modeling polarized radiation for clarreo inter ... · modeling polarized radiation for clarreo...

21
Modeling polarized radiation for CLARREO inter- calibration applications Wenbo Sun, Bruce Wielicki, Constantine Lukashin, and David Young Introduction Polarization fundamentals Correction of measurement errors caused by polarization The polarized radiative transfer model Modeling polarized radiation for clear ocean Modeling polarized radiation for clouds Summary

Upload: trinhtuyen

Post on 26-Jul-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

Modeling polarized radiation for CLARREO inter-calibration applications

Wenbo Sun, Bruce Wielicki, Constantine Lukashin, and David Young

• Introduction

• Polarization fundamentals

• Correction of measurement errors caused by polarization

• The polarized radiative transfer model

• Modeling polarized radiation for clear ocean

• Modeling polarized radiation for clouds

• Summary

Introduction

1. Radiation climatology requires highly accurate radiation data.

2. Instruments whose sensors are not totally depolarized may have

significant errors in measured radiance due to the polarized

incident radiation.

3. Accurate inter-calibration of CLARREO and other instruments

requires the measurement errors due to polarization to be

corrected in advance.

4. Satellite measurements of the polarization of radiation are limited

by incidence and viewing geometries and working wavelengths.

5. To make high-spectral lookup tables of polarization dependence

model (PDM), modeling of the polarization of radiation is needed.

Any arbitrarily polarized incoherent radiation can be represented by

the linear sum of an unpolarized part and a 100% polarized part as

V

U

Q

VUQVUQI

V

U

Q

I 222222

0

0

0

IDOPVUQI pol 222

IDOPVUQIIunpol )1(222

IIDOP polI

VUQ/

222

Q

U)2tan(

Polarization fundamentals

Angle of linear polarization (ALP) physically is

the angle between direction and the linearly

polarized electric field vector. Zero-ALP is

always along the local meridian line. 90-degree-

ALP is ensured at a direction horizontal to the

reflecting surface on the principal plane.

Sensor

e

//e

e

*

////

* EEEEQ

*

////

* EEEEI

*

//

*

// EEEEU

E

Local meridian line

E

IDOPGIDOPGI unpolpolm )1()(

)]1()(/[ DOPGDOPGII unpolpolm

Measured Radiance:

Corrected Radiance:

where )(polG unpolGand

are sensor’s gain factors for linearly polarized radiation and

unpolarized radiation, respectively, which can be measured in lab

using a linearly polarized incidence over the whole concerned

spectrum. The gain factor for unpolarized portion of incidence

can then be derived out as

0

)(1

dGG polunpol

Correction of measurement errors caused

by polarization

1. Adding-Doubling radiative transfer model:This can calculate full Stokes vector (I, Q, U, V). But for CLARREO, I,Q, and U are enough.

2. Atmospheric profiles: Standard Atmosphere now.

3. Spectral gas absorption: Line-by-Line and k-distribution plus ozone cross-section table.

4. Molecular scattering: Rayleigh.

5. Particulate absorption and scattering: Mie for water clouds (Gamma size distribution); FDTD for aerosols (lognormal size distribution with fine and coarse mode);FDTD plus GOM for ice clouds (lognormal or measured size distributions).

6. Surface reflection model: Lambert surface for land now.Cox & Munk + foam for wind-roughened ocean.

The polarized radiative transfer model

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RAZ = 180o

VZA (o)

Re

fle

cta

nce

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ocean Wind:

2.5 m/s

5.0 m/s

7.5 m/s

10.0 m/s

15.0 m/s

VZA (o)

WL = 670 nm

SZA = 30o

RAZ = 0o

Re

fle

cta

nce

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ocean Wind:

2.5 m/s

5.0 m/s

7.5 m/s

10.0 m/s

15.0 m/s

WL = 670 nm

SZA = 30o

RAZ = 0o

DO

P

VZA (o)

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAZ = 180o

DO

P

VZA (o)

Sea-Salt AOT = 0.075

Sensitivity of clear ocean total reflectance and DOP to wind speed

10 20 30 40 50 60

5

10

15

20

25

30

35

Wind = 12.5 m/s

DO

P

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.010 20 30 40 50 60

5

10

15

20

25

30

35

Wind = 7.5 m/s

DO

P

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.010 20 30 40 50 60

5

10

15

20

25

30

35

WL = 670 nm

SZA = 30o

RAZ = 0o

Wind = 2.5 m/s

DO

PRAZ ( x 3

o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60

5

10

15

20

25

30

35

Wind = 2.5 m/s

WL = 670 nm

SZA = 30o

RAZ = 0o

AL

P

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

18010 20 30 40 50 60

5

10

15

20

25

30

35

AL

P

Wind = 7.5 m/s

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

18010 20 30 40 50 60

5

10

15

20

25

30

35

Wind = 12.5 m/s

AL

P

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

180

(Sea-salt AOT = 0.075)

Wind = 2.5 m/s Wind = 7.5 m/s Wind = 12.5 m/s

Sensitivity of clear ocean DOP and ALP to wind

speed

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AOT = 0.00

AOT = 0.075

AOT = 0.075 x 2

WL = 670 nm

SZA = 30o

RAZ = 0o

Wind = 7.5 m/s

DO

P

VZA (o)

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAZ = 180o

DO

P

VZA (o)

Sensitivity of clear ocean DOP and ALP to aerosol

90 80 70 60 50 40 30 20 10 0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

AOT = 0.00

AOT = 0.075

AOT = 0.075 x 2

WL = 670 nm

SZA = 30o

RAZ = 0o

Wind = 7.5 m/s

VZA ( o )

Re

fle

cta

nce

0 10 20 30 40 50 60 70 80 90

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re

fle

cta

nce

RAZ = 180o

VZA ( o )

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SZA = 60o

SZA = 30o

WL = 670 nm

Wind = 7.5 m/s

RAZ = 0o

VZA ( o )

DO

P

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAZ = 180o

DO

P

VZA ( o )

Sensitivity of clear ocean total reflectance and DOP to solar zenith angle

90 80 70 60 50 40 30 20 10 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SZA = 60o

SZA = 30o

WL = 670 nm

Wind = 7.5 m/s

RAZ = 0o

Re

fle

cta

nce

VZA (o)

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RAZ = 180o

VZA (o)

Re

fle

cta

nce

DO

P

SZA = 60o

WL = 670 nm

Wind = 7.5 m/s

AOT = 0.075

X Axis Title

Y A

xis

Title

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sensitivity of clear ocean DOP to solar

zenith angle

SZA = 30o

WL = 670 nm

Wind = 7.5 m/s

AOT = 0.075

DO

P

X Axis Title

Y A

xis

Title

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Radiance in the blue

angle range has ~0

degree of polarization.

These neutral-

polarization VZAs are

suitable for calibrating

polarized sensors such

as the instruments on

PARASOL or Glory.

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAZ = 180o

DO

P

VZA (o)

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

WL = 670 nm

WL = 865 nm

Ocean Wind = 7.5 m/s

SZA = 30o

RAZ = 0o

DO

P

VZA (o)

Sensitivity of clear ocean total reflectance and DOP to wavelength

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

RAZ = 180o

VZA (o)

Re

fle

cta

nce

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

Ocean Wind = 7.5 m/s

SZA = 30o

RAZ = 0o

VZA (o)

WL = 670 nm

WL = 865 nm

Re

fle

cta

nce

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAZ = 180o

DO

P

VZA (o)

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

WL = 670 nm

SZA = 30o

RAZ = 0o

Wind = 7.5 m/s

AOT = 0.075

DO

P

VZA (o)

MLS gas absorption

MLS gas absorption x 20

Atmospheric gas absorption does NOT affect DOP

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

VZA (o)

MLS gas absorption

MLS gas absorption x 20

WL = 670 nm

SZA = 30o

RAZ = 0o

Wind = 7.5 m/s

AOT = 0.075

Re

fle

cta

nce

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

VZA (o)

RAZ = 180o

Re

fle

cta

nce

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180

0.01

0.1

1

10

100

1000

10000

f is the fraction of the scattered

energy adjusted off

Slope of truncation line is determined

by the 2 neighboring points near the

Delta angle limit

P1

1

Scattering Angle (deg)

Delta-adjustment to cloud phase functions is done to avoid too many Legendre terms and streams in the RT calculation.

Other elements of phase matrix are adjusted with conserving their ratio values to the phase function.

0 30 60 90 120 150 180

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Scattering Angle (deg)

-P1

2 / P

11

0 30 60 90 120 150 180

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Scattering Angle (deg)

P2

2 / P

11

0 30 60 90 120 150 180

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Scattering Angle (deg)

P3

3 / P

11

0 30 60 90 120 150 180

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

P4

4 / P

11

Scattering Angle (deg)

0 30 60 90 120 150 180

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

P3

4 / P

11

Scattering Angle (deg)

Delta-adjustment to cloud optical properties

''

sa

ss f )1('

''' / s

Modeling polarized radiation for clouds

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180

0.01

0.1

1

10

100

1000

10000

f = 0.426

Delta-adjusted Phase Function

P1

1

Scattering Angle (deg)

Original Phase Function

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180

0.01

0.1

1

10

100

1000

10000

f = 0.493

Delta-adjusted Normalized Phase Function

P1

1Scattering Angle (deg)

Original Phase Function

Water Cloud Ice Cloud

Delta-adjusted phase functions of water and ice clouds used in this calculation

90 80 70 60 50 40 30 20 10 0

0.2

0.3

0.4

0.5

0.6

0.7

RAZ = 0o

Re

fle

cta

nce

VZA (o)

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

RAZ = 180o

VZA (o)

DO

P

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

RAZ = 0o

WL = 670 nm

Optical Thickness = 2 x 7.07

Optical Thickness = 7.07

DO

P

VZA (o)

Water cloud

Sensitivity of TOA reflectance and DOP to water cloud optical thickness

0 10 20 30 40 50 60 70 80 90

0.2

0.3

0.4

0.5

0.6

0.7

RAZ = 180o

Re

fle

cta

nce

VZA (o)

0 30 60 90

90 60 30 0

0.4

0.5

0.6

0.7

0.8

0.9

Ice Cloud

Water Cloud

SZA = 30 deg

WL = 865 nmTo

tal R

efle

cta

nce

Loeb et al (2005)

CERES SW anisotropic factors in the principal plane

Water Clouds Ice Clouds

Model results have excellent

agreement with CERES data in

total radiance angular anisotropy,

except the ice cloud specular

reflection, since we assume pure

randomly oriented ice crystals

in the model.

Sensitivity of DOP and ALP to water cloud optical thickness

10 20 30 40 50 60

5

10

15

20

25

30

35

WL = 670 nm

SZA = 30o

Water Cloud

OD = 7.07

DO

P

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50 10 20 30 40 50 60

5

10

15

20

25

30

35

DO

P

WL = 670 nm

SZA = 30o

Water Cloud

OD = 2 x 7.07

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

RAZ ( x 3o )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

10 20 30 40 50 60

5

10

15

20

25

30

35

RAZ ( x 3o )

AL

P

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

180

WL = 670 nm

SZA = 30o

Water Cloud

OD = 7.07

10 20 30 40 50 60

5

10

15

20

25

30

35

AL

P

WL = 670 nm

SZA = 30o

Water Cloud

OD = 2 x 7.07

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

180

90 80 70 60 50 40 30 20 10 0

0.2

0.3

0.4

0.5

0.6

Ocean Wind = 7.5 m/s

SZA = 30o

RAZ = 0o

VZA (o)

WL = 670 nm Water cloud OD = 7.07

WL = 865 nm Water cloud OD = 7.16

Re

fle

cta

nce

0 10 20 30 40 50 60 70 80 90

0.2

0.3

0.4

0.5

0.6

RAZ = 180o

VZA (o)

Re

fle

cta

nce

90 80 70 60 50 40 30 20 10 0

0.0

0.1

0.2

0.3

0.4

WL = 670 nm Water cloud OD = 7.07

WL = 865 nm Water cloud OD = 7.16

Ocean Wind = 7.5 m/s

SZA = 30o

RAZ = 0o

DO

P

VZA (o)

0 10 20 30 40 50 60 70 80 90

0.0

0.1

0.2

0.3

0.4

RAZ = 180o

DO

P

VZA (o)

Sensitivity of water cloud total reflectance and DOP to wavelength

10 20 30 40 50 60

5

10

15

20

25

30

35

AL

P

WL = 670 nm

Wind = 7.5 m/s

SZA = 30o

Water Cloud

OD = 7.07

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

18010 20 30 40 50 60

5

10

15

20

25

30

35

AL

P

WL = 865 nm

Wind = 7.5 m/s

SZA = 30o

Water Cloud

OD = 7.16

RAZ ( x 3o )

VZ

A (

1.9

o...8

8.7

o in

Ga

ussia

n Q

ua

dra

ture

)

0

15

30

45

60

75

90

105

120

135

150

165

180

Sensitivity of water cloud ALP to wavelength

Summary

1. The polarized radiative transfer model for CLARREO inter-

calibration applications is developed and runs well.

2. Sensitivity of polarization to wavelength, atmospheric gas

absorption, ocean wind speed, aerosol, cloud optical thickness,

and incidence angle are studied.

3. Further work:

(1) modeling land surface BPDF to replace the current Lambert

land surface model;

(2) studying spectral response of the polarized radiance over both

ocean and land;

(3) calculating aerosol and ice cloud single-scattering properties;

(4) defining CLARREO PDM algorithm and data structure.