n dimensional hyperbolic numbers

Upload: klein2013

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    1/22

    n-DIMENSIONAL HYPER BOLIC COM PLEXNUMBERSPaul Fjels tad3P991 Dresden Ave.Northfield, MN USAe-mail: ][email protected] G. GalDepartment of MathematicsUniversity of OradeaStr. Armate i Romane 5 RO MA NI Ae-mail: [email protected](Received: December 10th, 19 97 , Accepted: January 23th, 1998)

    A b s t r a c t a n d I n t r o d u c t i o nDirect product r ings have received relatively lit t le attention, perhaps becausethey are sometimes labeled "tr ivial" [8, p.6] . Nevertheless, the 2-dimensionaldirect p roduc t r ing of the reals, when expressed in the "hype rbolic basis", isanalogous in many ways to t he sys tem of complex numbers and also has aphysical interpretation. This prompted an exploratory foray into the worldof n-dimensional direct p roduct r ings of the reals to see how much can beext end ed from th e 2-dim ensional case (see, e.g. [3,4,5]). Sect ion 1 providesalgebraic notation, up to the point of defining polar coordinates. Section 2uses analysis to explore differentiability and conformality.1. AlgebraThe 2-dimensional hyperbolic complex numbers (also called double numbers[10] and perpl ex nu mb ers [5]) ate, o ne might say, "cousins" of the (elliptic)

    Advances in Applied Clifford Algebras 8 No. 1, 47-68 (1998)

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    2/22

    4 8 n - D i m e n s i o n a l H y p e r b o l i c C o m p l e x N u m b e r s P . F j e l s t a d a n d S . G . G a lc o m p l e x n u m b e r s . T h e y c o n si s t o f e l e m e n t s x + h y , x , y E R , h ~ R , h 2 = 1.T h e y p r o v i d e a r a t h e r n a t u r a l l a n g u a g e f o r d o i n g sp e c ia l r e la t i v i t y t h e o r y int w o d i m e n s i o n s [5]. A l g e b r a ic a l ly , t h e y f o r m a c o m m u t a t i v e r i n g w i t h e l e m e n t sx ( 1 + h ) b e i n g z e r o d i v i s o r s . T h e s e z e r o d i v i s o r s f o r m t h e l i g h t, c o n e i n t h ep h y s i c a l in t e r p r e t a t i o n a n d a r e a n a t u r a l o u t c o m e o f t h e fa c t t h a t t h i s n u m b e rs y s t e m i s a d i r e c t p r o d u c t r i n g o f t h e r e a l n u m b e r s , n a m e l y 2 ( + , . ) , w h e r ea d d i t i o n a n d m u l t i p l i c a t i o n a r e d o n e c o m p o n e n t w i s e a n d m u l t i p ly i n g b y a r e aln u m b e r d i s t r i b u t e s t h r o u g h t h e 2 - t u p l e . T o se e t h i s , s e t 1 = ( 1 , 1 ), h = ( 1 , - 1 ) .T h e nx + h y = ( 1 , 1 ) z + ( 1 , - 1 ) y = ( x , x ) + ( y , - y ) = ( x + y , x - y ) = ( x + y ) e o + ( X - y ) e i ,w h e r e e 0 = ( 1 , 0 ) , e l = ( 0 , 1 ) f o r m t h e n e w b a s i s , b o t h o f w h i c h a r e z e r od i v i so r s . T o e x p r e s s t h e m i n t e r m s o f 1, h , t h e h y p e r b o l i c b a s i s, u s e

    1 - - - ( 1 , 1 ) = e 0 + e l , h = ( 1 , - 1 ) = e 0 - e t , t o g e tC o = ( 1 / 2 ) ( 1 + h ) , e , = ( 1 / 2 ) ( 1 - h ) .

    T h e e 0, e l c o o r d i n a t e s y s t e m p r o v id e s m a n y a d v a n t a g e s i n m a k i n g c a l c u l a t i o n s( s e e , e . g . [ 4 ] ) .A v e r y n a t u r a l w a y t o e x t e n d t h e 2 - d ir n e n s i o n a l s y s t e m t o h i g h er d i m e n s i o n si s t o c o n s i d e r t h e d i r e c t p r o d u c t r i n g R ~ ( + , .) a n d t h e n c o n s t r u c t a b a s i s1, h i , " "" , h i , " " , h n - 1 , w h e r e h ~ = 1 , h i ~ .[ 91 f o r a ll i . T h e d i r e c t p r o d u c tb a s i s c o n s i s t s o f t h e u s u a l e i , 0 < i < n - 1 , w h e r e e l is t h e n - t u p l e w i t h t h ei t h e n t r y b e i n g 1 a n d a l l th e o t h e r s 0 . I t fo l lo w s t h a t

    iA g e n e r a l n - t u p l e z = ( z o , ' " , z i , " ' , z n - 1 ) , z i E R , is t h e n r e p r e s e n t e d b yz = ~ / z i e i . I n p a r t i c u l a r ,

    , ( 1 ) 1( z + z ' ) , = z i + 4 , ( z z ' ) , = z , z , , = - .i z iz is a z e r o d i v i s o r i f z i = 0 f o r o n e o r m o r e i . I f z i = r f o r a ll r , z b e h a v e sl ik e t h e r e a l n u m b e r r , so w e d o n o t d i s t i n g u i s h b e t w e e n z a n d r , i .e . w e w r i t er i = r . T w o s p e c i a l c a s e s a r e 1 i = 1 , 0 i = 0 . T h e m o d u l u s f i l ( z ) a n d n o r m ] z ]a r e d e f in e d b y

    . ~ ( z ) = 1 - ~ z ~ , I z l = [ r o ( z ) ] ~ / ~ ,i

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    3/22

    Advances in Applied Clifford Algebras 8, No. 1 (1998) 49w h e r e , f o r x E R , x 1 l a = s gn z q 1 /'~ . T h u s I z I = 0 f o r z a z e r o d i v i s o r , a n d I z 1is n e g a t i v e w h e n z i r 0 f o r a l l i a n d a n o d d n u m b e r o f z i ' s a te n e g a t i v e . A l s o

    M ( z z ' ) = M ( z ) M ( z ' ) , I z z ' l = I z l l z ' l .T h e z e r o d i v i s o r s p a r t i t i o n t h e s p a c e o f n o n z e r o d iv i s o r s i n t o 2 ~ p a r t s . F o re a c h p a r t t h e r e i s e x a c t l y o n e z w h e r e z i - + 1 f o r a ll i. T h a t m e a n s z 2 = 1 ,a n d t h e s e z a t e t h e c a n d i d a t e s f o r t h e b a s i s m e n t i o n e d a b o v e . O n l y n a re t ob e c h o s e n , s o t h e r e i s m o r e t h a n o n e w a y t o d o t h i s . T h e s e 2 ~ e l e m e n t s a r e t h em e m b e r s o f t h e s e t { 1 , - 1 } '~ , a n d s i n c e { 1 , - 1 } ( . ) is a g r o u p , s o i s t h e d i re c tp r o d u c t { 1 , - 1 } ~ ( . ) . I f t h e n e le m e n t s c h o s e n fo r t h e b a s is f o r m a s u b g r o u p ,c e r t a i n h i c e p r o p e r t i e s f o ll o w , b u t s i n c e t h e s iz e o f a s u b g r o u p m u s t d i v i d e 2 ~( L a g r a n g e ' s T h e o r e m ) , t h i s is o n l y p o s s i b l e w h e n n i ts e l f i s a p o w e r o f 2 . T h e s ec a se s w i ll b e c o n s i d e r e d f i r st b e c a u s e o f t h e a d d i t i o n a l s y m m e t r i e s w h i c h e n s u ea n d b e c a u s e o f t h e i r r e l a t i o n t o C l i ff o r d a lg e b r a s .T h e C a s e o f D i m e n s i o n n = 2 vB a s i s R e l a t i o n sT o e x p lo i t t h e s y m m e t r i e s , s o m e u n c o n v e n t i o n a l n o t a t i o n w i l l b e i n t r o d u c e df o r t h e c a s e s n = 2 " , v a p o s i t i v e i n t e g e r . T h e K r o n e c k e r d e l t a f u n c t i o n ( ~ i j w i l lb e w r i t t e n i 9 1 w i t h 0 < i , j < n - 1 w h e r e 6 is a h n x n m a t r i x , a c t u a l l y t h ei d e n t i t y m a t r i x , a n d i 91 is t h e r o w ( q 1 9 1 1 6 1 = ( 0 , . . . , 1 , . . . , 0 ),s o t h e s y m b o l " i w i ll b e u s e d f o r t h e b a s i s e l e m e n t u s u a l l y s i g n i fi e d b y " e i " .F o r t h e d i r e c t p r o d u c i b a s i s ,

    B ~ , ~ : { i ~ 1 0 < i < n - 1 } ,n o t e t h e d i s t i n c t i o n b e t w e e n i 6 j 6 a n d q 9 j 6 , t h e i n n e r o r s c a la r p r o d u c t .

    T h e K r o n e c k e r p r o d u c t o f t w o d i r e c t p r o d u c t r i n g s | : R n x R TMp r o d u c e s a t h i r d d i r e c t p r o d u c t r in g , w h e r e~ R ~ ~ ,

    z | z ' = ( z o , . . . , z ~ _ l ) | z ' = ( z o z ' , . . . , Z ~ _ l Z ' ) =( z o z 9 ' . . ' z '" ,ZoZm--1, " ,Zn--lZo,''',Zn--I m--l)

    T h i s o p e r a t i o n is n o t c o m m u t a t i v e , b u t i t is a s s o c ia t iv e a n d h a s a " c o m p o n e n -t w i se " m u l t i p l i c a t i v e p r o p e r t y , f o r z , z' E [ w , w ~ E R m , . . . , v , v ~ E F 91

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    4/22

    50 n-Dimensional Hyperbolic Complex Numbers P. Fjelstad and S. G. Gal

    ( z | | v = z | 1 7 4( z | 1 7 4 . . . | | | . . . | 1 6 2 = z z' | | . .. |

    I n p a r t i c u l a r , f o r q 6 R '~ , j 6 E R mi 1 7 4 : ( ~ 1 6 1 : { ~ + j ~ ,

    s o th a t , f o r q 6 R 2 , w h i c h m e a n s i , j , k 6 { 0 , 1 } ,i 6 | | k 6 -~- i 2 + j 6 | k ~ = i 4 + 2 j + k 6 = i j k 6 = a 6 ,

    w h e r e a = i j k i s e x p r e s s e d i n b a s e 2 . H e n c e f o r t h s u b s c r i p t s a , b , c , d w i l l b ee x p r e s s e d i n b a s e 2 , s o a = a v - 1 . . . a l a o a n d

    |a91 = a , _ , 6 | . . . @ a o 6 = 1 ~ ~ , 6 ,

    iw h e r e t h e o r d e r o f t h e p r o d u c t i s i m p o r t a n t . T h e n b a s i s e l e m e n t s a 6 6 R na t e t h u s g e n e r a t e d f r o m o6 a n d 16 i n R 2. N o t e t h a t v is t h e n u m b e r o fd i g i t s in t h e s u b s c r i p t . F o r e c o n o m y , a t i l d e o v e r a b a s e 10 i n t e g e r m e a n st h a t i n t e g e r e x p r e s s e d i n b a s e 2 u s i n g v d ig i t s . F o r e x a m p l e , f o r v = 3 ,a 6 { 0 0 0 , 0 0 1 , . . - , 1 1 1 } = { 0 , i , . . . , 7 } .

    T h e f o r e g o i n g s u g g e s t s a s y s t e m a t i c w a y t o se l e c t t h e e l e m e n t s f r o m { 1 , - 1} '~f o r t h e h y p e r b o l i c b a s i s . F o r v = 1 t h e b a s i s e l e m e n t s w e r e 1 , h , w h i c h w i l l n o wb e r e la b e l e d o H , 1 H , w h e r e

    o H = ( 1 , 1 ) = 1 1, q - - ( 1 , - 1 ) = i i ,w i t h i : - 1 a n d th e p a r e n t h e s e s a n d c o m m a s a r e d r o p p e d f o r e c o n o m y . T h ee l e m e n t a H i s t h e n d e f i ne d a s t h e K r o n e c k e r p r o d u c t ,

    |a H = 1 - I ~ , H -i

    E x a m p l e .1 1 0 H = l H | 1 7 4 l i | 1 7 4 = l i | l l i i i i l l .

    F o r ~, = 1 , 2 , 3 , t h e a H a r e

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    5/22

    Advances in Appl ied Clifford Algebras 8, No. 1 (1998) 51o H = l l o o H = l l l l o oo H = 11 1 1 1 1 111 H = 1 i 0 I H = l l l i 0 0 1 H = l i l i l i l l

    1 0 H = l l l l 0 1 0 H = 1 1 1 1 1 1 1 11 1 H = 1 1 1 1 0 1 1 H = 1 1 1 1 1 1 1 1

    1 0 0 H = l l l l l l l l1 0 1 H = 9n 0 H = l l l l l l l l1 1 1 H = 1 1 1 1 1 1 1 1

    I f o n e u s e s b a s e 2 s u b s c r i p t s b , i .e . a H b , t o d e s i gn a t e t h e b t h e le m e n t o f a H ,t h e na H = E a H bb 91

    bH c a n t h u s b e c o n s i d e r e d a m a t r i x , n a m e l y t h e n x n a r r a y s d i s p la y e d a b o v e .F o r t h e hyperbol ic basis

    B f t , ~ = { a H l a E { 0 , 1 } ~ } ,t h e r e i s t h e f o l lo w i n g L e m m a r e l a t i n g i t t o t h e d i r e c t p r o d u c t r in g { 0 , 1 } v( @ , |o f t h e 2 - e l e m e n t f i el d { 0 , 1 } ( @ , | w h e r e 1 @ 1 - 0 , ( o f t e n d e n o t e d Z 2 ( + , . )) .T h e m e m b e r s o f { 0 , 1 }~ a re ~ - t u p l e s o f 0 ' s a n d l ' s , w h i c h , u p o n d r o p p i n gp a r e n t h e s e s a n d c o m m a s w i l l b e i d e n t if i e d w i t h t h e b a s e 2 n u m b e r s a , b , s oa ~ b i s d e f i n e d , n a m e l y ( a @ b ) i = a i ~ b i . I n p a r t i c u l a r , a @ a = 0 .L e m m a 1 . 1BH,,~( . ) i s a g r o u p i s o m o r p h i c t o { 0 , 1 } ~ (@ ) .P r o o f : F i r s t n o t e t h a ta ~ H b , H = a , e b ~ H , s i n c e o H o H = o H , o H I H = 1 H o H - 1 H, 1 H 1 H = o H .T h i s p r o v i d e s a r u l e f o r m u l t i p l y i n g e l e m e n t s a H , n a m e l y

    | @ @ @ |a H b H = ~ - ~ a , H l - I b , H = H a , H b , H = ~ a . ~ b . H = r I ( a ~ b ) , H = a@ bH .

    i i i i iw h i c h p r o v i d e s t h e p r o o f .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    6/22

    52 n-Dimensional Hyperbolic Complex Nu mb ers P. Fjelstad and S. G. Ga lR e m a r k . I r w i ll b e c o n v e n i e n t t o c a l c u l a te th e v al u e o f a H b f r o m it s s u b -s c r i p t s . T o t h i s e n d , d e f i n e t h e i o t a f u n c t i o n ,

    = 1 - 2 i 8 j = ; - 1 , i = j w i t h s p e c i a l i z a t i o n t oig j [ 1, i # j( 1 , a i = 091 = 1 ta , = - -1 , a i = 1

    T h e n t ( a i 9 b i) = t ( a i ) t ( b i ) ,w h i c h s i m p l y s a ys t h a t t h e g r o u p { 0, 1 }( @ ) is i s o m o r p h i c t o { 1 , - 1 } ( . ) . A l s o,

    ~ , H b , = t ( a i b i ) , s i n c e 0 H 0 = I , 0 H 1 = 1 H 0 = 1 , 1 H 1 = - 1 .I r f o l t o w s t h a t

    @ |E o m ~ = oL , = 1 - I o n " = [ I ( o , ~ 0 0 + o , ~ , , ~ ) =b i i

    b i bSO,

    (9a H b = H a , H b , - - - - H t ( a i b i ) = 9 1 = 9 1 (1 )i i i

    w h e r e a . b i s t h e @ - i n n er p r o d u c t . S i n c e a e b = b e a , t h e m a t r i x H is s y m m e t r i c .L e m m a 1 .2T h e b a s i s B H , n i s o r t h o g o n a l , a n d a l s o n o r m a l in th e s e n s e t h a t l a H ] = 1 .P r o o f : F o r a = 0 , a , , b = 0 , f o r a ll b . F o r a # 0 , a . b = 0 f o r h a l f t h e b ' s ( 0 ' sa n d l ' s a r e d i s t r i b u t e d e v e n l y i n a ll d i g i t p l a c e s) a n d a 9 b = 1 f o r t h e o t h e rh a l f. T h u s t h e f o ll o w in g r es u l ts f o r s u m a n d p r o d u c t ,

    { ~ ~ 1 7 6 no H b = 0, a ~ , a l s o M ( o Z ) = o H b = l .b

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    7/22

    Advances in Applied Clifford Algebras 8, No. 1 (1998) 53S i n c e M ( a H ) = 1 , c l e a r ly q I = 1. T h e i n n e r p r o d u c t o f e l e m e n t s i n B H , n is

    ~H * = ~HcbH~ = ~H = ~ebH~ = O, a b 'c c r

    w h i c h s h o w s o r t h o g o n a l i t y . [ ]L e m m a 1 .3F o r z = ~ ~ z ~~ x = ~ r a n d z = z ,

    1x~ = - ~ z ~ ~ H r zc = ~ x ~ ~ H ~ .n

    a r

    Proof : F i r s t , n o t e t h a t ,Z ( n , a = b~(H 2)b = ~H Hb = ~H~r = ~HcbHr = O, a r b ' s o

    c c

    H n = n6 , a n d H - 1 = 1 H .n

    O n e c a n n o w e x p r e s s a ~ i n t e r m s o f t h e b a s i s B H ,,~ ,~ ~ = ~ ( H 2 ) = n , H ~ ~ H ,

    c

    w h i c h a l l o w s z t o b e e x p r e s s e d i n t h i s b a s i s ,( 2 )

    a ~1 C C G C

    T h u s , i n s e q u e n c e ,1 l z H ,z ~ = ~ z ~ " H ~ ' x = n z = x H , zr = ~ x a ~ H r ~ (3 )

    a a

    A G r a d e d A l g e b r aT h e g r o u p BH,,~( ' ) i s g e n e r a t e d b y a n y i n d e p e n d e n t s u b s e t o f v e l e m e n t s . Ac o n v e n i e n t s u b s e t t o p i c k c o n s i s ts o f t h o s e a H s u c h t h a t t h e d i g i t s o f a a r e a l l0 e x c e p t f o r o n e , s a y th e i t h o n e , w h i c h w i l l b e d e s i g n a t e d ( i) . T h u s t h e ( i ) Hf o r r o a ge ne r a t i ng s e t , w h e r e ,

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    8/22

    54 n-Dimens ional Hyperbo l ic Comp lex Numb ers P . Fje l s t ad and S. G. Gal

    (i) e {0, 1}", (i)j = ,6j, and ~H = I I ( ( ' )H ) ~ ' (4)i

    E x a m p l e .10tH = 100e001H = lo0H 001H = (2) H (0) H = ((2)H ) 1 ( (1)H) ~ ((0)H ) 1

    R e m a r k . Us ing e qua t ions ( 1) a nd ( 4 ) now, e qua t ion ( 2) c a n be f a c to r e d inthe fo l lowing way,

    a~ = 1-n~ a H r : 1 ~ H91 H ((i) H)c' : r I ~(1 + 91c c i i *

    where the fac tors 89 -4- (0 H ) are idem po ten ts .In te rm s of the gen era tors , one can th ink of R '~(+ , .) , n = 2 ~ , a s a gradedalgebra by pa r t i t ion ing the ~H in to g r a de s a c c o r d ing to to the nu mbe r o f d ig i tsin a wh ic h a r e l ' s , na me ly ,

    6H, (i)H, (oH(j)H, (i)H(j)H(k)H, ... ,@-I)H...(1)H(o)H,whe r e the i , j , k. . . are d is t inc t for each grade . A sa graded a lgebra , th is takeson some s im ila r i ty to a Cl i f ford a lgebra , and in fac t , the bas is e lem ents of aCl i f ford a lgebra , Cp,q, a te a p r o je c t ive r e p r e s e n ta t ion o f BH,,~ . ) wi th u = p+ q .

    L e t Bcp,q( . ) be the sys tem of bas is e lements wi th mult ip l ic a t ion . T his is no ta grou p b ecaus e m ulti plic atio n is not c losed, so le t /~c~.~ = {- AL A E Bc~,~ }a nd Bcp,q [J [~cr.~ = B~p,q. T h e n B~p,~(.) i s a group ana BH,r,(.) is a homo-mo rphi c image under the mapp ing f which forge ts abo ut m inus s igns. For 7 i ,0 < i < p + q - 1, the ge ne rat ors of B~~,~, let a"f : 1-L(')'i)a', a E {0, 1 } P+ q .T h e n f( ~ 7 ) = f ( - ~ 7 ) = aH. I n the l a ngua ge o f g r oup r e p r e s e n ta t ion t he o r yB~, . , ( . ) i s a double group r e la t ive to BH,,~(') and Bc,.~(') is a projective repre-senta~ion of BH,,~(').E x a m pl e . One ma n i f e s ta t ion o f the d ihe d r a l g r oup D2 i s D2( . ) ={E , C2~, C2v,C2~}(.), which descr ibes ro ta t io ns by 7r abo ut the z ,y , z axes , i .e .C2~C2~: = E , the ide n ti ty . The s e ope r a to r s c o r r e s pond to a m om e n t umope r a to r s in qua n tu m me c ha n ic s f o r in te g r a l sp in . Fo r ha l f in te g r a l s p in thesame ope ra tor needs twice the angle to reach E, i .e . C2~ * C~~ = - E . The setwo sys tems a re represented be low [1] .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    9/22

    Advances in Applied CUfford Algebras 8, No. 1 (1998)E C2~ C2y C2z E C~z C~y C2zC2~ E C2~ C~y C2~ - E C2~ -C 2 yC2y C2z E C2~ C2y -C 2~ - E C2~C2, C2y C2~ E C2z C2~ -C 2~ - E

    55

    D2(') D2(*)D2(*) is a projective representatio n of D2(.) and D~(*) = (D2 U D2)(*) is adouble group of D2(.). Further, D2(.) is isomorphic toBH,2(-) -- {ooH, olH, loH, 11H}(') = {1,(o)H, 0)H, (o)H0)H}(. ) and D2(*)corresponds to Bco.=(') = {1,70,71,7071} with D~(*) being isomorphic toB ~ o , = ( . ) .For G' the double group of G, some properties of G carry over to G'. Forexample, the irreducible representations of G are also irreducible representa-tions of G'. G' has in addition some spinor representations, namely one foreach regular elass of G [1, p.236]. The regular classes of G are classes of G'and the negatives of the elements of a regular class forro a class of their ownfor G'..The irregular classes of G double themselves by adding the negativesof its elements to forro a single class for G'.Polar Coordinates .In order to allow for the development of trigonometry and things like conformalmappings, we need to define some 'polar eoordinates'. The radial coordinatep(z) is the absolute value of the norm, and it is used to define the unir hyper-surface U,p ( z ) = I lz ll , u - - { z l p ( z ) = i } , ~ u = f z ~ e u l a e { i , - 1 } ~ , z ~ > 0, f o r a l l a } .The zero divisor hyperplanes parti tion U into 2 ~ discrete pieces, ~U, one foreach h E {1 ,- 1} n. Clearly U(.) is a group with 1U(.) a subgroup.To assign a unique angle to each element in U and to allow for additionof angles, let ~ (+ ) be an isomorphic copy of the group U(.). The elements ofate angles. The angle function c~ (usually written "arg") is an isomorphismfrom U(.) to ~(+), i.e. for z, z' E U,

    ~ ( z z ' ) = o ~ ( z ) + ~ ( ~ ' ) .In particular then, for 0 the additive identity of ~(+),

    ~ ( i ) = o .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    10/22

    86 n-Dimensional Hyperbolic Complex Numbers P. Fjelstad and S. G. GalFu r th e r , sp ec i fy a pa r t i cu la r e l em en t p E U , /-* :/= 1 , a s the uni! measure forangles a n d d e f in e an e l e m e n t 1 E r b y

    ~ ( ~ ) = i .T h e n l e t p b e t h e i n v er s e m a p p i n g o~ i b y m e a n s o f t h e f o l lo w i n g n o t a t i o n , f o r

    # r = ~ - i ( r i . e. p= ( * ) = o~ - l ( oe ( z ) ) = z .I t f o l l o w s t h a t /_,0 = 1, / . i i : /.91a n d s i n c e t h e i n v e r s e o f a n i s o m o r p h i s m is a n i s o m o r p h i s m ,

    # r 1 6 2 = # r 1 6 2Trigonometric [unctions c h a , f r o m 9 t o R , a t e d e fi n e d b y

    c h : a ( z ) = z a , s o t h a t p ~ ( Z ) = z = ~ x ~ ~ H = ~ - ~ c h ~ ~ ( z ) : H , (5 )a a

    w h i c h i s a g e n e r a l i z a t i o n o f t h e E u l e r f o r m u l a . F o r n = 2 , c h0 a n d c h l a r e t h ef u n c t i o n s c o s h a n d s i n h .For p(z ) ~k 0 ,p [ z l p ( z ) ] = p ( z ) / # ( e ( z ) ) = e ( z ) / p ( z ) = l ,

    s o z / p ( z ) E U . T h e angle fun ctio n c~ i s t he n extended t o t h e s e z b y~ ( z ) = ~ [ z / p ( z ) ] .

    T h u s , f o r p(z) 0,z = p ( z ) [ ~ / p ( z ) ] = p ( z ) ~ ~ = p ( z ) ~ ~ < ' ~ ,

    w h i c h p r o v i d e s t h e ' p o l a r c o o r d i n a t e s ' .S p e c i f y i n g o~ a n d pC o n s i d e r e z==~ i n t e r m s o f t h e i n f i n i t e s er i e s

    e Zo , k ( z ~ ~6) k z ~ '= i! - - 1 + ~ ~ ~ = ~ b a + ~ ~ ( - l + e " ~ soi=O i = 1 b

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    11/22

    A d v a n c e s i n A p p l i e d C l i f f o rd A l g e b r a s 8 , N o . 1 ( 1 99 8 )

    T h e n ,

    a n d

    1, b a

    e ' : e Z o ' - - ' : y I e , - o ' : Z e ' ~ s o ( e ' )o : e ~ -,

    5 7

    b b( e O . . H ) b = { e O * ,= H b = 1e - O " , a H b - - 1

    A s is k n o w n f r o m t h e n = 2 ca s e , e x p a n d i n g e ~ 176 i n a n i n s e r i e s r e s u l t sin

    e ~ " ~ H = cosh 0a + s inh 0~ aH .T h e m o d u l u s o f e O" ~ H is

    . A d ( e O . . H ) = H e O . .H b : e O . ~ ~ . H b = { e n ~ a ; ~1_b 1 , a 0T h us w e ha v e , f o r a 7~ 0 ,

    ( e~162 > 0 a n d p(e O~=H) : 1 , s o e o ' ~ H E 1 U .n - 1I t fo l l o w s t h a t 1 - L = i e ~ E ] U . F u r t h e r , e a c h e l e m e n t o f 1U g e ts a h a n g l e .

    ( 6 )

    T h e o r e m 1 . 4F or e a c h z E I U t h e r e i s a un i qu e 0 = c ~( z) .P r o @ " F r o m

    o n e g e t s

    n - 1 E n - t 0 6 a H bZb = H eO~~Hb - - e . = ia=].

    n - 1) - -~ o ~ o H b = I . ~ ~ . ( 7 )a - - - - . i

    T h i s p r o m p t s d e f in i n g fo r 1U a n a n g l e s e t t ~ ( w h e r e t ~ 5 ( + ) w i ll b e a s u b g r o u po f ~ ( + ) ) b y t h e d i re c t p r o d u c t

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    12/22

    5 8 n - D i m e n s i o n a l H y p e r b o l i c C o m p l e x N u m b e r s P. F j e l st a d a n d S . G . G a l

    l(I)(nt_ ) : ] ~ n - l( _ [ _ ), w i t h 8 = ( 0 i , 0 ~ , " ' , O , ~ _ z ) E lq ~ .W e w i l l r e f r a i n f r o m p u t t i n g a t i l d e o n n - 1 . I n p a r t i c u l a r , f o r a n g l e s 0 a n d1 , 0~ = 0 , l a = 1 , f o r 1 < a < n - l . A l s o , f r o m w = l n z , s o z = e w , o n e h a sz b = ( e w ) b = e w~ a n d t h u s ( l n z ) b = w b = l n z b . F i n a l l y , b y r e m o v i n g t h e t o pr o w o f H t o g i r e a h ( n - 1 ) x n m a t r i x H , w h e r e ~ / /b = ~ H b , f o r 1 < a < n - 1 ,< b < n - 1 , o n e c a n w r i t e ( 7) a s

    8 I I = I n z .F o r / : q t h e t r a n s p o s e o f / / a n d 1 _< a , b < n - 1 ,

    n--I n--1a ( I: I ~ t T ) b : ~-'~~a / : / c c / S / [ - ~ '~ ~ a H c b H c : n a ~ b,

    c=5 rT h u s , m u l t i p l y i n g b o t h s i de s o f ( 8 ) b y ( 1 / n ) f f I T ,

    so Hf/ = n 6 .

    n - 10 = l ( l n z ) / : / T a n d 0 a = -I ~ _ l n z b b H a .

    n n b=5T h e e l e m e n t # i s n o w d e f i n e d b y f ir s t d e f in i n g0 a = l a = 1 ,

    n--I n-I/ z o = r I e 8 ~ ~ H , ~ = H e ~ H .

    a = i ~ = iF u r t h e r ,

    # e a n d t h e n s e t t i n g 0 = 1 , i .e .

    N o t e n o w t h a t = { /i #e [5 E { 1 , - 1 } " , 8 6 R n - 1 } . F u r t h e r , t o h a v e a n g l e sf o r a l l e l e m e n t s o f U , d e f i n e

    x R n - l = { s o n o w ~ = { 1 , - 1 } " x R " - 1 ,w h e r e t h e o r d e r e d p a i r ( h, 0 ) i s w r i t t e n T h e a n g l e f u n c t i o n a f r o m U o n t o

    i s n o w s p e c i f i e d b ya ( h ~ e ) = ~ 8 ,

    ( 8 )

    n - - I n - - 1 n - - I]_91 = H eO ~H = I' ~1 .~ H e O : = H e O ' ~ H = I I e ( O = + O " ) ~ H = ] AO +O '

    :=i ~=i :=1

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    13/22

    Advances in Applied Clifford Algebras 8, No. 1 (1998) 59w h i c h is a o n e - to - o n e m a p p i n g . I t i s m a d e a n i s o m o r p h i s m b y d e f in i n g a d d i l i o no f a n g l e s b y

    h o + ~ ,o ' = ~ ( h ~ ~ + ~ ( h ' ~ ~ = ~ ( h ~ ~ ~ = ~ ( ~ 1 7 6 = ~ ~ ,( 0 + 0 ' ) .R e m a r k s : 1) S in ce { 1 , - 1 } n ( . ) is a g r o u p a n d R ' ~ - t ( + ) is a g r o u p , t hi sl a s t r e s u lt s h o w s t h a t t h e g r o u p q ~ (+ ) is t h e d i re c t p r o d u c t o f / { , ~ - 1 ( + ) w i t h{1 , -1}~ ( . ) .2 ) F o r z E h U , o n e h a s z = h # e = p ( z ) # ~ ( * ), w i t h p ( z ) = 1 , ~ ( z ) = ~ 0 , s o

    h # o = # ~ o .Fo r h = 1 , i t fo l lo ws t h a t 0 an d 1 8 a re i d e n t i f i ed . A l so , b e ca u s e h = = 1 , i tf o ll o w s t h a t f o r, z , z ' 6 o n e h a s z z ' 6 1 U .3 ) A c o n n e c t i o n b e t w e e n t h e f u n c t i o n s c h a a n d c o s h a n d s i n h n o w r e s u l t s b yc o m b i n i n g ( 5 ) a n d ( 6 ) .

    n--1 n--I n--i

    E c h a ~ O ~ H - - p ~o = h # o = h H e O " H = h 1-I (cosh co + s inh 0~ ~H ) .a=5 a=i a=i

    T h e n u m b e r z = # ~0 c o r r e s p o n d s to a r o t a t i o n t h r o u g h t h e a n g l e o n t h eu n i t h y p e r s u r f a c e . F o r n = 2 , h = 1 , t h e s e a t e th e L o r e n t z t r a n s f o r m a t i o n s . A hi n v e s t ig a t i o n o f th e s e f o r s o m e o t h e r n m i g h t b e o f s o m e i n t e r e s t t o p u r s u e .T h e G e n e r a l C a s e o f nF o r n n o t a p o w e r o f 2 , t h e K r o n e c k e r p r o d u c t t e c h n i q u e w i ll n o t w o r k f o rs e l ec t in g t h e h y p e r b o l i c b as i s e l e m e n t s f r o m { 1 , - 1 } n . T h e r e a r e w a y s h o w e v e rt o d o i r s o t h e r e s u l t s h o l d f o r a ll n . O n e w a y i s t o u s e r o w s o f t h e i o t af u n c t i o n i 91 = 1 - 2 q e x c e p t t h e y d o n ' t f o r m a n i n d e p e n d e n t s e t o f b a s ise l e m e n t s , s o t h e t o p r o w i s c h a n g e d t o 1 , w h i c h i s d e s i r e d f o r o n e o f th e b a s i se l e m e n t s a n y w a y . H e r e s u b s c r i p t s w i ll n o t b e e x p r e s s e d i n b a s e 2 , a n d w i l l b ed e s i g n a t e d b y i , j , k . T h e b a s i s e l e m e n t s w i l l b e q w h e r e " h " , w h i c h s t a n d sf or " h y p e r b o l i c " , is s y m b o l i ca l ly n o t a s s y m m e t r i c a s t h e p r e v io u s " H " . T h e ya t e d e f i n e d b y l . 5

    n - - I n - - i

    o h = 1 = ~ _ , ~ ~ , , h = , ~ = F _ , " ~ ~ ~ = 1 - 2 , 6 , 1 < i < ~ - 1 . ( 9 )O 0

    T h u s 0 h = 1 a n d q = q f o r 1 < i < n - 1 , a n d t h e m a t r i x h i s s y m m e t r i c .F or l < i , j < n - l , a n d i # j ,( q 2 = 1 , q j h = q o h . j h = n - 2 , i h . q = n - 4 , I oh I = 1, I j h I = - 1 .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    14/22

    6 0 n - D i m e n s i o n a l H y p e r b o l ic C o m p l e x N u m b e r s P . F j e l st a d a n d S . G . G a lT h e b a s i s B h , . = { q < i < n - 1 } l a ck s b o t h n o r m a l i t y a n d o r t h o g o n a l i t ya n d i s n o t a g r o u p w i t h r e s p e c t to m u l t i p l ic a t i o n .L e m m a 1 . 5F o r z = E o - i z i i 6 = E o - I z q 1 6 1 z , o n e h a s ,

    n - iZ0 = E x i ;

    0 o = ~ [ ( 3 - ~ ) z 0 +

    . - 1Z j : E X i i t j : Z O - - 2 x i ,

    o. - I 1z , ] , ~ ~ : ~ ( ~ 0 - z ~ ) ,

    1P r o @ S o l v i n g f o r t h e i 91 i n ( 9 ) r e s u l t s i n

    n - - 10 l ( 3 - n ) n t - E i h , , , : l ( 1 - q

    1w h i c h , t o g e t h e r w i t h ( 9 ), r e s u l t s i n (1 0 ) a n d ( 1 1 ) .

    1 _ __ j < n - 1 , ( 1 0 )

    1 < j < n - 1 . ( 1 1 )

    i < i < n - 1 , ( 1 2 )

    T h e i n t r o d u c t i o n o f p o l a r c o o r d i n a t e s p r o c e e d s t h e s a m e a s b e f o r e up t ot h e d e t e r m i n a t i o n o f # . T h e n , f o r 1 < i < n - 1 ,

    e O " h : 6 ' ~..,j=o ' ~ J i ~ ~ - I n - 1 { e _O , i = jj = 0 j = 0 6 0 ' ' / ~

    T h e n o r m i n t h i s c a s e i s l e ~ = e ( l / n ) ( n - 2 ) O ' , s o t h a t l e ( 1 / " ) (~ - ' ~ ) ~ 1 7 6 I = 1 ,1 < i < n - 1 , a n d o n e d e f i n e s # o a s f o l l o w s a n d t h e n s e t s 0 = 1 t o d e t e r m i n e~91

    n - - 1 n - - 1 n - - I

    i = 1 i = 1 i = 1F o r z = # ~ E 1 U ,

    { e } E ~ - ' ~ j = 02 ~ - - I 3z~ = ~ - ( ( E , o , ) . o ~ ) J ~ o

    I n s i m i l a r f a s h i o n o n e t h e n c o n t i n u e s o n t o d e f i n e t h e a n g l e a n d t h e t r i g o n o -m e t r i c f u n c t i o n s c h i .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    15/22

    A d v a r t c e s i n A p p l i e d C l i f f o r d A l g e b r a s 8 , N o . 1 ( 1 9 9 8) 6 12 . A n a l y s i sS o m e r e s u l t s i n [ 3,4 ,5 ] f o r t h e 2 - d i m e n s i o r t a l c a s e w i l l b e e x t e n d e d h e r e t o t h en - d i m e n s i o n a l c as e . I n p a r t i c u l a r , e x t e n s i o n o f t h e C a u c h y - R i e m a n n c o n d i t i o n sw i ll be g iv e n f o r t h e t h r e e d i f f e re n t b a s i s s y s t e m s i n t r o d u c e d i n t h e p r e v i o u ss e c t io n . T h e d e f i n i t io n s o f l i m i t , c o n t i n u it y , a n d d e r i v a t i v e a r e e x t e n d e d i n t h eo b v i o u s w a y . F o r e x a m p l e , t h e d e r i v a t i v e o f f a t ~ i s

    f ' ( ~ ) = l i m f ( z ) - f (s

    B e c a u s e o f t h e s u b s c r i p t n o t a t i o n u s e d i n th i s p a p e r , ~ r e p l ac e s t h e c u s t o m a r yZ0.T h e o r e m 2 . 1 ( C a u c h y - R i e m a n n c o n d it io n s f o r t he b a si s B H , n )Fo r n = 2 V, f : D ---* R '~, D C R ~ , f ( x ) = ~ ~ U ~ ( z S , . . . , z , , _ l ) a H , z =}-'~~~z ~ ~ H , ~: = ~ ~ 5 :~ =H , i f t h e d e r i v a t i v e f ' ( ~ ) e x i s t s a t ~:, t h e n t h e p a r t i a ld e r i v a t i v e s o f t h e f i r s t o r d e r f o r a l l a r g u m e n t s o f t h e Ua m u s t e x i s t a t 5: a n ds a t i s f y t h e f o l l o w i n g c o n d i t io n s t h e r e ,

    O U ~ _ c g U ~ e b 0 < c < n - 1 , i < b < n - 1 . (1 3 )Oz 5 Ozb 'Proo f : T o u s e t h e c l a s si c al m e t h o d o f t a k i n g t h e l i m i t a l o n g e a c h c o o r d i n a t eax i s , l e t x - ~ = (zb - ~b ) b H , x b r ~ :b . T h e n M ( z - 5 :) ~ 91 and

    f ( x ) - f ( ~ ) ~ ~ [ U a ( x s , " " , x n - 1 ) - U ~ ( ~ : 5 , ' ' " , ~ : n -1 )] a Hz - ~ (zb - 2.b)

    S i n c e f ~ ( & ) i s a s s u m e d t o e x i s t , a n d 1 / b H = b H , i t fo l l o ws i n t h e l i m i t a s x - --* 5:t h a t OU~ OU= OU~r

    a a r

    w h e r e w e s e t a G b = c , g i v i n g a = c | b ( s i n c e b @ b = 0 ) . S i n c e t h i s h o l d sf o r e a c h b , i t fo I l ow s t h a t , f o r e ~ c h c , t h e n p a r t i a l d e r i v a t i v e s O U r0 < b < n - 1 , a r e a l l e q u a l .r e m a r k . A s n o t e d i n [6] f o r n = 2 , t h e co n d i t io n s o f t h e t h e o r e m a r e n o ts u f f i c i e n t f o r t h e d e r i v a t i v e t o e x i s t a t ~ : .T h e o r e m 2 . 2 ( C a u c h y - R i e m a n n c o n d it io n s f or t h e b a si s Bh,,~)

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    16/22

    62 n-Dimensional Hyperbolic Complex Numbers P. Fjelstad and S. G. GalF o r n E N , f : D ---+ R '~ , D C R '~ , f ( x ) = E i U i( x o , . . ' , x ,~_ l )q x = ~~~ix iq5: = )-~~~~?~~h, i f t he der iva t ive of f ' ( fc) e x i s t s a t ~ , t h e n t h e p a r t i a l d e r i v a t i v e so h e f ir s t o r d e r f o r a l l a r g u m e n t s o f t h e Ui m u s t e x i s t a t ~ a n d s a t i s f y t h ef o l lo w i n g c o n d i t i o n s t h e r e .

    O ( U o + u ~ ) O ( U o + u j )- - 3Ozo Ozj

    OUi OU~Oxa - O x i ' i r j '

    l < _ j < _ n - 1l < _ i , j < _ n - 1 (14)

    For j = O, wi th oh = 1 , t he resu l t i s

    wh i l e for j r O ,OUj OUo ~ OUi ~ -l OUi ~ OUis'(~)=~~-+~ ,:o?-g~J+.Z,~;~Jh + ~ h : ,~

    i r i C j i ~ jE q u a t i n g f o r e a c h c o o r d i n a t e r e s u l ts i n t h e f o l lo w i n g s y s t e m o f n (n - 1) di ffer-

    OUo ~ OUif ' ( Y:) = ~ zo - t- ~xo ih ,i=1

    e n t i a l e q u a t i o n s .OUo _ OUjOzo OzjOUi OUiOxj OxjOUi n-1Ozo - ~ - -t ~ - o*r

    OU_ _ n-10Ui+ O z j ~ O z i ' 1

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    17/22

    A d v a n c e s i n A p p l i e d C l i f f o r d A l g e b r a s 8 , N o . 1 ( 1 9 9 8 ) 6 3F o r a s i m p l e r e q u i v a l e n t s y s t e m , a d d i n g f i r s t a n d t h i r d l i n e s g i v e s ,

    O(Uo + u~) O (U o+ us )Ozo Oxj , l < _ j < _ n - l . [ ]

    W h e n t h e b a s i s v e c t o r s a r e z e ro d i v i so r s , a s i n th e d i r e c t p r o d u c t b a s i s, a n -o t h e r a p p r o a c h m u s t b e u s e d , a n d b y d e m a n d i n g s o m e a d d i t io n a l s m o o t h n e s s ,a t h e o r e m w i t h n e c e s s a r y a n d s u f c o n d i t io n s r e s u l ts .T h e o r e m 2 . 3 ( C a u c h y - R i e m a n n c o n d it io n s f or t h e b a sis B 6 , n )F o r n E N , f : D -- +- R n , D C R '* , f ( z ) = 7] q P i ( z o , . . . , z , _ l ) q z = ~ q z i i 6 ,i = ~ i i i q w i t h t h e P i hav i ng a l l pa r t i a l de r i va t i ves o f t he f i r s t o r de r c on t i n -u o u s o n D , t h e d e r i v a t i v e f ' ( i ) ex i s t s a t e a ch ~ E D ( i . e . f i s ho l o m or p h i c i nD ) i f a n d o n l y i f t h e f o l lo w i n g c o n d i t i o n s a t e s a t i s fi e d ,

    OPiO z j = 0 , i r O < i , j < _ n - 1 . (15)I n th i s c a s e , f o r z E D , f i s o f t h e f o r m ,

    S ( z ) = ~ s 1 6 2i

    w i t h S ~ c o n t i n u o u s o n e a c h zi .(16)

    P r o @ F i r s t , a s s u m e f i s h o l o m o r p h i c o n D . F o r z , ~. E D , a n d M ( z - i ) =I -L(z i - i i ) 0 , i t fo l lows th a t

    f ( z ) - f ( s _ ~ [ P i ( z o , ' " , z n - 1 ) - P i ( s 1 6 1z -- s i z i - s

    A ppl y i ng t he m ean va l ue t heo r em ( s ee , e . g . [ 2 , p . 70 - 71 ] ) t o each P i , one has

    p , ( z o , . . . , z ~ _ ~ ) - p , ( ~ o , . . . , ~ , _ ~ ) : ~ L ~ ( ~ o ( k ) . . . ,3

    w h e r e e a c h z i (k ) is b e t w e e n z i and z i . S i nce t he l i m i t ex i s t s o f( f ( z ) - f ( ~ ) ) / ( z - ~ ) a s z ~ ~ , . M ( z - ~ ) ~ O , s o d o e s t h e l i m i t

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    18/22

    64 n-Dimensional Hyperbolic Complex Nambers P. Fjelstad and S. G. Gal

    l i m P i ( z o , ' . - , z , ~ - l ) - P i ( i o , . ' . , ~ ,~ - 1 ) =

    l im ( z o ( k ) , . . . , z , ~ _ l (k ) ) z iz , ~ 2 , i Z i - - Z i.7

    B y c o n t i n u i t y , O P i l O z j ( z o ( k ) , - . , Z n - l ( k ) ) g o e s t o O P i l O z j ( ~ . o , . . . , z ' , ~ - a ) int h e l i m i t , a n d w h e n i t i s d i f f e r e n t f r o m 0 , t h e i n d e p e n d e n c e o f z i a n d z j , f o ri r j , m e a n s t h a t t h e l im i t o f ( z i - ~ . j ) / ( z i - i i ) a s z - - * i c a n b e a n y r e a lv a l u e o n e d e s i r e s . T h u s f o r t h e l i m i t t o b e u n i q u e , a s a s s u m e d , ( 1 5 ) m u s t h o l d .C o n v e r s e l y , s u p p o s e t h a t ( 1 5 ) h o l d s a t e a c h i E D . T h e n P i = f i ( z i ) w i t h l ic o n t i n u o u s a t e a c h z i , s o t h a t ,

    l i m S ( z ) - f ( 5 ) Z l im [ f i ( z i ) - f i ( 2 i ) J i 5 Z f i= i ) i ~ . ~.~( ,-i )#o i 2,4(,- i)r i

    R e m a r k s : 1 ) B e c a u s e o f t h e r e s t r i c t i o n t h a t z - ~ n o t b e a z e r o d i v i s o r i nt h e l i m i t p r o c e s s , o n e c a n , f o r a g i v e n f , a r b i t r a r i l y r e d e f i n e f o n t h e l i n e sz j = i i w i t h o u t a f f e c t in g th e e x i s t e n c e o f t h e d e r i v a t i v e o f f a t ~ . O n e c a nt h u s c o n s t r u c t " p a t h o l o g i c a l " f u n c t i o n s h a v i n g d e r i v a t i v e s a t 5 , b u t w i t h t h e( O P i / O z j ) ( s f o r a tl i, j , b e i n g a r b i t r a r y , i n c l u d i n g b e i n g n o n e x i s t e n t .2 ) R ea so ni ng e xa c t ly a s in the ca se n - 2 ( s ee [4] ) , i t fo l low s tha t i r f : D ---+ R '~i s o f t h e f o r r o ( 1 6 ), t h e n t h e n a t u r a l d o m a i n o f d e f i n it i o n o f f is t h e s m a l l e s tn - d i m e n s i o n a l b o x o f t h e f o r m { z - ~ o - 1 z i i 6 1 a i < z i < b i } i n w h i c h Dc a n b e i n s c r ib e & T h e r e f o r e t h e n a t u r a l d o m a i n s o f d e f i n i ti o n fo r h o l o m o r p h i cf u n c t i o n s a r e j u s t s u c h b o x e s w i t h z e r o d i v i s o r f a ce s .3 ) I t is w e l l k n o w n t h a t f o r n - - 2 a n d t h e h o l o m o r p h i c f u n c t i o n f ( z ) =~ : U a ( z o , X l ) a H t h ~ t 0 2 U a / O x 2 = O 2 U ~ , / O x ~ , a - 0 , 1 , w h i c h i s t h e w a v ee q u a t i o n . F o r n > 2 , i r f o l l o w s f r o m ( 1 3 ) , f o r c = 0 , a n d t h e n f o r c = a @ b ( s oa - - c @ b a n d b = c ~ a ) , t h a t

    au . aub ag: OU~r OU~~~ aubO z : a m b ' O z b O z b - O z : - " O z:

    T h e n , o f c o u r s e ,

    s o o n e c a n w r i t e ,02 U , 02 Ub 02 U:O z O - O~,~Ozb - O z b 2 '

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    19/22

    Advances in Appl ied Clifford Algebras 8, No. 1 (1998) 65

    0 2 U o 0 2 U o O 2 U ~0 z 5 2 - O x f 2 . . . . . O z n _ 1 2 , 0 < a < n - 1 . (1 7)A h a l t e r n a t i v e m e t h o d is t o u s e t h e f o r m ( 1 6) f o r a h o l o m o r p h i c f u n c t i o n a n dt h e n , u s i ng ( 3 ) , t r a n s f o r m i t b y t h e m a t r i x H t o a f u n c t i o n~-]o U o ( z S , . . . , z ~ _ l ) o H , s o t h a t

    Ozc : bH c.U o = In Z f ~ ( z ~ ) ~ H o , w h e r e z~ = E z ~ ~ H ~ ' s o O xbC a

    T h e n ,O U oO Xb - - - f ~ ( z r ~ H o .n ~ ~Ho, O~b~ n

    C C

    Since (b Hc ) 2 = 1 , i t fo l lows th a t 0 2 U a / O x b 2 i s t h e s a m e f o r a l l b , g i v i n g ( 1 7 ) .S i n c e (2 ) a n d ( 3 ) a t e l i n e a r t r a n s f o r m a t i o n s a s a b o v e , t h e f o r r o ( 1 6 ), w h e n

    c r a n s f o r m e d t o a f u n c t i o n ~ i U i ( x o , . " , z n -1 ) q w i ll g i r e t h e s a m e r e s u l t a sa b o v e f o r t h e U i, n a m e l y ,

    0 2 U i 0 2 U i 02 Ui. . . . . . 0 < i < n - 1 .O z o 2 O z 12 O z , _ 1 2 'F o r t h e c a s e n = 3 , t h i s s y s t e m o f e q u a t i o n s w a s s t u d i e d i n [ 9].

    I n w h a t f o ll o w s , s o m e s i m p l e a p p l i c a t i o n s o f t h e d e r i v a t i v e w i l l b e g i v e n .T h e o r e m 2 .4G i v e n n e N , a b o x B = { z = E q < z i < b i } , f : B ~ R n ,f ( z ) = ~ ' ~ ~ iP i ( z o , . . . , z ~ - l ) q w i t h t h e P i h a v i n g c o n t i n u o u s p a r t i a l d e r i v a -t i ve s o f f i rs t o r d e r a n d f b e i n g h o l o m o r p h i c o n B . I f A 4 ( f ' ( z ) ) ~ 0 f o r z E B ,t h e n f i s o n e - t o - o n e o n B ( i. e. u n i v a l e n t o n B ) .P r o @ B y T h e o r e m 2 .3 , f i s o f t h e f o r m f ( z ) = ~ - ~ ~ q z e B , w h e r et h e f [ ( z i ) a t e c o n t i n u o u s o n [a i , b i ] . A s s o c i a t e f w i t h t h e v e c t o r i a l f u n c t i o nP = ( P o , " ' , P n - 1 ) , w h e r e P i : bi] --+ 1:91P i ( z o , " ' , z , , - 1 ) = f i ( z i ) , s u c ht h a t f f ( P ) ( z ) = H i f = . A / [ ( f' (z ) ~s 0 ( h e r e J ( P ) ( z ) is t h e J a c o b i a n o f Pa t z ) . A s a c o n s e q u e n c e o f a w e l l- k n o w n t h e o r e m o f v e c t o r a n a l y s i s ( s ee , e. g .[2, p .97 ] ) i t fo l lows th a t P : x i [ a / , bi] --~ R "~ i s o n e - t o - o n e , w h i c h m e a n s t h a t fi s o n e - t o - o n e . 0

    S ince z = p ( z ) I z ~ ( ~ ) w h e n . M ( z ) :/= 0 , t h e i d e a o f a c o n f o r m a l m a p p i n g c a nb e a p p l i e d . T h i s w i l l b e d o n e u s i n g b a s i s v e c t o r s q b u t w o r k s e q u a l l y w e l l

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    20/22

    66 n-Dimen sionaI Hyperbo lic Complex Numbe rs P. Fjelstad 91 S. G. Gelusing basis vectors aH. An a rc 7 ( t ) = EiTi(t)q t 9 [a,b], is differenliablei f 7 ' (~) exis ts and is cont in uous . I t i s regular i f 3d (7 ' ( t ) ) 7s 0 , which meansa(7 ' ( t ) ) i s de f ined . A regu la r d i f fe ren t i ab le a rc i s smoo~h and has a t angen twhos e direct ion is det erm ine d by the angle o~(7 '( t ) ) . A func t ion f : D --*/~n,D C R '~, i 9 D, is hyperbolic conformal a t ~ i f fo r each pa i r o f smo oth a rcs7, r [a, b] --~ D, w ith 7 ( t ) = t i ( i ) = 5 , the fol lowing holds

    ~ ( 7 ' ( i ) ) - ~ ( ~ ' ( ~ ) ) = ~ ( ( y o 7 ) ' ( ~ ) ) - ~ ( ( f o ~ ) ' ( / ) ) .

    T h e o r e m 2 . 5Gi ve n f : D ~ /~~, z 9 D. If f ' ( z ) exis ts a t ~? and M (f ' ( ~ )) 7s 0 , the n f isconformal a t ~ .Pro@ L et 7,fl be a pa ir o f smo oth a rcs a s in the above de f in i t ion . S ince.M (f ' (2 )) 7s O, a( f ' (~? ) ) i s de f ined . By hypo th es i s i t fo llows tha t the re ex i s t s an e i g h b o r h o o d o f l , V ( t ) , such that for a l l t 9 V ( t ) \ { t } w e h a v e M ( 7 ( t ) -7( 91 7s O, so we can wri te,

    f ( 7( t ) ) - f (3 ' ( / ) ) _ f (q ' (g)) - f ( 7( ~) ) 3 '( 91 - 3 ' (~)t - i 7(t ) -- 7( i) t --

    and s imi la r ly fo r t i. Pass ing to the l imi t and fo l lowing s tan dard a rg um ent s weg e t t h e t h e o r e m .I I . em ark s : 1 ) For n = 2, Th eo re m 2 .5 was s ta ted in [3].2 ) V er y s i m pl e e x a m p l e s o f h y p e r b o l i c c o n f o r m a l m a p p i n g s a r e f ( z ) = e ~ a n df ( z ) = a ,+b where M ( c z + d) 7 O, Ad (a d - bc) 7s O. Indeed , fo r z = ~i z i i6,cz+ da = ~i a i i6, etc.,

    az + b ~ ai zi + bie ~ = E e ~ ' i S , a n d ~ z ~ d - ~ cizi +d-----~iqi

    f r o m w h i c h o n e e a s il y d e r iv e s t h a t M ( f ' ( z ) ) r 0 .In the fol lowing a cons ider at io n of the in teg ral wi l l be given. As in [4], we

    sa y th a t f : D ---* R n is pseudoholomorphic on D if f is of the f or mf ( z ) = ~ 2 S , ( z , ) , r ~ = E z ,, 9 D,

    i i

    where the li are con t inuous on the i r dom ains o f de f in i t ion .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    21/22

    Advances in Applied Clifford Algebras 8, No. 1 (1998) 67R e m a r k s : 1 ) O b v i o u s l y , i f f i s h o l o m o r p h i c t h e n f i s p s e u d o h o l o m o r p h i c .2 ) R e a s o n i n g e x a c t l y a s in [4] i t f o l l o w s t h a t t h e n a t u r a l d o m a i n s o f d e f i n i t i o nf o r p s e u d o h o l o m o r p h i c f u n c t i o n s a r e th e n - d i m e n s i o n a l b o x e s d e f i ne d e a r l i e r .

    L e t f : D - -* R ~ , D C R n , a n d l e t 3' : l a , b ] - -~ D b e a n a r c i n D . C o n s i d e r i n ga d i v i s io n d : 7 ( a ) = z 0 , z l , . - . , zm = 7 ( b ) a n d t h e p o i n t s ~ ~ ' b e t w e e n ' z k a n dz ~ + l o n 7 , w e c a n d e f i n e th e i n t e g r a l i n th e s t a n d a r d w a y a s

    f f ( z ) d z =n-1

    l i m ~"~~f(~k)(Z~+ l - - Zk) ,v(d)---*O = 0

    ( w h e r e v ( d ) i s t h e n o r m o f d ) .B y s i m p l e s t a n d a r d c a l c u l a t i o n s , a s i n [4 ], i t f o l lo w s t h a t i f f i s i n t e g r a b l e o n7 , f ( z ) = ) ~4 P i ( z o , " " , zn - 1 ) q z : ~ i z i i 6 , then

    / f ( z ) d z = ~q f T P i ( z o , " ' , z n - 1 ) d z i i&T h e o r e m 2 . 6I r f : D ~ R ~ is p s e u d o h o l o m o r p h i c o n D a n d 7 : l a , b ] - -* D i s c l o s e d ( i . e .7 ( a ) = 7 ( b ) ) , t h e n f 7 f ( z ) d z = O.P ro@" I f 7 ( a ) = ~- , i a i i~ , 3 ' ( 5 ) = ~ i b i i t h e n w e e a s il y g e t

    y ( z ) d z = I , ( z , ) d z , , e = O,t

    s i n c e a i = b i f o r 0 < i < n - 1 , w h i c h p r o v e s t h e t h e o r e m .R e m a r k . W o r k i n g i n t h e b a s i s B ~,n m a k e s i t e a s y t o e x t e n d t o t h e n -d i m e n s i o n a l c a s e m a n y o t h e r r e s u l t s i n [ 4, 6, 7] . Fo r e x a m p l e , r e a s o n i n g e x a c t l ya s in [ 7 , s e c t i o n 3 ] , w e g e t t h e f o l l o w i n g .

  • 7/29/2019 n Dimensional Hyperbolic Numbers

    22/22

    68 n-Dimensional Hyperbolic Comp lex Num bers P. Fjelstad and S. G. GalT h e o r e m 2 . 7L e t f : R ~ [ 0, 1 ] ~ R ~ b e p s e u d o h o l o m o r p h i c o n t h e b o x R ~ [ 0 , 1]= { z = ~ i z ii