t o r c a n n o t b e

i n s e r t e d d i r e c t l y i n t o t h e e q u a t i o n s o f m o t i o n

(Y m i s k n o w n o n l y a t t h e e n d o f t h e i n t e g r a t i o n )

t h e s e a r e i n t e g r a t e d , f o r e a c h d a m p i n g a n d e a c h

f r e q u e n c y , a t s u i t a b l e v a l u e s o f t h e m a x i m u m

e l a s t i c d i s p l a c e m e n t Y o r e . Y e m 2 . . . . o b t a i n i n g t h e

c o r r e s p o n d i n g v a l u es o f r e s p o n s e S ~ , $ 2 . . . . a n d

d u c t i l i t y f a c t o r I x ~, Ix2 . . . , t h e r e s p o n s e c o r -r e s p o n d i n g t o t h e r e q u e s t e d v a l u e s o f d u c t i l i t y

f a c t o r Ix~ . . . . # , is t h e n c o m p u t e d b y i n t e r -

p o l a ti o n . T h e m a x i m u m e la s ti c d i s p l a c e m e n t

v a l u e s a r e c h o s e n i n s u c h a w a y t h a t t h e

r e q u e s t e d d u c t i li t y f a c t o r s b e s e p a r a t e d b y

c o m p u t e d d u c t i l i t y f a c t o r s a c c o r d i n g t o t h e f o l -

l o w in g p r o c e d u r e .

S t e p 1 . I n t r o d u c e t w o e x t r a - v a l u e s o f d u c ti l it y

fa c t o r : Ix ( )= (1 + I x l ) / 2 , / z n + l = 1 .5 Ix , , fo r bound-

i n g p u r p o s e s .

S t e p 2 . C o m p u t e Y e m ] , S 1 c o r r e s p o n d i n g t o ac o m p l e t e l y e l a s t i c b e h a v i o u r o f t h e s y s t e m a n d

se t ~1 = 1 , Y e m 2 : O , t ~ 2 = + o o .

S t e p 3. C on s id e r ea ch in te rv a l Yemi, Yem,+~ (s ta r t -

i n g w i t h t h e o n e d e f i n e d a b o v e ) i n tu r n a n d i f

m o r e t h a n o n e r e q u e s t e d I x k i s c o m p r i s e d b e -

t w e e n / L a n d / 2 i + ] b r e a k t h e i n t e r v a l c o m p u t i n g

r e s p o n s e a n d d u c t i l i t y f a c t o r c o r r e s p o n d i n g t o

0 . 5 ( Y e m i -4 - Y e m i * l ) "

S t e p 3 i s r e p e a t e d u n t i l s e p a r a t i o n o f d u c t i l i t y

f a c t o r s # , . . . . . Ix n.t h as b e e n o b t a i n e d o r a

m a x i m u m n u m b e r o f i te r a ti o n s h a s b e e n p e r -

f o r m e d .

3 . A p p l i c a t i o n

T h e n u m e r i c a l p r o c e d u r e d e s c r i b e d a b o v e

h a s b e e n a p p l i e d t o t h e c a s e o f a n a s s u m e d

i m p a c t o f a m i s s i l e o f u n s p e c i f i e d o r i g i n o n t h e

i n t eg r a t e d R e a c t o r - A u x i l i a r y - F u e l- B u i l d i n g o f a

Page 3: Missile Impact 1

7/29/2019 Missile Impact 1

http://slidepdf.com/reader/full/missile-impact-1 3/6

G. V i t i e t a l . / N on - l i nea r loo r response spec t ra 35

i F o n s )

/ / /~ t ( m se c )

0 1 5 6 0

Fig . 3 . P r e s c r i b e d d y n a m i c f o r c i n g f u n c t i o n .

BWR M ark I I I nuc lear power p lant , ac tua l ly

under construct ion in I taly .

The dynamic exc i ta t ion , s hown in f ig . 3 , has

been app l ied vert ica l ly on a s mal l cen tra l por-

t ion o f the Sh ie ld Bu i ld ing dome or hor izonta l ly

on a small region at the top of i t s cyl indrical

port ion . A typ ica l ax i s ymmetr ic s he l l model o f

the bu i ld ing , w i th the as s umed impact locat ionsis shown in f ig . 4 .

L inear and non- l inear f loor res pons e s pectra

have been eva luated a t s e lec ted locat ions for

various damping rat ios and duct i l i ty factors .

F igs . 5 -8 s how, for example , ver t ica l s pectra for

2% damping and hor izonta l s pectra for 7%

damping a t the top o f the reactor pres s ure ves -

o.

u~N

O

I

Z OCD

QC

._1

r_.)CE

IL lU'3Z

O -

LIJ

X

2 0 .

C O N T .T O P

~ 1 i m p a c t

t / . - ,

t 1 _Fig . 4 . B u i l d i n g a x i s y m m e t r i c s h e l l m o d e l .

R L T O L R Z I O N P S - R R F B U I L D I N GM I S S I L E IM P R C T - V E R T I C R L D I R E C T I O NF LO O R RE S P O NS E S P E CT RRR P V T O P ( O . D E G . )

E Q U IP M E N T O R M P I N G 0 . 0 2 0

f / . 1 . 0 0

.0 0

4 0 . 6 0 .

E Q U I P M E N T F R E Q U E N C Y - C P 5

8 0 . t O 0 .

Fig . 5 .

Page 4: Missile Impact 1

7/29/2019 Missile Impact 1

http://slidepdf.com/reader/full/missile-impact-1 4/6

3 6 G . V i t i e t a l . / N o n - l i n e a r f l o o r r e s p o n s e s p e c t ra

I

I,.--

L ~_ J

U

W

Zo ~.O - ~

X

r o

o

o

O .

o

0

I

IL l.--Ib J , . o(-.-)L,,)

OE

LLI

ZC;) '~"

El.- 0

LtJOCC

X

o

RLTO LRZIO NPS - RRF BUILDINg

MISSILE IMPRCT - VERTICRL DIRECTION

FLOOR RESPONSE SPECTRR

ST EEL C ON T . T OP { O . D E G. )

EQU IPMEN T D R MPIN G 0 .020

1 . 0 0

2 0 , 4 0 , 6 0 . O 0 ,

EQUIPMENT FREQUENCY - CPS

Fig 6.

I 0 0

R L T O L R Z I O N P S - R R F B U I L D I N g

M I S S I L E I M P R C T - H O R I Z O N T R L D I R E C T I O N

F L O O R R E S P O N S E S P E C T R R

R P V T O P ( O , D E G . )

E Q U I P M E N T D R M P I N O 0 ,0 9 0

j ¢ / ! . 0 0

)O ° 2 0 , 4 0 . 6 0 •

EQUIPMENT FREQUENCY - CPS

F i g . 7 .

8 0 , t O 0 .

Page 5: Missile Impact 1

7/29/2019 Missile Impact 1

http://slidepdf.com/reader/full/missile-impact-1 5/6

G . V i t i e t a l . / N o n - l i n e a r f l o o r r e s p o n se s pe ct r a 37

o

c:J

N0

r ~

o

O r)

I

Z

0

n ~

h l

tL J

0( - - )

O :

l, J

O 0

ZC ~

O -

C Oh l

n ~

X

O :r

I • 0 0

R L TO L R Z I O N P S - R R F B U I L D I N G

M I S S I L E IM P RC T - H O R I Z O N T R L D I R E C T I O N

F L O O R R ES P O N S E S P E C T R R

S T E E L C O N T . T O P ( O . D E G . )

E O U I P M E N T O R M P IN G 0 . 0 7 0

t • 5 0

P . 0 0

• 0 0

O • 2 0 . 4 0 • 6 0 •

EQUIPMENT FREQUENCY - CP$

Fig. 8.

8 0 • t O O •

s e l a n d t h e s t e e l c o n t a i n m e n t , f o r d u c t i l i ty f a c -

t o r s o f 1 - 1 , 5 - 2 a n d 3 . T a b l e 1 s u m m a r i z e s

c o r r e s p o n d i n g p e a k r e d u c t i o n c o e f f i c i e n t s w i t hi n c r e a s i n g d u c t i l i t y f a c t o r s .

I n g e n e r a l , f u n d a m e n t a l p e a k s a r e s t ro n g l y

r e d u c e d ; w h e r e a s f o r a n y d u c t i l i t y f a c t o r , v a l u e s

a t v e r y h i g h f r e q u e n c i e s t e n d t o t h e l in e a r

s t r u c t u r a l r e s p o n s e . W i t h d u c t i l i t y f a c t o r s l a r g e r

t h a n t h r e e a n y d y n a m i c a m p l i f i c a t i o n , w i t h r e s -

p e c t t o t h e l i n e a r s tr u c t u r a l r e s p o n s e , i s p r a c -

t i c a l l y e l i m i n a t e d • F u n d a m e n t a l p e a k s o f

h o r i z o n t a l s p e c t r a o c c u r a t r e l a t i v e l y l o w

f r e q u e n c i e s ( l es s t h a n l 0 H z ) a n d a r e a s s o c ia t e d

w i t h b e a m t y p e f le x u r a l m o d e s o f v ib r a t i o n ,

e x c i t e d b y h o r i z o n t a l i m p a c t ; a s a c o n s e q u e n c e ,

p e a k r e d u c t i o n c o e f f i c i e n t s l i s t e d in ta b l e 1 , f o r

a h o r i z o n t a l i m p a c t , a r e r a t h e r c l o s e t o t h o s e

p r e d i c t e d b y N e w m a r k a s a l i n e a r r e d u c t i o n

w i t h t h e d u c t i l i t y f a c t o r • F o r v e r t i c a l s p e c t r a ,

f u n d a m e n t a l p e a k s o c c u r a t h i g h e r f r e q u e n c i e s

( in t h e r a n g e b e t w e e n 2 5 a n d 3 0 H z ) a n d a r e

a s s o c i a t e d w i t h a x i a l b e a m t y p e a n d s h e l l t y p e

v i b r a t i o n m o d e s p e c i f i c a l l y e x c i t e d w i t h a v e r t i -

T a b l e I

Peak reduct ion coef f i c i ent s

Vert i cal impact

D a m p i n g R P V t o p C o n t a i n m e n t t o p

(% of crit.) Du cti l i ty factor

1.5 2 3 1.5 2 3

2% 0.38 0.28 0.18 0.5 0.38 0.23

4% 0.44 0.31 0.22 0.59 0.41 0.26

7% 0.52 0.39 0.29 0.64 0.52 0.33

H o r i z o n t a l i m p a c t

D a m p i n g R P V t o p C o n t a i n m e n t t o p(% of crit.) Du cti l i ty factor

1.5 2 3 1.5 2 3

2% 0.65 0.48 0.40 0.64 0.44 0.35

4% 0.65 0.52 0.43 0.61 0.46 0.38

7% 0.68 0.58 0.47 0.68 0.51 0.42

1//z 0.67 0.50 0.33 0.67 0.50 (I.33

Page 6: Missile Impact 1

7/29/2019 Missile Impact 1

http://slidepdf.com/reader/full/missile-impact-1 6/6

38 G . V i t i e t a l . / N o n - l i n e a r f l o o r r e s p o n s e sp e c t r a

cal central impact; in th is case peak reduction

fac tor s ar e ge n e r a l l y h i gh e r th an th ose p r e d i c te d

for s e i sm i c c on d i t i on s .

[ 2] N . M . N e w m a r k , S M i R T - 4 , p a p e r K 4 / 1.

[ 3] R . D a n i s c h a n d N . G r a u b n e r , S M i R T - 4 , p a p e r K 9 /2 .

[ 4 ] H . K a m i l , N . K r u t z i k , G . K o s t a n d R . S h a r p e , N u c l .

E n g n g . D e s . 4 6 0 9 7 8 ) 1 1 ) 9 - 1 2 1 .

Re fe r e n c e s

[ I ] N . M . N e w m a r k , S M i R T - 3 , p a p e r K 5/ 1 .