nanotechnology in biological engineering ii · the effect of electrical double layer on the...

14
THE EFFECT OF ELECTRICAL DOUBLE LAYER ON THE ELECTROCHEMICAL PROCESSES OF NANOMETER INTERDIGITATED ELECTRODES Xiaoling Yang 1 and Guigen Zhang 1,2,3 1 Micro/Nano Bioengineering Laboratory, 2 Nanoscale Science and Engineering Center, 3 Faculty of Engineering The University of Georgia, Athens, GA 30602 1 Nanotechnology in Biological Engineering II

Upload: others

Post on 14-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

THE EFFECT OF ELECTRICAL DOUBLE LAYER ON THE ELECTROCHEMICAL PROCESSES OF NANOMETER

INTERDIGITATED ELECTRODES

Xiaoling Yang1 and Guigen Zhang1,2,3

1Micro/Nano Bioengineering Laboratory, 2Nanoscale Science and Engineering Center, 3Faculty of Engineering 

The University of Georgia, Athens, GA 30602

1

Nanotechnology in Biological Engineering II

Motivation

• Electrochemical sensor plays an important role  in clinical diagnosis:

Features: High Sensitivity, Real‐time detection, Simple operation

• Micro/nano interdigitated electrodes (Micro/Nano IDEs) based electrochemical biosensors are getting more and more popular: 

Features: small dimension, low sample volume, low cost

Application: Glucose sensor, immune sensor, gas sensor

2

Motivation

• Problem: 

For sensing purpose, IDEs measure faradic current

When the electrodes get to nanometer scale, the faradic responseat electrode may be affected by electrical double layer (EDL).

3

EDL Effect on Single Electrodes

reactant Concentration

Potential

Diffuse Layer

Diffusion Layer

reactant Concentration

Potential

Diffuse LayerDiffusion Layer

Micro electrodes: diffusion only Nano electrodes: diffusion and electromigration

EDL formation: A charged electrode can attract oppositely charged species in the solution and forms EDL (compact layer and diffuse layer)

Compact Layer

+

+

Diffuse layer

Bulk Solution

OHP

-----------

x

-

-

Gouy Plane

+

+-

-

+

+

-+

+

+

EDL effect

4

EDL Effect on Nano‐IDEsy

x1xIHP OHP OHP IHP

µ

0r

1r 2r

Symm Symm

Diffuse Layer

Diffuse Layer

reactant Concentration

Potential

Diffuse LayerDiffusion Layer

Diffuse layer and diffusion layer overlap

Diffuse layers overlap at two electrodes of nano-IDEs

For a widespread application of nano-IDEs, it is imperative to elucidate the effect of the EDL on the faradic reactions of nano-IDEs. But this problem is too complicated to be solved by analytical means.

5

Objective

• To  investigate the EDL effect on the faradic reaction of nano‐IDEs by a fully numerical method developed using COMSOL Multiphysics

6

• In this study we expand previous method to further address the issue at nano‐IDEs. 

7

*Yang, X.; Zhang, G. Nanotechnology 2007, 18, 335201-335209

Model Development

Electrolyte

G G GC C C

y

1xOHP IHPIHP OHP

xG C

• Previously our group developed a fully numerical method by COMSOL Multiphysics using Nernst‐Plank‐Poisson equation to simulate EDL affected faradic reaction at single nanometer electrodes.*

r =1nm

Electrolyte

• Potential at electrode and bulk solution

– EG = 0.3V to ‐0.4V at 20mV/s; 

– EC = 0.3V

– Eb = 0V

• Current Flux 

Butler‐Volmer Equation

• Oxidized species (OS) and Counter ion : 5mM

• Reduced species: 0mM

• Supporting electrolyte (SE): 

SE is excess          CSE = 500mM

Initial Concentrations Boundary Conditions

8

1z

b

fz ReO −− ⎯→←+

y

1xOHPIHPIHPOHPxECEG

V V

Eb

R0

0

O0

0bf

cRTEVEF1k

cRTEVEFkJJ

⋅−−−⋅−

⋅−−−⋅=−=

]/)()exp[(

]/)(exp['

'

α

α

V: potential at OHP, i.e. the Position of Electron Transfer

Model Development

• Potential distribution– Poisson equation

• Mass transport– Nernst‐Plank equation

9

)( VcDRT

FzcD

tc

jjj

jjj ∇+∇∇=

∂∂

y

1xOHP IHPIHP OHP

x

∑=j

jjczρ

0=ρ0=ρ

ρεε −=∇∇ )( V0

61 =ε

782 =ε

Assume: perfectly smooth electrode surface; no specific adsorption

‐‐‐ Governing Equations

Model Development

a b c

r0 r0 + l1

IHP OHP

B

Electrode surface

Electrolyte

Radial Distance (r)

PET

r0 + l1 + l2

a b c

r0 r0 + l1

IHP OHP

B

Electrode surface

Electrolyte

Radial Distance (r)

PET

r0 + l1 + l2

ε

EDL Effect and the Charge Valences of Redox Species

10

Potential (V)-0.4 -0.2 0.0 0.2 0.4

Cur

rent

Den

sity

(kA

/m2 )

-60

-40

-20

0

20

40

60

Diffusionz = -1z = +1

Generator

Collector

EDL affected voltammetric curve deviated from diffusion controlled case, when inter‐electrode spacing wgap = 4nm

OHP IHPIHP OHP

4nm

EDL Effect with Changing  Gap Spacing

limiting current and wgap

11

Potential Distribution at wgap = 4nm & 16nm

More diffuse layer overlap have more EDL effect!

Distance/(wgap - 2µ)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Pot

entia

l (V

)

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

wgap =4nmwgap = 16nmEG =0.3V, EC =0.3VEG = -0.4V, EC = 0.3V

BOHP IHPIHP OHP

wgap(nm)4 16 64

Lim

iting

Cur

rent

(kA

/cm

2 )-40

-30

-20

-10

0

10

20

30

40

Diffusionz = -1z = +1Generator

Collector

A

EDL Effect and Supporting Electrolyte

12

Potential (V)-0.4 -0.2 0.0 0.2 0.4

Cur

rent

(kA/

cm2 )

-40

-30

-20

-10

0

10

20

30

40Diffusion500 mM0 mM

Generator

Collector

A

z = -1

z = -1

Potential (V)-0.4 -0.2 0.0 0.2 0.4

Cur

rent

(kA/

cm2 )

-100

0

100

200

Diffusion500mM0 mM

Generator

Collector

B

z = +1

z = +1

The voltammetric curve deviate significantly from diffusion controlled case when supporting electrolyte is absent in the solution.

Conclusion

• The effect of EDL on the voltammetric performance of nano IDEs is dependent on – The charge valence of redox species– The gap spacing between electrodes– The concentration of supporting electrolyte

• This work demonstrates that a complete computer‐modeling approach is well suited for elucidating the electrochemical processes of electrodes with complex geometries when faradic reactions and the EDL effect are of concerns.

13

Thank you!

14

AcknowledgementNational Science FoundationThe Faculty of Engineering at The University of Georgia.My advisor Dr. Guigen ZhangAll my group members