molecular simulation strategies for large scale thermodynamic … · 2017. 2. 6. ·...

32
PROF. DR.-ING. HABIL. JADRAN VRABEC ThET Molecular Simulation Strategies for Large Scale Thermodynamic Data Generation Athens, 2. Sept. 2011 Gábor Rutkai Rolf Lustig Jadran Vrabec

Upload: others

Post on 05-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Molecular Simulation Strategies for

    Large Scale Thermodynamic Data

    Generation

    Athens, 2. Sept. 2011

    Gábor Rutkai

    Rolf Lustig

    Jadran Vrabec

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    R. Span, “Multiparameter Equations of State”, Springer, Berlin (2000)

    complete thermodynamic knowledge : ~10 substances

    For pure chemical substances…

    satisfactory knowledge :

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Equations of state for CO2 (Span and Wagner, 1996)

    0 ResF , , ,R T

    7

    0 0 0 0 0

    1 2 3 i i

    i 4

    , ln a a a ln a ln 1 exp n

    i i i i i7 34

    t d t d cRes

    i i

    i 1 i 8

    , a a exp

    i i39

    t d 2 2

    i i i i i

    i 35

    a exp ( ) ( )

    Ideal part:

    Residual part:

    Helmholtz Energy: T = 216 … 1100 K, p = 0 … 800 MPa

    i42

    b 2 2

    i i i

    i 40

    a exp C ( 1) D ( 1)

    Total:

    49 Parameters

    153 Exponents

    5 013 exp. Data

    TTc / c /

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Contribution of molecular simulation

    • powerful predictive capabilities (thermodynamic data)

    • works under any physical conditions

    • low cost

    Why is molecular simulation not a mainstream solution for

    thermodynamic data retrieval?

    • suitable molecular models

    • today’s MS software: only a few independent properties

    • new properties require implementation

    • development is impossible for an inexperienced user

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    • Cv

    Equilibrium thermodynamic properties

    particular thermodynamic property

    specific statistical mechanical ensembles or special techniques

    NVT NpT • Cp

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Approach

    For any thermodynamic property the underlying statistical

    mechanical ensemble is in principle irrelevant*.

    * H.W. Graben, J.R. Ray, Mol. Phys., 80, 1183-1193 (1993)

    NVT • Cp • Cv

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Project with ms2*(www.ms-2.de):

    • large set of thermodynamic properties from one NVT simulation

    • truly independent thermodynamic information

    • generation of an extensive dataset in an automatizable fashion

    * S. Deublein et al., Comp. Phys. Comm., 182, 2350-2367 (2011).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    The fundamental equation

    (Helmholtz representation) (Massieu-Planck representation)

    dnpdVTdSdU dnT

    dVT

    pdU

    TdS

    1

    Legendre transformation

    dnpdVSdTdF dnT

    dVT

    p

    TUdd

    1

    (Energy representation) (Entropy representation)

    TF /

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    UV

    U

    2U2

    2

    V

    U

    3U3

    3

    V

    U

    TF /

    mn

    nmmn

    nmT

    T

    /1/1

    2

    2

    V

    U

    nU

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    ......n

    iajb

    iajb

    n

    n

    iajbn

    n

    r

    ur

    V

    U

    K. Meier and S. Kabelac, J. Chem. Phys., 124, 064104 (2006)

    How to Calculate ? nn VU /

    iajbiajb ru

    2

    )(

    1

    )(

    11

    1

    13

    1

    iajb

    ijiajb

    iajb

    iajb

    iajb

    jM

    b

    iM

    a

    N

    ij

    N

    i rr

    ur

    VV

    Up

    rr

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    TF /

    mn

    nmmn

    nmT

    T

    /1/1

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivatives of the Massieu-Planck potential

    011 Tp 10TU 10011 TH

    20vC

    0201

    2

    110120

    1

    1

    pC

    20

    2

    11010201

    2 121Tw

    21101

    2

    2002

    110102

    //

    /

    TT

    TVJT

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    *T. Merker, J. Vrabec and H. Hasse, Fluid Phase Equilib., submitted (2011)

    6CLJ united-atom model*

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EOSEOSsim HHH /100

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    • ms2 (MD, MC)

    • 20 h (8 “nehalem” core per simulation)

    • automatized (no user interaction)

    • T = 500 K

    • ρ = 6.35 – 8.0 mol L-1

    • 40 state points

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane T = 500 K

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    T = 500 K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Cyclohexane

    ...,,,,/100 pvEOSEOSsim CCHXXXX

    H %5.1

    EoS: R. Span, and W. Wagner, Int. J. Thermophys., 24, 41-109 (2003).

    U %6.1

    VC %8.0

    pC %2.3

    w %7.5

    p %8.2

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Conclusion

    • Good cyclohexane potential model

    • Apporach is feasible for EoS development

    • Large set of independent thermodynamic properties

    • From a single NVT simulation per state point

    • Execution of NVT simulations is well automatizable

    • Computational cost is an additional pair potential evaluation

    for each volume derivative order

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Thank you for listening!

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivative with respect to the Temperature

    NVTZTF ln

    V

    NVT

    NVT

    NVT

    V

    NVT

    V T

    Z

    ZTZ

    T

    ZT

    T

    FS

    1ln

    ln

    2T

    UTNVTZln

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivative with respect to the Temperature

    NVTZTTF ln NVTZln

    V

    NVT

    NVTV

    NVT

    V

    Z

    Z

    Z

    1ln

    NN

    NN

    V

    NVT

    NVTV dUVN

    dUUVNZ

    Zr

    r

    exp

    !

    1

    exp!

    1

    1

    NNNVT dUVN

    Z r exp!1

    NNNVT dUUVN

    Zr

    exp

    !

    1

    U

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Derivative with respect to the Temperature

    NVTZTF ln NVTZln

    V

    NVT

    VT

    Z

    T

    )/1(

    ln

    )/1(

    U

    V

    NVTNVT

    V T

    ZTZ

    T

    F

    lnln

    2T

    U

  • PROF. DR.-ING. HABIL. JADRAN VRABEC ThET

    Pair potentials

    612

    4iajbiajb

    iajbrr

    u

    LJ LRC (site-site cutoff):

    drr

    ur

    VN

    V

    U iajb

    rc

    3

    LRC

    3

    12 .........

    LRC

    n

    iajb

    n

    n

    r

    n

    n

    r

    ur

    V

    U

    c

    3

    RF

    RF

    12

    11

    c

    iajb

    iajb

    jbia

    iajbr

    r

    r

    qqu

    (Lennard-Jones potential) (reaction-field correction)