moderate deviations for joint source-channel coding … · 2014-07-02 · moderate deviations for...

45
Moderate Deviations for Joint Source-Channel Coding of Systems With Markovian Memory Vincent Y. F. Tan Department of Electrical and Computer Engineering, Department of Mathematics, National University of Singapore Joint work with Shun Watanabe and Masahito Hayashi July 2, 2014 Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 1 / 17

Upload: truongnga

Post on 26-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Moderate Deviations for Joint Source-ChannelCoding of Systems With Markovian Memory

Vincent Y. F. Tan

Department of Electrical and Computer Engineering,Department of Mathematics,

National University of Singapore

Joint work with Shun Watanabe and Masahito Hayashi

July 2, 2014

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 1 / 17

Joint Source Channel Coding

- - - -sk xn yn

f Wn ϕsk

Consider the fundamental limits of JSCC

Consider Markov sources and additive Markov channels as welldiscrete memoryless channels

Bandwidth expansion ratio rn satisfies the moderate deviations,i.e.,

rn =kn

=C(W)

H(PS)− εn

whereεn → 0, and nε2

n →∞.

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 2 / 17

Joint Source Channel Coding

- - - -sk xn yn

f Wn ϕsk

Consider the fundamental limits of JSCC

Consider Markov sources and additive Markov channels as welldiscrete memoryless channels

Bandwidth expansion ratio rn satisfies the moderate deviations,i.e.,

rn =kn

=C(W)

H(PS)− εn

whereεn → 0, and nε2

n →∞.

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 2 / 17

Joint Source Channel Coding

- - - -sk xn yn

f Wn ϕsk

Consider the fundamental limits of JSCC

Consider Markov sources and additive Markov channels as welldiscrete memoryless channels

Bandwidth expansion ratio rn satisfies the moderate deviations,i.e.,

rn =kn

=C(W)

H(PS)− εn

whereεn → 0, and nε2

n →∞.

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 2 / 17

Related work in Joint Source Channel Coding

Error exponents where εn = ε > 0

1 Gallager [Problem 5.16 in book] proposed an exponential upperbound on the probability of error

2 Csiszár (1980) derive bounds on the error exponent which areshown to be tight in some rate regime using the method of types

3 Zhong-Alajaji-Campbell (2006-2007) related the Csiszár approachto the Gallager approach and extended to stationary, ergodicMarkov (SEM) sources and additive SEM channels

Dispersion where εn = a/√

n for some a ∈ R

1 Wang-Ingber-Kochman (2011) derived the dispersion of JSCCusing types

2 Kostina-Verdú (2012) derived non-asymptotic bounds anddispersion of JSCC for more general settings

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 3 / 17

Related work in Joint Source Channel Coding

Error exponents where εn = ε > 0

1 Gallager [Problem 5.16 in book] proposed an exponential upperbound on the probability of error

2 Csiszár (1980) derive bounds on the error exponent which areshown to be tight in some rate regime using the method of types

3 Zhong-Alajaji-Campbell (2006-2007) related the Csiszár approachto the Gallager approach and extended to stationary, ergodicMarkov (SEM) sources and additive SEM channels

Dispersion where εn = a/√

n for some a ∈ R

1 Wang-Ingber-Kochman (2011) derived the dispersion of JSCCusing types

2 Kostina-Verdú (2012) derived non-asymptotic bounds anddispersion of JSCC for more general settings

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 3 / 17

Problem Setup

Finite alphabets X ,Y and S

Source PS = {PSk ∈ P(Sk)}∞k=1

Channel W = {Wn : X n → Yn}∞n=1

Bandwidth expansion ratio rn = k/n

Encoder fk : Sk → X n and decoder ϕn : Yn → Sk

Error probability

e(fk, ϕn) :=∑s∈Sk

PSk (s)Wn(Yn \ ϕ−1n (s) | fk(s)).

Minimum error probability

e(f ∗k , ϕ∗n) = min

fk,ϕne(fk, ϕn).

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 4 / 17

Problem Setup

Finite alphabets X ,Y and S

Source PS = {PSk ∈ P(Sk)}∞k=1

Channel W = {Wn : X n → Yn}∞n=1

Bandwidth expansion ratio rn = k/n

Encoder fk : Sk → X n and decoder ϕn : Yn → Sk

Error probability

e(fk, ϕn) :=∑s∈Sk

PSk (s)Wn(Yn \ ϕ−1n (s) | fk(s)).

Minimum error probability

e(f ∗k , ϕ∗n) = min

fk,ϕne(fk, ϕn).

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 4 / 17

Channel and Source Models

W is a DMC with unique capacity-achieving input distribution so

Wn(y|x) =n∏

i=1

W(yi|xi).

W is a discrete channel with Markov additive noise and alphabetX = Y = {0, 1, . . . , b− 1} s.t.

Yi = Xi ⊕ Zi (mod b)

Noise PZ represents a stationary, ergodic, Markov (SEM) source

PZn(z) = PZ1(z1)n∏

i=2

ΓZ(zi|zi−1)

PS is a SEM source

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 5 / 17

Channel and Source Models

W is a DMC with unique capacity-achieving input distribution so

Wn(y|x) =n∏

i=1

W(yi|xi).

W is a discrete channel with Markov additive noise and alphabetX = Y = {0, 1, . . . , b− 1} s.t.

Yi = Xi ⊕ Zi (mod b)

Noise PZ represents a stationary, ergodic, Markov (SEM) source

PZn(z) = PZ1(z1)n∏

i=2

ΓZ(zi|zi−1)

PS is a SEM source

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 5 / 17

Information Quantities for the SEM Source

Cumulant generating function of any SEM source PS:

φ(ρ; PS) := log∑s,s′

PS,ρ(s′)ΓS(s|s′)1−ρ.

where PS,ρ(s) is the normalized eigenvector corresponding to thePerron-Frobenius eigenvalue of the tilted transition matrixΓS,ρ(s|s′).

For any SEM source PS, the entropy and varentropy are

H(PS) =∑

s′P(s′)

∑s

ΓS(s|s′) log1

ΓS(s|s′), and

V(PS) = φ′′(0; PS).

where P is the stationary distribution of ΓS

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 6 / 17

Information Quantities for the SEM Source

Cumulant generating function of any SEM source PS:

φ(ρ; PS) := log∑s,s′

PS,ρ(s′)ΓS(s|s′)1−ρ.

where PS,ρ(s) is the normalized eigenvector corresponding to thePerron-Frobenius eigenvalue of the tilted transition matrixΓS,ρ(s|s′).

For any SEM source PS, the entropy and varentropy are

H(PS) =∑

s′P(s′)

∑s

ΓS(s|s′) log1

ΓS(s|s′), and

V(PS) = φ′′(0; PS).

where P is the stationary distribution of ΓS

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 6 / 17

Information Quantities for the Channel

For a DMC, the following are the capacity and dispersion

C(W) = maxP

I(P,W), and

V(W) =∑

x

P∗(x) var(

logW(Y|x)

P∗W(Y)

).

For the discrete channel with SEM noise,

C(W) = log b− H(PZ), andV(W) = V(PZ).

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 7 / 17

Information Quantities for the Channel

For a DMC, the following are the capacity and dispersion

C(W) = maxP

I(P,W), and

V(W) =∑

x

P∗(x) var(

logW(Y|x)

P∗W(Y)

).

For the discrete channel with SEM noise,

C(W) = log b− H(PZ), andV(W) = V(PZ).

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 7 / 17

Main Result

We assume that

rn =kn

=C(W)

H(PS)− εn where εn → 0, and nε2

n →∞.

Theorem (Moderate Deviations for JSC Coding)

Let PS be a SEM source and W be a DMC or additive channel withSEM noise. Then

limn→∞

− 1nε2

nlog e(f ∗k , ϕ

∗n) =

12V(W,PS)

where the JSC dispersion is

V(W,PS) :=1

H(PS)2

[V(W) +

C(W)

H(PS)V(PS)

].

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 8 / 17

Main Result

We assume that

rn =kn

=C(W)

H(PS)− εn where εn → 0, and nε2

n →∞.

Theorem (Moderate Deviations for JSC Coding)

Let PS be a SEM source and W be a DMC or additive channel withSEM noise. Then

limn→∞

− 1nε2

nlog e(f ∗k , ϕ

∗n) =

12V(W,PS)

where the JSC dispersion is

V(W,PS) :=1

H(PS)2

[V(W) +

C(W)

H(PS)V(PS)

].

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 8 / 17

A Separation Architecture

- - - -sk m xn

f (s)k f (c)k Wn yn

ϕ(c)k ϕ

(s)k

m sk- -

Consider MD regime for DMS-DMC when we are forced to designa source and channel code separately

Optimum error probability [Csiszár (1980)] satisfies

e(

f (s)k , f (c)k , ϕ(s)n , ϕ

(c)n

)≤ exp

(−n sup

R≥0min

{rnEs

( Rrn

),Ec(R)

})

where Es(·) and Ec(·) are the source and channel reliabilityfunctions resp.

R is the rate of the digital interface m

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 9 / 17

A Separation Architecture

- - - -sk m xn

f (s)k f (c)k Wn yn

ϕ(c)k ϕ

(s)k

m sk- -

Consider MD regime for DMS-DMC when we are forced to designa source and channel code separately

Optimum error probability [Csiszár (1980)] satisfies

e(

f (s)k , f (c)k , ϕ(s)n , ϕ

(c)n

)≤ exp

(−n sup

R≥0min

{rnEs

( Rrn

),Ec(R)

})

where Es(·) and Ec(·) are the source and channel reliabilityfunctions resp.

R is the rate of the digital interface m

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 9 / 17

A Separation Architecture

- - - -sk m xn

f (s)k f (c)k Wn yn

ϕ(c)k ϕ

(s)k

m sk- -

Consider MD regime for DMS-DMC when we are forced to designa source and channel code separately

Optimum error probability [Csiszár (1980)] satisfies

e(

f (s)k , f (c)k , ϕ(s)n , ϕ

(c)n

)≤ exp

(−n sup

R≥0min

{rnEs

( Rrn

),Ec(R)

})

where Es(·) and Ec(·) are the source and channel reliabilityfunctions resp.

R is the rate of the digital interface m

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 9 / 17

Loss Due to Separation

Consider the approximations

Es(H(PS) + ξ) =ξ2

2V(PS)+ O(ξ3), Ec(C(W)− ξ) =

ξ2

2V(W)+ O(ξ3).

Then we can show by optimizing ξ that

lim infn→∞

− 1nε2

nlog e

(f (s)k , f (c)k , ϕ

(s)n , ϕ

(c)n

)≥ 1

2Vsep(W,PS)

where

Vsep(W,PS) = V(W,PS) +2√

C(W)H(PS)

V(W)V(PS)

H(PS)2

Final term is the cost of separation in the MD regime

Compare to Wang-Ingber-Kochman (2011) and Kostina-Verdú(2013) for the dispersion analogue of the loss

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 10 / 17

Loss Due to Separation

Consider the approximations

Es(H(PS) + ξ) =ξ2

2V(PS)+ O(ξ3), Ec(C(W)− ξ) =

ξ2

2V(W)+ O(ξ3).

Then we can show by optimizing ξ that

lim infn→∞

− 1nε2

nlog e

(f (s)k , f (c)k , ϕ

(s)n , ϕ

(c)n

)≥ 1

2Vsep(W,PS)

where

Vsep(W,PS) = V(W,PS) +2√

C(W)H(PS)

V(W)V(PS)

H(PS)2

Final term is the cost of separation in the MD regime

Compare to Wang-Ingber-Kochman (2011) and Kostina-Verdú(2013) for the dispersion analogue of the loss

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 10 / 17

Loss Due to Separation

Consider the approximations

Es(H(PS) + ξ) =ξ2

2V(PS)+ O(ξ3), Ec(C(W)− ξ) =

ξ2

2V(W)+ O(ξ3).

Then we can show by optimizing ξ that

lim infn→∞

− 1nε2

nlog e

(f (s)k , f (c)k , ϕ

(s)n , ϕ

(c)n

)≥ 1

2Vsep(W,PS)

where

Vsep(W,PS) = V(W,PS) +2√

C(W)H(PS)

V(W)V(PS)

H(PS)2

Final term is the cost of separation in the MD regime

Compare to Wang-Ingber-Kochman (2011) and Kostina-Verdú(2013) for the dispersion analogue of the loss

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 10 / 17

Loss Due to Separation

Consider the approximations

Es(H(PS) + ξ) =ξ2

2V(PS)+ O(ξ3), Ec(C(W)− ξ) =

ξ2

2V(W)+ O(ξ3).

Then we can show by optimizing ξ that

lim infn→∞

− 1nε2

nlog e

(f (s)k , f (c)k , ϕ

(s)n , ϕ

(c)n

)≥ 1

2Vsep(W,PS)

where

Vsep(W,PS) = V(W,PS) +2√

C(W)H(PS)

V(W)V(PS)

H(PS)2

Final term is the cost of separation in the MD regime

Compare to Wang-Ingber-Kochman (2011) and Kostina-Verdú(2013) for the dispersion analogue of the loss

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 10 / 17

Achievability Proof for SEM source + DMC

Now we show how to prove

limn→∞

− 1nε2

nlog e(f ∗k , ϕ

∗n) =

12V(W,PS)

where the JSC dispersion is

V(W,PS) :=1

H(PS)2

[V(W) +

C(W)

H(PS)V(PS)

].

By Problem 5.16 in Gallager’s book, exists a (k, n)-JSC code s.t.

e(fk, ϕn) ≤(∑

sk

PSk (sk)1

1+τ

)1+τ∑yn

(∑xn

Pn(xn)Wn(yn|xn)1

1+τ

)1+τ

for any 0 ≤ τ ≤ 1 and P ∈ P(X ).

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 11 / 17

Achievability Proof for SEM source + DMC

Now we show how to prove

limn→∞

− 1nε2

nlog e(f ∗k , ϕ

∗n) =

12V(W,PS)

where the JSC dispersion is

V(W,PS) :=1

H(PS)2

[V(W) +

C(W)

H(PS)V(PS)

].

By Problem 5.16 in Gallager’s book, exists a (k, n)-JSC code s.t.

e(fk, ϕn) ≤(∑

sk

PSk (sk)1

1+τ

)1+τ∑yn

(∑xn

Pn(xn)Wn(yn|xn)1

1+τ

)1+τ

for any 0 ≤ τ ≤ 1 and P ∈ P(X ).

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 11 / 17

Rényi Entropy and Gallager’s function

Using the reparametrization τ = −θ/(1 + θ), we obtain

e(fk, ϕn) ≤ exp(− (k − 1)H1+θ(PS)− δ(θ)

1 + θ

)exp

(− nEo(τ,P,W)

)where δ(θ) = const [bound by Watanabe-Hayashi (2013)]

The Rényi entropy is

H1+θ(PS) := −1θ

∑s,s′

PS,θ(s′)ΓS,θ(s|s′)

Gallager’s channel function

Eo(τ,P,W) := − log∑

x

P(x)(∑

y

W(y|x)1

1+τ

)1+τ

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 12 / 17

Rényi Entropy and Gallager’s function

Using the reparametrization τ = −θ/(1 + θ), we obtain

e(fk, ϕn) ≤ exp(− (k − 1)H1+θ(PS)− δ(θ)

1 + θ

)exp

(− nEo(τ,P,W)

)where δ(θ) = const [bound by Watanabe-Hayashi (2013)]

The Rényi entropy is

H1+θ(PS) := −1θ

∑s,s′

PS,θ(s′)ΓS,θ(s|s′)

Gallager’s channel function

Eo(τ,P,W) := − log∑

x

P(x)(∑

y

W(y|x)1

1+τ

)1+τ

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 12 / 17

Rényi Entropy and Gallager’s function

Using the reparametrization τ = −θ/(1 + θ), we obtain

e(fk, ϕn) ≤ exp(− (k − 1)H1+θ(PS)− δ(θ)

1 + θ

)exp

(− nEo(τ,P,W)

)where δ(θ) = const [bound by Watanabe-Hayashi (2013)]

The Rényi entropy is

H1+θ(PS) := −1θ

∑s,s′

PS,θ(s′)ΓS,θ(s|s′)

Gallager’s channel function

Eo(τ,P,W) := − log∑

x

P(x)(∑

y

W(y|x)1

1+τ

)1+τ

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 12 / 17

Behavior of Rényi entropy and Gallager function

In the neighborhood of θ, τ = 0, we have

θH1+θ(PS) = θH(PS)− θ2

2V(PS) + O(θ3)

Eo(τ,P,W) := τ I(P,W)− τ 2

2V(P,W) + O(τ 3)

Plug these into the Gallager bound and optimize τ

τ =εnH(PS)

V(W) + C(W)H(PS)

V(PS)

to obtain

e(fk, ϕn) ≤ exp(− n[ ε2

n

V(W,PS)+ O(ε3

n)])

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 13 / 17

Behavior of Rényi entropy and Gallager function

In the neighborhood of θ, τ = 0, we have

θH1+θ(PS) = θH(PS)− θ2

2V(PS) + O(θ3)

Eo(τ,P,W) := τ I(P,W)− τ 2

2V(P,W) + O(τ 3)

Plug these into the Gallager bound and optimize τ

τ =εnH(PS)

V(W) + C(W)H(PS)

V(PS)

to obtain

e(fk, ϕn) ≤ exp(− n[ ε2

n

V(W,PS)+ O(ε3

n)])

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 13 / 17

Converse Proof for SEM source + DMC: Source Part

kij(sk): number of transitions from i to j in sk with cyclic convention

[kij(sk)/k]i,j is the Markov type [Davisson et al. (1981), Natarajan(1985)] of sk

Type class T kP ; Set of all Markov types P(2)

k (S); Restricted Markovtype class

T kP (i, j) := {sk ∈ T k

P : s1 = i, sk = j}

P(2)k (S; R) := {(i, j,P) ∈ S2 × P(2)

k (S) : |T kP (i, j) ≤ 2kR}

Lemma (Source coding)

Let P∗e (M,PS) be the smallest error for source PS with size ≤ M. Then

P∗e(|S|(k + 1)|S|

22kR,PSk

)≤

∑(i,j,P)/∈P(2)

k (S;R)T k

P (i,j)6=∅

∑sk∈TP(i,j)

PSk (sk)

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 14 / 17

Converse Proof for SEM source + DMC: Source Part

kij(sk): number of transitions from i to j in sk with cyclic convention

[kij(sk)/k]i,j is the Markov type [Davisson et al. (1981), Natarajan(1985)] of sk

Type class T kP ; Set of all Markov types P(2)

k (S); Restricted Markovtype class

T kP (i, j) := {sk ∈ T k

P : s1 = i, sk = j}

P(2)k (S; R) := {(i, j,P) ∈ S2 × P(2)

k (S) : |T kP (i, j) ≤ 2kR}

Lemma (Source coding)

Let P∗e (M,PS) be the smallest error for source PS with size ≤ M. Then

P∗e(|S|(k + 1)|S|

22kR,PSk

)≤

∑(i,j,P)/∈P(2)

k (S;R)T k

P (i,j)6=∅

∑sk∈TP(i,j)

PSk (sk)

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 14 / 17

Converse Proof for SEM source + DMC: Source Part

kij(sk): number of transitions from i to j in sk with cyclic convention

[kij(sk)/k]i,j is the Markov type [Davisson et al. (1981), Natarajan(1985)] of sk

Type class T kP ; Set of all Markov types P(2)

k (S); Restricted Markovtype class

T kP (i, j) := {sk ∈ T k

P : s1 = i, sk = j}

P(2)k (S; R) := {(i, j,P) ∈ S2 × P(2)

k (S) : |T kP (i, j) ≤ 2kR}

Lemma (Source coding)

Let P∗e (M,PS) be the smallest error for source PS with size ≤ M. Then

P∗e(|S|(k + 1)|S|

22kR,PSk

)≤

∑(i,j,P)/∈P(2)

k (S;R)T k

P (i,j)6=∅

∑sk∈TP(i,j)

PSk (sk)

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 14 / 17

Converse Proof for SEM source + DMC: Source Part

kij(sk): number of transitions from i to j in sk with cyclic convention

[kij(sk)/k]i,j is the Markov type [Davisson et al. (1981), Natarajan(1985)] of sk

Type class T kP ; Set of all Markov types P(2)

k (S); Restricted Markovtype class

T kP (i, j) := {sk ∈ T k

P : s1 = i, sk = j}

P(2)k (S; R) := {(i, j,P) ∈ S2 × P(2)

k (S) : |T kP (i, j) ≤ 2kR}

Lemma (Source coding)

Let P∗e (M,PS) be the smallest error for source PS with size ≤ M. Then

P∗e(|S|(k + 1)|S|

22kR,PSk

)≤

∑(i,j,P)/∈P(2)

k (S;R)T k

P (i,j)6=∅

∑sk∈TP(i,j)

PSk (sk)

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 14 / 17

Converse Proof: Joint Error + Source Error Approx

Let P∗e (M,W) be the smallest error for channel W with M codewords.

Lemma (Source-channel coding)

For any R ≥ 0, we have

e(f ∗k , ϕ∗n) ≥ P∗e

(|S|(k + 1)|S|

22kR,PSk

)· P∗e (2kR,Wn)

First term represents source error; Second term channel error

Lemma (Approximation of source exponent)

Let R = H(PS) + δεn. For small ξ > 0 and n� 1,

− log P∗e(|S|(k + 1)|S|

22kR,PSk

)≤ (δ + ξ)2

2V(PS)kε2

n

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 15 / 17

Converse Proof: Joint Error + Source Error Approx

Let P∗e (M,W) be the smallest error for channel W with M codewords.

Lemma (Source-channel coding)

For any R ≥ 0, we have

e(f ∗k , ϕ∗n) ≥ P∗e

(|S|(k + 1)|S|

22kR,PSk

)· P∗e (2kR,Wn)

First term represents source error; Second term channel error

Lemma (Approximation of source exponent)

Let R = H(PS) + δεn. For small ξ > 0 and n� 1,

− log P∗e(|S|(k + 1)|S|

22kR,PSk

)≤ (δ + ξ)2

2V(PS)kε2

n

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 15 / 17

Converse Proof: Joint Error + Source Error Approx

Let P∗e (M,W) be the smallest error for channel W with M codewords.

Lemma (Source-channel coding)

For any R ≥ 0, we have

e(f ∗k , ϕ∗n) ≥ P∗e

(|S|(k + 1)|S|

22kR,PSk

)· P∗e (2kR,Wn)

First term represents source error; Second term channel error

Lemma (Approximation of source exponent)

Let R = H(PS) + δεn. For small ξ > 0 and n� 1,

− log P∗e(|S|(k + 1)|S|

22kR,PSk

)≤ (δ + ξ)2

2V(PS)kε2

n

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 15 / 17

Converse Proof: Channel Error Approx

By Wolfowitz’s strong converse and Haroutunian’s sphere-packingbound [cf. Altug-Wagner (2014)], we have:

Lemma (Approximation of channel exponent)

For every γ > 0 and ψ <∞, there exists n� 1 s.t.

− log P∗e (M,Wn) ≤ n1− γ

[E( log M

n− ψ√

n

)+

1n

]

In the rest of the proof, we choose

log M = k(H(PS) + δεn

)Plug the approximations of the source and channel exponents intothe source-channel bound

Optimize constant δ and take ξ, γ ↓ 0 and we are done

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 16 / 17

Converse Proof: Channel Error Approx

By Wolfowitz’s strong converse and Haroutunian’s sphere-packingbound [cf. Altug-Wagner (2014)], we have:

Lemma (Approximation of channel exponent)

For every γ > 0 and ψ <∞, there exists n� 1 s.t.

− log P∗e (M,Wn) ≤ n1− γ

[E( log M

n− ψ√

n

)+

1n

]

In the rest of the proof, we choose

log M = k(H(PS) + δεn

)

Plug the approximations of the source and channel exponents intothe source-channel bound

Optimize constant δ and take ξ, γ ↓ 0 and we are done

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 16 / 17

Converse Proof: Channel Error Approx

By Wolfowitz’s strong converse and Haroutunian’s sphere-packingbound [cf. Altug-Wagner (2014)], we have:

Lemma (Approximation of channel exponent)

For every γ > 0 and ψ <∞, there exists n� 1 s.t.

− log P∗e (M,Wn) ≤ n1− γ

[E( log M

n− ψ√

n

)+

1n

]

In the rest of the proof, we choose

log M = k(H(PS) + δεn

)Plug the approximations of the source and channel exponents intothe source-channel bound

Optimize constant δ and take ξ, γ ↓ 0 and we are done

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 16 / 17

Converse Proof: Channel Error Approx

By Wolfowitz’s strong converse and Haroutunian’s sphere-packingbound [cf. Altug-Wagner (2014)], we have:

Lemma (Approximation of channel exponent)

For every γ > 0 and ψ <∞, there exists n� 1 s.t.

− log P∗e (M,Wn) ≤ n1− γ

[E( log M

n− ψ√

n

)+

1n

]

In the rest of the proof, we choose

log M = k(H(PS) + δεn

)Plug the approximations of the source and channel exponents intothe source-channel bound

Optimize constant δ and take ξ, γ ↓ 0 and we are doneVincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 16 / 17

Remarks and Conclusion

Easy to extend analysis to discrete channels with SEM noiseusing ideas from Watanabe-Hayashi (2013)

Considered 2 class partition into P(2)k (S; R) and its complement;

cf. Tauste-Campo et al. (2014), Shkel-Tan-Draper (2014)

Zhong-Alajaji-Campbell (2007) considered a finer partition into(k + 1)|S|

2source type classes, that if used here requires

ε2nn

log n→∞,

a weaker result.

Future work:

CLT regime for Markov JSC

Lossy JSC

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 17 / 17

Remarks and Conclusion

Easy to extend analysis to discrete channels with SEM noiseusing ideas from Watanabe-Hayashi (2013)

Considered 2 class partition into P(2)k (S; R) and its complement;

cf. Tauste-Campo et al. (2014), Shkel-Tan-Draper (2014)

Zhong-Alajaji-Campbell (2007) considered a finer partition into(k + 1)|S|

2source type classes, that if used here requires

ε2nn

log n→∞,

a weaker result.

Future work:

CLT regime for Markov JSC

Lossy JSC

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 17 / 17

Remarks and Conclusion

Easy to extend analysis to discrete channels with SEM noiseusing ideas from Watanabe-Hayashi (2013)

Considered 2 class partition into P(2)k (S; R) and its complement;

cf. Tauste-Campo et al. (2014), Shkel-Tan-Draper (2014)

Zhong-Alajaji-Campbell (2007) considered a finer partition into(k + 1)|S|

2source type classes, that if used here requires

ε2nn

log n→∞,

a weaker result.

Future work:

CLT regime for Markov JSC

Lossy JSC

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 17 / 17

Remarks and Conclusion

Easy to extend analysis to discrete channels with SEM noiseusing ideas from Watanabe-Hayashi (2013)

Considered 2 class partition into P(2)k (S; R) and its complement;

cf. Tauste-Campo et al. (2014), Shkel-Tan-Draper (2014)

Zhong-Alajaji-Campbell (2007) considered a finer partition into(k + 1)|S|

2source type classes, that if used here requires

ε2nn

log n→∞,

a weaker result.

Future work:

CLT regime for Markov JSC

Lossy JSC

Vincent Y. F. Tan (NUS) Moderate Deviations JSCC ISIT 2014 17 / 17