modeling trends of the european electricity sector with a focus … · 2021. 1. 18. · - 0 -...

18
Modeling Trends of the European Electricity Sector with a Focus on Nuclear Phase-outs in the UK and France Berlin Conference on Energy and Electricity Econonomics; Berlin, 12. October 2016 Pao-Yu Oei, Clemens Gerbaulet, Christian von Hirschhausen, Mario Kendziorski, Casimir Lorenz Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP) Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Energy, Transport and Environment (EVU)

Upload: others

Post on 03-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • - 0 - February.2016

    Modeling Trends of the European Electricity Sector

    with a Focus on Nuclear Phase-outs in the UK and France

    Berlin Conference on Energy and Electricity Econonomics; Berlin, 12. October 2016

    Pao-Yu Oei, Clemens Gerbaulet, Christian von Hirschhausen, Mario Kendziorski, Casimir Lorenz Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP)

    Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Energy, Transport and Environment (EVU)

  • - 1 - February.2016

    Model application: Dynelmod

    Scope: Europe Objective: System Cost minimization • Capacity Cost and Generation Cost • Investment cost

    • Generation Capacities • Grid Expansion

    Investments: five-year steps (2015), 2020, 2025,

    2030, 2035, 2040, 2045, 2050, plant dispatch: hourly resolution over set of ~350 hours

    Boundary condition examples • Country-sharp power plant portfolio development

    (decommissioning of existing plants) • Electricity demand development per Country • CO2-Budget over time • Market coupling: NTC or Flow-Based

    Source: Gerbaulet and Lorenz (2016)

  • - 2 - February.2016

    Water Biomass Hard coal

    Wind Lignite Diesel

    Fuel Oil Gas

    Nuclear Furnace gas Oil shale

    Synthetic gas

    Power Plants and Networks in Europe

    Source: Schneider, Kuhs (2013)

  • - 3 - February.2016

    Structural Changes in the Future, decommissioning of nuclear power plants in Europe

    Source: Schneider, Kuhs (2013)

  • - 4 - February.2016

    Implemented CO2 emission constraint for Europe aiming at a decarbonization of the electricity sector until 2050

    Source: Energy Roadmap 2050; Impact Assesment SEC (2011) 1565; page 70 ; Scenario: "Diversified supply scenario"; column Power generation/District heating for EU27 countries

    0

    200

    400

    600

    800

    1000

    1200

    1400

    2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

    Mt

    CO

    2

  • - 5 - February.2016

    The European Commission reduced their nuclear projection but still includes new constructions, esp. in France and UK

    12 27 41 21 7 8 1 23 43 14 5 5 0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    2025 2030 2035 2040 2045 2050

    GW

    EC Reference Scenario 2013 EC Reference Scenario 2016Source: EC (2013, 2016).

  • - 6 - February.2016

    „Transition Enérgétique“ à la francaise

    Electricity Sector Other sectors

    Nuclear Renewable energies Demand on

    fossil fuels

    Greenhouse gas

    emissions

    Final energy

    consumption (share of gross electricity consumption)

    50% 40% -30% -40% -75% -50%

    2025

    2030

    2030 2030 2050 2050

    (base 2012) (base 1990) (base 2012)

    The share of nuclear energy accounted for 76% in 2015 France. The Transition Enérgétique lays-out a pathway for the next decade but many things remain uncertain afterwards.

    The following slides examine a “sobriety” scenario developed by Criqui, et al. (2015) assuming a path for 2050 with

    - 0% share of nuclear, - >80% renewables, - -50% energy consumption

    Source: “Loi sur la transition énérgétique” (2015)

  • - 7 - February.2016

    Results of the sobriety scenario for France until 2050 – France remains an electricity exporter despite the nuclear phase-out

    -100

    0

    100

    200

    300

    400

    500

    600

    700

    2015 2020 2030 2040 2050

    TWh

    trade

    Wind

    Sun

    Biomass

    Hydro

    Fossil

    Nuclear

    Soruce: Own modeling based on Criqui, et al. (2015).

  • - 8 - February.2016

    Expected closure of existing nuclear power plants and investments in newbuilds envisaged by the UK energy strategy

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    GW

    existing Capacity planned Capacity

    Source: National Audit Office (2016), PRIS Database, own assumptions.

  • - 9 - February.2016

    Two possible scenarios for a nuclear phase-out in the UK – sector-coupling might lead to increasing import needs in 2050

    Scenario “D-EXP” (decarbonize and expand) depicts an intensive sector coupling and the usage of gas in combination with carbon capture, transport, and sequestration (CCTS).

    Scenario “M-VEC” (multivector transition) is less reliant on electrification, and foresees a growth of electricity consumption only between 2040 and 2050 and a more limited availability of CCTS.

    -100

    -

    100

    200

    300

    400

    500

    600

    700

    2015 2020 2030 2040 2050 2015 2020 2030 2040 2050

    D-EXP M-VEC

    TWh

    Nuclear Coal Gas Gas (CCTS) Hydro

    Biomass Solar Wind Trade other

    Soruce: Own modeling based on Pye, et al. (2015).

  • - 10 - February.2016

    Conclusion: Decarbonization of the European electricity sector is compatible with a reduction of nuclear capacities

    A reduction of nuclear capacities leads to • increased investment in gas, renewables, and storage; • reduced electricity generation by coal to be in line with the European CO2 target; • Shifts in electricity trades between neighbouring countries depending on national strategies.

    -

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    3,500

    4,000

    4,500

    2015 2020 2030 2040 2050

    TWh

    other

    Wind

    Sun

    Biomass

    Hydro

    Gas CCS

    Gas

    Coal

    Lignite

    Nuclear

  • - 11 - February.2016

    Modeling Trends of the European Electricity Sector

    with a Focus on Nuclear Phase-outs in the UK and France

    Berlin Conference on Energy and Electricity Econonomics; Berlin, 12. October 2016

    Pao-Yu Oei, Clemens Gerbaulet, Christian von Hirschhausen, Mario Kendziorski, Casimir Lorenz Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP)

    Deutsches Institut für Wirtschaftsforschung (DIW Berlin), Energy, Transport and Environment (EVU)

  • - 12 - February.2016

    Model application: Dynelmod

    Investments • Conventional power plants • Renewables (PV, Wind Onshore/Offshore, CSP) • Storage (several storage options; e.g. Battery

    storage options, pumped hydro storage) • Grid expansion (increase of NTCs)

    Other Data • Hourly RES feed-in and load for 2012 based on

    ENTSO-E and ECWMF weather data • Increase in full-load hours of renewables over time • Cost data mainly based on Schröder et al. (2013)

    − Investment, Fix, and variable capacity cost

    Calculation over a set of hours • Variation of time-of day • Variation of season • Scaling for feed-in and demand time series

  • - 13 - February.2016

    Flow-based market coupling– Aggregation to a zonal PTDF

    The flow based cross border interaction characteristics are derived from the actual underlying grid structure

    Aggregation line sharp data to a country sharp PTDF

    PTDF Calculation from the actual AC grid

    𝑃𝑃𝑃𝐹𝑙,𝑛𝑛 = �𝐻𝑙,𝑛 ∗ 𝐵𝑛,𝑛𝑛−1 𝑛

    Load on line using PTDF

    𝑃𝑙 = �𝑃𝑃𝑃𝐹𝑙,𝑛 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

    Aggregation to a zonal PTDF with maximum transfer capacities

    𝑃𝑐𝑐,𝑐𝑐𝑐 = �𝑃𝑃𝑃𝐹𝑐𝑐,𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑧𝑐𝑛𝑧𝑙 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

    𝑃𝑐𝑐,𝑐𝑐𝑐𝑚𝑧𝑚 = min𝑖𝑐𝑃𝑖𝑐𝑚𝑧𝑚

    𝑃𝑃𝑃𝐹𝑖𝑐,𝑐𝑐 − 𝑃𝑃𝑃𝐹𝑖𝑐,𝑐𝑐𝑐

    Node-sharp representation of the European high voltage grid Blue: HVDC, red: 380 kV, yellow: 300 kV, green: 220 kV

  • - 14 - February.2016

    Research on nuclear at DIW Berlin and TU Berlin

    DIW Berlin Wochenbericht: • 13-2014: Atomkraft: Auslaufmodell mit

    ungelöster Endlagerfrage • 22-2015: Stromversorgung bleibt sicher –

    Große Herausforderungen und hohe Kosten bei Rückbau und Endlagerung

    • 45-2015: Rückbau und Entsorgung in der deutschen Atomwirtschaft: öffentlich-rechtlicher Atomfonds erforderlich

    • 45-2015: Europäische Klimaschutzziele sind auch ohne Atomkraft erreichbar

    DIW Berlin Data Documentation 2015: Stand und Perspektiven des Rückbaus von Kernkraftwerken in Deutschland ("Rückbau-Monitoring 2015")

    DIW Berlin Round-up: Uranium Power and the Uranium Market are Reserve and Ressource Sufficient (forthcoming)

  • - 15 - February.2016

    France in focus

    Technical lifetime of nuclear power plants is 45-50 years in Base scenario.

    Early exit scenario: Plants decommissioned in 2030 are phased-out already in 2025 (>42 years).

    Shutdown before 2020

    Shutdown before 2025

    Shutdown before 2030

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    2020 2025 2030 2035 2040 2045 2050

    Inst

    alle

    d C

    apac

    ity in

    Fra

    nce

    in G

    W

    Base No new Nuclear EarlyExit

  • - 16 - February.2016

    Assumptions for nuclear decommission in France

    Last active model year

    Plant Capacity (MW) Start Base No new nuclear

    France Early Exit

    Fessenheim 1 880 1977 2015 2015 2015 Fessenheim 2 880 1978 2015 2015 2015 Bugey 2 910 1979 2015 2015 2015 Bugey 3 910 1979 2020 2020 2020 Bugey 4 880 1979 2020 2020 2020 Bugey 5 880 1980 2020 2020 2020 Dampierre 1 890 1980 2020 2020 2020 Gravelines B-1 910 1980 2020 2020 2020 Gravelines B-2 910 1980 2020 2020 2020 Tricastin 1 915 1980 2020 2020 2020 Tricastin 2 915 1980 2020 2020 2020 Blayais 1 910 1981 2025 2025 2020 Dampierre 2 890 1981 2025 2020 Dampierre 3 890 1981 2025 2020 Dampierre 4 890 1981 2025 2020 Gravelines B-3 910 1981 2025 2020 Gravelines B-4 910 1981 2025 2020 Tricastin 3 915 1981 2025 2020 Tricastin 4 915 1981 2025 2020 Blayais 2 910 1983 2025 2020 Blayais 3 910 1983 2025 2020 Blayais 4 910 1983 2025 2020 St. Lauent B-1 915 1983 2030 2020 St. Lauent B-2 915 1983 2030 2020 Chinon B-1 905 1984 2030 2030 Chinon B-2 905 1984 2030 2030 Cruas Meysse 1 915 1984 2030 2030 Cruas Meysse 3 915 1984 2030 2030 Cruas Meysse 2 915 1985 2030 2030 Cruas Meysse 4 915 1985 2030 2030

    Last active model year

    Plant Capacity (MW) Start Base No new nuclear

    France Early Exit

    Gravelines C-5 910 1985 2030 2030 Gravelines C-6 910 1985 2030 2030 Paluel 1 1,330 1985 2030 2030 Paluel 2 1,330 1985 2030 2030 Flamanville 1 1,330 1986 2030 2030 Paluel 3 1,330 1986 2030 2030 Paluel 4 1,330 1986 2030 2030 St. Alban 1 1,335 1986 2030 2030 Cattenom 1 1,300 1987 2030 2030 Chinon B-3 905 1987 2030 2030 Flamanville 2 1,330 1987 2030 2030 St. Alban 2 1,335 1987 2030 2030 Belleville 1 1,310 1988 2035 2035 Cattenom 2 1,300 1988 2035 2035 Chinon B-4 905 1988 2035 2035 Nogent 1 1,310 1988 2035 2035 Belleville 2 1,310 1989 2035 2035 Nogent 2 1,310 1989 2035 2035 Penly 1 1,330 1990 2035 2035 Cattenom 3 1,300 1991 2035 2035 Golfech 1 1,310 1991 2035 2035 Cattenom 4 1,300 1992 2035 2035 Penly 2 1,330 1992 2040 2040 Golfech 2 1,310 1994 2040 2040 Chooz B-1 1,500 1996 2045 2045 Chooz B-2 1,500 1999 2045 2045 Civaux 1 1,495 1999 2045 2045 Civaux 2 1,495 2000 2045 2045

  • - 17 - February.2016

    Nuclear development assumptions for Europe

    0

    20

    40

    60

    80

    100

    120

    140

    160

    2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

    GW

    Base No new nuclear France early exit

    Slide Number 1Model application: DynelmodPower Plants and Networks in EuropeStructural Changes in the Future, decommissioning of nuclear power plants in EuropeImplemented CO2 emission constraint for Europe aiming at a decarbonization of the electricity sector until 2050The European Commission reduced their nuclear projection but still includes new constructions, esp. in France and UK„Transition Enérgétique“ à la francaiseResults of the sobriety scenario for France until 2050 – France remains an electricity exporter despite the nuclear phase-out Expected closure of existing nuclear power plants and investments in newbuilds envisaged by the UK energy strategyTwo possible scenarios for a nuclear phase-out in the UK – �sector-coupling might lead to increasing import needs in 2050Conclusion: Decarbonization of the European electricity sector is compatible with a reduction of nuclear capacitiesSlide Number 12Model application: DynelmodFlow-based market coupling– Aggregation to a zonal PTDF Research on nuclear at DIW Berlin and TU BerlinFrance in focusAssumptions for nuclear decommission in FranceNuclear development assumptions for Europe