mom12 column buckling

Upload: anhntran4850

Post on 01-Jun-2018

229 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/9/2019 MOM12 Column Buckling

    1/25

    Column Buckling

    [email protected]

  • 8/9/2019 MOM12 Column Buckling

    2/25

    Stability and Buckling

    Examples of Columns Conventional Design of Columns

    Eulers Formula for Pin-ended Columns

    Buckling Modes

    Eulers Formula for Cantilevered Columns

    Extension of Eulers Formula

    Buckling in Orthogonal Planes

    Applicability of Eulers Formula Failure Diagram

    Critical Stress for Intermediate Columns

    Design of Columns

    Ways to Improve Column Stability2

    Contents

  • 8/9/2019 MOM12 Column Buckling

    3/25

    Stability is characterized as the ability of a structure to maintain

    its (stable) equilibrium under working conditions.

    Stability and Buckling

    Buckling is the behavior of a structure losing its equilibriumunder working conditions. This is another type of failure criterion,

    in addition to strength (fracture/yielding), stiffness (deformation)

    and fatigue criteria.

    Buckling occurs suddenly and results in catastrophic accident. 3

  • 8/9/2019 MOM12 Column Buckling

    4/25

    4

    Examples of Columns

  • 8/9/2019 MOM12 Column Buckling

    5/25

    In the design of columns, cross-

    sectional area is selected such that

    - allowable stress is not exceeded

    P

    A

    - deformation falls within

    specifications

    L P

    L AE

    After these design calculations, many

    discover that the column is unstable

    under loading and that it suddenly

    becomes sharply curved or buckles.

    Conventional Design of Columns

    5

  • 8/9/2019 MOM12 Column Buckling

    6/25

    Consider an axially loaded beam.

    After a small perturbation, thesystem reaches a neutral

    equilibrium configuration such that

    2

    2

    2

    2

    2 2

    2 2

    2

    0

    " 0,

    sin cos

    0 0

    0;

    cr

    cr

    cr

    cr

    Pd w Mw

    dx EI EI Pd w

    wdx EI

    Pw k w k

    EI

    w A kx B kx

    w w L

    B

    EInkL n P

    L

    Eulers Formula for Pin-ended Columns

    6

  • 8/9/2019 MOM12 Column Buckling

    7/25

    2 2 2

    2 2 2

    4 9; ;cr cr cr

    EI EI EI

    P P PL L L

    Buckling Modes

    7

  • 8/9/2019 MOM12 Column Buckling

    8/25

    A column with one fixed and one

    free end, will behave as the upper-half of a pin-connected column.

    The critical loading is calculated

    from Eulers formula,

    lengthequivalent2

    4

    4

    2

    2

    2

    2

    2

    2

    2

    2

    LL

    iLE

    iLE

    L

    EI

    L

    EIP

    e

    rre

    cr

    e

    cr

    Eulers Formula for Cantilevered Columns

    8

  • 8/9/2019 MOM12 Column Buckling

    9/25

    tcoefficienlengthlength;equivalent

    ;2

    2

    2

    2

    2

    2

    2

    2

    e

    rre

    cr

    e

    cr

    L

    iL

    E

    iL

    E

    L

    EI

    L

    EIP

    Extension of Eulers Formula

    9

  • 8/9/2019 MOM12 Column Buckling

    10/25

    Assuming the same material and cross-sectional dimension, which

    of the following four columns is most susceptible to buckling?

    2l

    5l 7l

    9l

    2

    2 Euler Formulacr

    EIP

    l

    (a) (b) (c) (d)

    Sample Problem

    10

  • 8/9/2019 MOM12 Column Buckling

    11/25

    x

    yz y

    Buckling inx-z:

    y = 12

    2

    y

    cr y

    EIP

    L

    Buckling inx-y:

    z= 0.5

    2

    20.5

    zcr z

    EIP

    L

    Buckling in Orthogonal Planes

    11

  • 8/9/2019 MOM12 Column Buckling

    12/25

    For the column shown, find the relationship between the critical

    loads corresponding to buckling inx-y andx-zplane respectively.

    l2b

    b

    z

    y

    Pcr

    2

    2

    2

    2

    3

    3

    2 124

    2 12

    zcr z

    z

    y

    cr y

    y

    cr z z

    cr y y

    EIP

    l

    EIP

    l

    b bP I

    P I bb

    Solution:

    What if the cross-section is increased to 2b2b?

    Sample Problem

    12

  • 8/9/2019 MOM12 Column Buckling

    13/25

    l

    2r r

    r

    r

    (a) (b) (c)

    Pcr

    For the column shown, find the relationship between the critical

    loads corresponding to cross-sections described by (a), (b) and (c).

    42 2 2 4

    2 2 2

    2 2 4

    2 2

    4

    2 2 2 2 4

    2 2 2

    2

    64 4: :

    1 1: :

    64 4 64 12

    11: :16 3

    12 12

    acr a

    cr a cr b cr c

    bcr b

    c

    cr c

    rEI E E rP

    l l l P P P

    EI E rP

    l l

    rEI E E rP

    l l l

    Solution:

    Sample Problem

    13

  • 8/9/2019 MOM12 Column Buckling

    14/25

    Which of the following best describes the relationship between

    criticalP1 andP2? (a)P1 =P2; (b)P1P2; (d) not sure.

    a

    a

    P1

    A B

    C D

    a

    a

    P2A B

    C D1P

    1P

    0

    012P 0

    0

    2P

    2P

    22P

    Solution:

    2 2

    1 12 2

    2 2

    2 22 2

    12

    2 22N

    N

    :

    :

    AD

    AB

    E I E I a F P P

    aa

    E I E I b F P P

    a a

    Sample Problem

    14

  • 8/9/2019 MOM12 Column Buckling

    15/25

    Critical buckling stress

    P: proportion limit;

    p: critical slenderness ratio.

    2

    2 2 2 22

    2 2 2

    slenderness ratio

    rcr

    crcr

    r

    r

    EIP

    E AiP E EL

    A L A L iP

    A

    L i

    Applicability of Eulers formula

    2

    2cr P PP

    E E

    206 GPaQ235: 100

    200 MPaP

    P

    E

    Applicability of Eulers Formula

    15

  • 8/9/2019 MOM12 Column Buckling

    16/25

    Previous analyses assumed

    stresses below the proportionallimit and initially straight,

    homogeneous columns

    Experimental data demonstrate

    - for largeLe/ir, crfollowsEulers formula and

    depends uponEbut not Y.

    - for intermediateLe/ir, cr

    depends on both YandE.

    - for smallLe/ir,cr is

    determined by the yield

    strength Yand notE.

    2 2

    cr E Y

    rL i

    Failure Diagram

    16

  • 8/9/2019 MOM12 Column Buckling

    17/25

    O

    Strength

    analysis

    Y

    P

    Y bacr

    2 2

    cr E

    Y

    P

    Stability

    analysis

    Y cr Y 3. Short columns:

    1. Long columns:2 2

    2 2P cr p

    P

    E E

    2. Intermediate columns:

    YY P p cr Y a

    a bb

    Critical Stress for Intermediate Columns

    17

  • 8/9/2019 MOM12 Column Buckling

    18/25

  • 8/9/2019 MOM12 Column Buckling

    19/25

    For the truss shown,F, , andLACare given. Find 0 < < /2, under

    which columnAB andBCreach critical stability simultaneously.

    2 2

    2 2 2cos

    cosAB

    AB

    EI EIF F

    l l

    2

    2 22

    2

    2 2

    coscos

    cot tan

    sin sin

    EIF

    l

    EI

    F l

    A C

    B

    F

    Solution:

    1. Eulers equation for columnAB:

    2 2

    2 2 2sin

    sinBC

    CB

    EI EIF F

    l l

    2. Eulers equation for columnBC:

    3. If columnAB &BCreach critical stability simultaneously:

    Sample Problem

    19

  • 8/9/2019 MOM12 Column Buckling

    20/25

    1. Method of safety factor

    cr

    st

    st

    cr

    st

    st

    FF F

    n

    F

    A n

    2. Method of discount factor

    st

    F

    A

    : discount/stability factor

    nst: safety factor

    [Fst]: allowable load

    [st]: allowable stress

    Stability analysis of columns

    - Stability check

    - Cross-section design

    - Allowable load/stress

    Design of Columns

    20

  • 8/9/2019 MOM12 Column Buckling

    21/25

    2 2

    22

    2 2

    2 2

    cr

    e

    cr

    r

    EI EIP

    L L

    E E

    L i

    Increase moment of inertia for a given

    cross-sectional area.

    Ways to Improve Column Stability

    Selection of materials.

    Decrease effective column length (L).

    For a group of columns, make each one

    equally stable (avoid the last straw).

    z r z y r yi i

    Coordination of end conditions and

    moment of inertia in orthogonal planes:

    21

  • 8/9/2019 MOM12 Column Buckling

    22/25

    A Q275 structural steel column is cylindrically pinned at both ends,

    as shown in the following figure. IfFmax = 60 kN and nst= 3.5,check the column stability.

    Solution:

    lz=800m

    m

    h =45mm

    x

    y

    ly=77m

    m

    b=20mm

    x

    z

    F

    lz

    F

    ly

    - Inx-yplane, both ends are pinned.

    1 80012.99 , 61.9

    12.992 3

    z z zz z

    z

    I lhi mm

    A i

    Sample Problem

    Determine the principal buckling plane.

    22

  • 8/9/2019 MOM12 Column Buckling

    23/25

    - Inx-zplane, both ends are constrained.

    0.5 7705.77 , 66.7

    5.772 3

    y y y

    y y

    y

    I lbi mm

    A i

    y > z, hence column buckling first happens inx-zplane.

    For Q-275 structural steel p = 96, and therefore y = 66.7 < p = 96

    2

    6 6

    280 0.00872 241 MPa

    (241 10 )(20 45 10 ) 217 kN

    2173.62

    60

    cr y

    cr cr

    crst

    F A

    Fn n

    F

    The column is stable.

    23

  • 8/9/2019 MOM12 Column Buckling

    24/25

    For the composite beam and column structure shown,EAB =EBD =E,

    dAB = dBD = d,L:d= 30, P.BD = 100. FindP, under whichBD reachesthe critical condition.

    Solution:P

    A C B

    D

    EI

    EA L

    LL: 120

    4 P

    L LBD

    i d

    2

    2cr BD

    EIF

    L

    Deformation compatibility:

    33 85

    6 3

    BD BDF L F LPL

    EI EI EA

    3 2

    18000

    EdP

    Sample Problem

    24

  • 8/9/2019 MOM12 Column Buckling

    25/25

    Stability and Buckling

    Examples of Columns Conventional Design of Columns

    Eulers Formula for Pin-ended Columns

    Buckling Modes

    Eulers Formula for Cantilevered Columns

    Extension of Eulers Formula

    Buckling in Orthogonal Planes

    Applicability of Eulers Formula Failure Diagram

    Critical Stress for Intermediate Columns

    Design of Columns

    Ways to Improve Column Stability 25

    Contents