molecular_modeling

Upload: ambra-salamandra

Post on 14-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Molecular_Modeling

    1/48

    BasicsMolecular Modeling, lecture 1

  • 7/27/2019 Molecular_Modeling

    2/48

    The course

    Biomolecular structure Formation

    Interaction

    Sequence structure function

    Mechanics of biomolecules

    Modelling & simulation methods Analyzing computer simulation results

  • 7/27/2019 Molecular_Modeling

    3/48

    Book

    Andrew R. LeachMolecular Modelling - Principles andApplications, 2nd editionPrentice Hall 2001, ISBN 0582382106

  • 7/27/2019 Molecular_Modeling

    4/48

    Practicalities

    Lecturers:Berk Hess ([email protected])Bjrn Wallner ([email protected])

    Lab exercises:Samuel Murail ([email protected])Torben Brmstrup ([email protected])

    Lab reports: due one week after eachexercise

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 7/27/2019 Molecular_Modeling

    5/48

    Schedule

    Tentitative schedule is up at:

    http://www.dbb.su.se/Teaching/Courses/Molecular_Modeling

    exam: Friday December 17, 9:00-14:00

    http://www.dbb.su.se/Teaching/Courses/Molecular_Modelinghttp://www.dbb.su.se/Teaching/Courses/Molecular_Modelinghttp://www.dbb.su.se/Teaching/Courses/Molecular_Modelinghttp://www.dbb.su.se/Teaching/Courses/Molecular_Modelinghttp://www.dbb.su.se/Teaching/Courses/Molecular_Modeling
  • 7/27/2019 Molecular_Modeling

    6/48

    Why computer simulations?

    Two primary roles:

    Numerical experimentsneeds accuracy

    Model testing

    needs reductionism

    Computers are fast enoughfor numerical experiments

    Most models are toocomplicated for purelytheoretical reasoning

    Allen&Tildesley

  • 7/27/2019 Molecular_Modeling

    7/48

    Molecular modeling

    Molecular modeling in biomolecules:mostly numerical experiments

    Aim: prediction of macroscopicproperties

    Ensemble averages/static properties(binding constants, etc.)

    Dynamic properties (rates, mechanisms) Molecular scale: quantum-mechanical

  • 7/27/2019 Molecular_Modeling

    8/48

    Time scales

    10-15s 10-12s 10-9s 10-6s 10-3s 100s 103s

    Biological Experiments

    Molecular dynamics

    QM simulations(Atomic detail)

    (Electrons)

    Coarse-grained models

    (Whole proteins)

  • 7/27/2019 Molecular_Modeling

    9/48

    Quantum mechanical simulations

    Necessary to describe: electrons & bond formation

    hydrogen (sometimes)

    Currently at most ~100 atoms

    Usually no time dependence

    Heavy atoms can be treated classicallyanyway: need to coarse-grain!

  • 7/27/2019 Molecular_Modeling

    10/48

    Atomic-scale simulations

    Coarse grained: needs force fields fromquantum mechanical simulations

    Good description level for understandingindividual proteins & simple interactions

    Can simulate protein dynamics up to

    ~10s

  • 7/27/2019 Molecular_Modeling

    11/48

    Protein structure

    d

  • 7/27/2019 Molecular_Modeling

    12/48

    Protein dynamics

  • 7/27/2019 Molecular_Modeling

    13/48

    Water

    Most ubiquitousmolecule in life: water

    Forms hydrogen bonds

    Strong interaction:~20 kJ/mol, or 8.4 kBT

    Completelydetermines protein

    structure: responsiblefor hydrophobicity.

    d h b

  • 7/27/2019 Molecular_Modeling

    14/48

    Hydrophobicity

    Cavities in water disfavored:

    small cavities disrupthydrogen bond network

    big cavities form surfaces:hydrophobic effect

    N l i id

  • 7/27/2019 Molecular_Modeling

    15/48

    Natural amino acids

    P id

  • 7/27/2019 Molecular_Modeling

    16/48

    Peptide structure

    Backbone degrees of freedom:

    Peptide () bond (trans/cis for Pro)

    (C-N-CA-C)

    (N-CA-C-N) torsions

    Side chain degrees of freedom:

    1,2,3 torsions

    P id

  • 7/27/2019 Molecular_Modeling

    17/48

    Peptide structure

    Beta sheet

    Alpha helix

    Left-handed helix

    C f i l

  • 7/27/2019 Molecular_Modeling

    18/48

    Conformational space

    How many conformations are there?

    Sample , torsion in 10 degree units

    36 states for each torsion

    For a 100-residue chain we get:

    362 states per residue

    (362

    )100

    =36200

    10308

    states for the chain Only one is the native structure

    L i h l d

  • 7/27/2019 Molecular_Modeling

    19/48

    Levinthals paradox

    But proteins obey the laws ofthermodynamics!

    Structure must be that with the lowest

    free energy

    Levinthal: how can a protein do that?

    We just saw that there are too manystates! Levinthals paradox

  • 7/27/2019 Molecular_Modeling

    20/48

    B.Robson 1999

    A f ldi d i

  • 7/27/2019 Molecular_Modeling

    21/48

    Answer: folding dynamics

    The answer lies in the dynamics of how

    proteins fold We need to know more about protein

    structure

    CD S t

  • 7/27/2019 Molecular_Modeling

    22/48

    CD Spectroscopy

    Circular dichroism - chirality of amino acids will

    rotate polarized light

    Amount depends on the environment

    Cheap, fast, simple, no sequence resolution

    N l M ti R

  • 7/27/2019 Molecular_Modeling

    23/48

    Nuclear Magnetic Resonance Environment will shift frequency of

    nuclearspin resonance - chemical shifts

    More complex than CD, but sequence

    resolved

    P t i t t

  • 7/27/2019 Molecular_Modeling

    24/48

    Protein structure

    Max Perutz & Hemoglobin

    First X-raystructureTook 22 years...

  • 7/27/2019 Molecular_Modeling

    25/48

    Kv1.2 ion channel

    Large protein, 25k atoms(Rod MacKinnon)

    Hierarchical structure:

    Amino acid sequence

    Secondary structure(sheets, helices)

    Tertiary structure (1 chain)

    Quaternary structure(more chains)

    P t i t t

  • 7/27/2019 Molecular_Modeling

    26/48

    Protein structure

    FABP(Fatty acid binding protein)

    NMR structure:

    Multipleconformations

    S d t t

  • 7/27/2019 Molecular_Modeling

    27/48

    Secondary structure

    Local structure is very ordered

    Helices

    Sheets

    Turns

    Stable building blocks

    Paired hydrogen bonds Good local packing

    No interference of side chains

    H li

  • 7/27/2019 Molecular_Modeling

    28/48

    Helices

    Naturally occurring amino acid

    helices are right-handed

    Nomenclature: NM-helix

    Residue i h-bonds to i+N M atoms per helical turn

    310 helix

    413 () helix - most common!

    Other (very rare) forms: 27 and 516 ()helix

    Heli e amples

  • 7/27/2019 Molecular_Modeling

    29/48

    Helix examples

    310 helix helix

    helix

    The -helix is the mostrelaxed of the helical

    structures

    Helices on the Ramachandran plot

  • 7/27/2019 Molecular_Modeling

    30/48

    Helices on the Ramachandran plot

    -helices occupy favorable part of diagram3.6 residues per turn (100 degrees per residue)

    27

    310

    left

    Helix dipole

  • 7/27/2019 Molecular_Modeling

    31/48

    Helix dipole

    Peptide dipoles parallel, from N to Cterminus

    Strong dipole - important in some ionchannels!

    Partial + charge at N, partial - charge at C

    +-

    Partial charges

  • 7/27/2019 Molecular_Modeling

    32/48

    Partial charges

    -0.82-0.82

    -0.82

    +0.41

    +0.41 +0.41

    +0.41

    +0.41

    +0.41

    Effective average charge + location can

    be different from unit charge:

    Helix dipoles

  • 7/27/2019 Molecular_Modeling

    33/48

    Helix dipoles

    In helix: effective dipole = sum of amino

    acid dipole contributions.

    Beta sheets

  • 7/27/2019 Molecular_Modeling

    34/48

    Beta sheets

    Antiparallel sheets Parallel sheets

    Sheet properties

  • 7/27/2019 Molecular_Modeling

    35/48

    Sheet properties

    Extended chains

    H-bonds between, not

    inside individual chains

    Pleated sheets

    Slightly twisted

  • 7/27/2019 Molecular_Modeling

    36/48

    Pauling, Corey (and partly Branson) - 1951

    The protein papers (8 papers in PNAS vol 37)

    http://www.pnas.org/misc/classics1.shtml

    Tight turns in sheets

    http://www.pnas.org/misc/classics1.shtmlhttp://www.pnas.org/misc/classics1.shtml
  • 7/27/2019 Molecular_Modeling

    37/48

    Tight turns in sheets

    Venkatachalam, 1968 (models)Simple steric repulsion

    Type (i+1) (i+1) (i+2) (i+2)

    I -60 -30 -90 0

    I 60 30 90 0

    II -60 120 80 0

    II 60 -120 -80 0

    IV -61 10 -53 17

    VIa1 -60 120 -90 0

    VIa2 -120 120 -60 0

    VIb -135 135 -75 160

    VIII -60 -30 -120 120

    Type I Type II

    Helices vs Sheets

  • 7/27/2019 Molecular_Modeling

    38/48

    Helices vs. Sheets

    Helices:

    Local h-bonds

    Gradual (but fast) growth

    Low initiation barrier Sheets:

    Non-local h-bonds

    Collective interactions; all-or-nothing

    High initiation barrier - very slow

    formation

    Amino acid properties

  • 7/27/2019 Molecular_Modeling

    39/48

    Amino acid properties

    All amino acids are not equal Proline is very rare in alpha helices

    Glycine is common in tight turns

    Some residues common at helix ends

    Differences inside/surface of proteins

    What is the cause of these differences,and can it be useful?

    Amino acid properties

  • 7/27/2019 Molecular_Modeling

    40/48

    Name 3-letter code 1-letter code Abundance G solvationGl cine GLY G 6.89%

    Alanine ALA A 7.34% 1.94

    Proline PRO P 5.00%Glutamic acid GLU E 6.22% -79.12

    Glutamine GLN Q 3.96% -9.38

    As artic acid ASP D 5.12% -80.65

    As ara ine ASN N 4.57% -9.70

    Serine SER S 7.38% -5.06

    Histidine HIS H 2.26% -10.27/-64.13

    L sine LYS K 5.81% -69.24

    Ar inine ARG R 5.20% ~ -60

    Threonine THR T 5.85% -4.88

    Valine VAL V 6.48% 1.99

    Isoleucine ILE I 5.76% 2.15

    Leucine LEU L 9.36% 2.28

    Metionine MET M 2.32% -1.48Phen lalanine PHE F 4.12% -0.76

    T rosine TYR Y 3.25% -6.11

    C steine CYS C 1.76% -1.24

    Tr to han TRP W 1.34% -5.88

    GLU or GLN GLX Z = E OR Q

    ASP or ASN ASX B = D OR NAn amino acid XXX X kcal/mol

    Amino acid properties

    Amino acid properties

  • 7/27/2019 Molecular_Modeling

    41/48

    Amino acid properties

    Proline

  • 7/27/2019 Molecular_Modeling

    42/48

    Proline

    Proline: Cannot form hydrogen bonds, bulky

    side-chain with two carbons connectedtothe backbone nitrogen atom

    N-terminus of alpha helices

    Turns Normally not inside

    helices/sheets

    Glycine + Alanine

  • 7/27/2019 Molecular_Modeling

    43/48

    Glycine + Alanine

    Glycine

    No side chain means no clashes

    Flexible ramachandran map

    No entropic stabilization

    Common in turns (flexible)

    Alanine

    Methyl side chain

    Slight helix preference, but sheet ok

    Hydrophobic residues

  • 7/27/2019 Molecular_Modeling

    44/48

    Hydrophobic residues

    Normally prefer beta sheets

    Side chains protrude onalternating sides

    More room for bulkyside chains (often h-phobic)

    In particular residueswith two carbons

    Polar + charged residues

  • 7/27/2019 Molecular_Modeling

    45/48

    Polar + charged residues Polar:

    Prefers turn/loop regions

    H-bonds to both water andthe polypeptide chain

    Charged:

    Occurs on surface, in active sites

    Negative charges stabilize helix N-terminus

    Positive charges stabilize helix C-

    terminus

    Helix capping

  • 7/27/2019 Molecular_Modeling

    46/48

    Helix capping

    + - ARGLYSHIS

    ASPGLU

    Charged residues act as caps for the helixdipole, which stabilizes both the helix andthe charged residue in that position

  • 7/27/2019 Molecular_Modeling

    47/48

    The protonation state ofcharged/polar amino acidsdepends on the current pH

    AA pH 7 pKa

    GLU -1 4.3

    ASP -1 3.9

    HIS 0 or +1 6.5

    LYS +1 10.5

    ARG +1 12.5TYR 0 10.1

    CYS 0 9.2Tricky;ver

    yclosetoneutralpH

    Depends

    onenvironm

    enttoo

    Summary

  • 7/27/2019 Molecular_Modeling

    48/48

    Summary

    Amino acid properties Protein structure - aa backbone +

    sidechains

    More about proteins next lecture!

    If needed, read up on protein structure inIntroduction to Protein Structure

    Lab on proteins & molecular graphics intwo weeks (Nov 17)

    Next Lecture: Wednesday afternoon