nchrp 9-49a project update: performance of wma ......tn sr 125 project ia us 34 project summary and...

49
NCHRP 9-49A Project Update: Performance of WMA Technologies: Stage II – Long-term Field Performance Binder ETG Meeting Oklahoma City, OK Sept 15, 2015

Upload: others

Post on 28-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • NCHRP 9-49A Project Update: Performance of WMA Technologies:

    Stage II – Long-term Field Performance

    Binder ETG Meeting Oklahoma City, OK

    Sept 15, 2015

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Material Property Changes Over Time

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    1

  • Research Objectives To identify the material and engineering properties of

    WMA pavements that are significant determinants of their long-term field performance, and

    To recommend best practices for the use of WMA

    technologies.

    2

  • 3

    New (2011 Construction) Pavement Projects • 5 Projects = 10 HMA-WMA pairs • 1st round: pre-overlay distress survey, construction

    monitoring, on-site sample compaction, field cores, and falling weight deflectometer tests

    • 2nd round: field cores and distress survey

  • 4

    In-service (as of 2011) Pavement Projects • 22 field projects + 1 HVS = 40 HMA-WMA pairs • 1st round: distress survey, field cores and falling

    weight deflectometer tests • 2nd round: distress survey

  • 5

    Projects Distribution

    0

    5

    10

    15

    20

    No.

    of P

    roje

    cts

    Organic Chemical Foaming WMA Technology

    0

    5

    10

    15

    20

    No.

    of P

    roje

    cts

    =3M Traffic (ESALs)

    0

    2

    4

    6

    8

    10

    12

    No.

    of P

    roje

    cts

    [4,5) [6,7) [8,10) Age, Years

    0

    5

    10

    15

    20

    25

    No.

    of P

    roje

    cts

    Flexible PCC/Cement Stabilized Base Pavement Structure

  • Project MT I-15 TN SR 125 IA US 34 TX FM 973 LA US 61

    Construction Year 2011 2011 2011 2011 2012

    Warm Mix Sasobit, Evotherm

    DAT, Foaming Evotherm 3G Sasobit, Evotherm 3G

    Evotherm 3G, Foaming

    Sasobit, Evotherm 3G

    Mixing Temp., °F H (315-320)

    W (283-300) H (320-350) W (290-320)

    H (330-340) W (265-280)

    H (310-340) W (249-290)

    H (325) W (295)

    Compaction Temp., °F

    H (290-300) W (269-285)

    H (311-335) W (275-290)

    H (253-265) W (220-239)

    H (268-291) W (221-268)

    H (277-316) W (245-250)

    Design Thickness, in. 2.5 1.25 1.5 2.0 2.0

    Traffic 3 million (3,170

    AADT, 26.3% truck) 0.39 million (3,470 AADT, 13% truck)

    3 million (6,450 AADT, 10.9% truck)

    3 million (11,300 AADT, 4.3% truck)

    9 million (34,138 ADT, 14% truck)

    Aggregate Siliceous Gravel & Sand Limestone, Quartzite &

    Sand Gravel, Limestone &

    Dolomite Granite & Limestone

    NMAS, in. 3/4 1/2 1/2 3/4 1/2

    Asphalt Binder PG 70-28 PG 70-22 PG 58-28 PG 70-22 PG 76-22

    Anti-stripping Agent Hydrated Lime, 1.4% AZZ-MAZ, 0.3% None None 0.6%

    Polymer-modified SBS Yes None N/A SBS

    Asphalt Content, % 4.6 6.0 5.44 5.2 4.7

    Gmm HMA (2.458) Sas

    (2.466) Evo (2.459) Foam (2.453)

    HMA (2.352) Evotherm (2.355)

    HMA (2.423) Sasobit (2.428) Evotherm

    (2.429)

    HMA(2.406) Evotherm (2.405) Foaming (2.420)

    HMA (2.464) Sasobit (2.468)

    Evotherm(2.464)

    Sampling Date Sep. 15-17, 2011 Oct. 24-31, 2011 Sep. 6, 2011 Dec. 1, 2011 May 16-June 6,

    2012

    RAP or RAS None 10% RAP 17% RAP None 15% RAP

    Structure

    2.5'' overlay + 7'' existing HMA + 16.2'' base (non-

    stabilized) + infinite subgrade

    1.25'' overlay + 8'' bituminous base + 6'' min. aggregate base + infinite

    subgrade

    HMA & Sasobit: 1.5''overlay + 5'' existing HMA + 7'' PCC + subgrade Evotherm: 1.5'' overlay + 3'' existing HMA

    + 9'' PCC + subgrade

    2'' overlay + 8'' existing HMA + 10'' base +

    141.1'' subgrade (lean clay)

    2'' overlay + 8'' existing HMA + 8'' PCC + 6'' cement treated soil

    subgrade 6

  • Mixture Test

    IDT Dynamic Modulus/Creep

    Compliance

    Fatigue- IDT Fracture at Room

    Temp

    Thermal Cracking-IDT Fracture at Low

    Temp

    Rutting/Moisture-

    Hamburg

    Testing Conditions

    Temp.: −4, 14, 32, 50, 68, 86ºF; Frequency: 20, 10, 5, 1, 0.1, 0.01 Hz Duration: 100 seconds

    Temp.: 68ºF Loading rate: 2 in./min

    Temp.: 14ºF Loading rate: 0.1 in./min

    Temp.: 122ºF Wet condition

    Material Properties

    Dynamic modulus; Creep compliance

    IDT strength; Fracture work density; Vertical failure deformation Horizontal failure strain

    IDT strength; Fracture work density; Vertical failure deformation; Horizontal failure strain

    Rut depth; Stripping inflection point (SIP); Cycles

    References/Standards

    AASHTO T322 Wen et al. 2002

    AASHTO T322 AASHTO T322

    Wen 2012 AASHTO T324

    7

    Mixture Test Summary

    Vertical Failure Deformation

  • Binder Test PGs Rutting: MSCR Fatigue:

    Monotonic at Room Temp

    Thermal Cracking: Monotonic at Low

    Temp

    Testing Conditions Different temp

    depending on the test (DSR, BBR)

    Stress: 0.1, 3.2kPa Temp.: 98% Reliability from LTPP Bind

    Temp.: 68ºF Shear strain rate: 0.3 s-1

    Temp.: 41ºF Shear strain rate: 0.01s-1

    Material Properties PG; BBR stiffness; m-value

    Jnr0.1, Jnr3.2; R0.1, R3.2

    Maximum stress; Fracture energy; Failure strain

    Maximum stress; Fracture energy; Failure strain

    References/Standards

    AASHTO MP1/T240/T313

    AASHTO T350 Wen et al. 2010 Wen 2012

    8

    Binder Test Summary

    Fracture energy

    Failure strain

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Effects of WMA on construction practices Material Properties Changes

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    9

  • 10

    Transverse Cracking

    Reflective Surface-initiated

    Existing crack in the shoulder

  • 11

    14 (21 H-W Pairs) out of 28 projects exhibited transverse cracking 1st Round HMA/WMA Transverse Cracking Comparison

    3/6 5/10

    1/4 5/8

    • H>W: HMA has more cracking than WMA

    05

    101520

    5

    15

    1 Pr

    ojec

    t Num

    ber H>W

    H=WH

  • 12

    22 (35 H-W pairs) out of 28 projects exhibited transverse cracking

    • HMA has slightly more transverse cracks than WMA

    2nd Round HMA/WMA Transverse Cracking Comparison

    4/6

    1/4

    9/10

    8/8

    • H>W: HMA has more cracking than WMA

    0

    5

    10

    15

    20

    6

    27

    2 Pro

    ject

    Num

    ber

    H>WH=WH

  • 13

    Compare Material Properties

    • H>W, H=W, HW, H=W, H

  • 14

    Significant Determinants for Transverse Cracking Based on 1st Round Results

    E* (14°F)

    Mix Work Density (14°F)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24N

    o. o

    f Pai

    rs

    Positive Negative

    BBR stiffness

    Binder shear strength(41°F)Binder fracture energy(41°F)Mix E* (14°F)

    Binder shear strength(41°F)Binder shear strength(68°F)Mix work density (14°F)

    Binder failure strain(41°F)BBR m-value

    Binder failure strain(68°F)Mix horizontal failurestrain (68°F)Mix vertical failuredeformation (68°F)

    15 out of 21 HMA/WMA pairs

  • 15

    Verification: Significant Determinants for Transverse Cracking Based on 2nd Round Results

    E* (14°F)

    Mix Work Density (14°F)

    02468

    10121416182022242628303234

    Num

    ber o

    f pai

    rs

    Postive Negative

    BBR stiffness

    Binder shear strength(41°F)Binder fractureenergy (41°F)Mix E* (14°F)

    Binder shear strength(41°F)Binder shear strength(68°F)Mix work density(14°F)Binder failure strain(41°F)BBR m-value

    Binder failure strain(68°F)Mix horizontal failurestrain (68°F)Mix vertical failuredeformation (68°F)

    25 out of 35 HMA/WMA pairs

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Material Properties Changes

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    16

  • 17

    Top-down Fatigue Cracking

  • 18

    8 (17 H-W pairs) out of 24 projects exhibited top-down longitudinal cracking.

    HMA and WMA are comparable in top-down fatigue cracking performance

    1st Round HMA/WMA Top-down Cracking Comparison

    0/6 2/10

    0/4 6/8

    0369

    1215

    0

    15

    2 Pr

    ojec

    t Num

    ber

    H>WH=WH

  • 19

    14 (24 H-W pairs) out of 28 projects exhibited top-down longitudinal cracking.

    WMA has slightly more top-down fatigue cracking performance than HMA

    2nd Round HMA/WMA Top-down Cracking Comparison

    3/6

    0/4

    5/10

    6/8

    0369

    1215182124

    1

    18

    5 Proje

    ct N

    umbe

    r

    H>WH=WH

  • 20

    Significant Determinants for Top-down Longitudinal Cracking Based on 1st Round Results

    0

    2

    4

    6

    8

    10

    12

    14

    16

    No.

    of P

    airs

    Positive Negative

    Mix IDTstrength(68°F)

    Mix creepcompliance (68°F)

    Mix horizontalfailure strain(68°F)Mix vertical failuredeformation(68°F)

    Vertical failure deformation (68ºF), 15 out of 17 pairs

  • 21

    Verification: Significant Determinants for Top-down Cracking Based on 2nd Round Results

    0

    4

    8

    12

    16

    20

    24

    No.

    of P

    airs

    Positive Negative

    Mix IDTstrength(68°F)

    Mix creep compliance(68°F)

    Mix horizontal failurestrain (68°F)

    Mix vertical failuredeformation (68°F)

    Vertical failure deformation and horizontal failure strain (68ºF), 17 out of 24 pairs

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Material Properties Changes

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    22

  • 23

    Rutting

  • 24

    23 projects (43 H-W pairs) exhibited measurable rut depth.

    HMA and WMA are comparable in rut depth

    2nd Round HMA/WMA Rutting Performance Comparison

    5/6

    1/4

    9/10

    8/8

    05

    10152025303540

    3

    39

    1 No.

    of P

    airs

    H>WH=WH

  • 25

    Significant Determinants for Rutting Resistance

    34 out of 41 HMA/WMA pairs

    Mix RRI High PG

    Low PG

    0

    5

    10

    15

    20

    25

    30

    35

    40

    No.

    of P

    airs

    Positive Negative

    Jnr0.1

    Jnr3.2

    Mix creep compliance(86°F)Hamburg RuttingResistance IndexR0.1

    R3.2

    Binder high temp PG

    Binder low temp PG

    Mix E* (86°F)

    39 out of 43 HMA/WMA pairs

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Effects of WMA on construction practices Material Properties Changes

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    26

  • 27

    MT I-15 Project: Chip Seal On the Surface

  • 28

    MT I-15 Project: 2013 Vs 2011 Field Cores Binder PG Tests

    -30

    -24

    -18

    -12

    -6

    0

    Low

    Tem

    p. P

    G

    0

    12

    24

    36

    48

    60

    72

    84

    Hig

    h Te

    mp.

    PG

    HMA Sasobit Evotherm Foaming HMA 2011

    HMA 2013

    Sas 2011

    Sas 2013

    Evo 2011

    Evo 2013

    Foam 2011

    Foam 2013

  • 29

    MT I-15 Project: 2013 Vs 2011 Field Cores

    Binder MSCR Tests

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    Jnr3

    .2, k

    Pa

    HMA Sasobit Evotherm Foaming

    HMA 2011HMA 2013Sas 2011Sas 2013Evo 2011Evo 2013Foam 2011Foam 2013

    01020304050607080

    R3.2

    HMA Sasobit Evotherm Foaming

    HMA 2011HMA 2013Sas 2011Sas 2013Evo 2011Evo 2013Foam 2011Foam 2013

    2013 vs 2011 HMA Sasobit Evotherm Foaming

    d2s, Jnr3.2 (31.3%)* 18.4% (=) 55.8% () 9.2% (=) 0.12% (=) 11.8% (=)

    * Source (Anderson 2014) http://www.webpages.uidaho.edu/bayomy/IAC/54th/Presentations_54th/2.%20IAC2014_MSCR_Mike%20Anderson.pdf

    http://www.webpages.uidaho.edu/bayomy/IAC/54th/Presentations_54th/2. IAC2014_MSCR_Mike Anderson.pdf

  • 30

    MT I-15 Project: 2013 Vs 2011 Field Cores Binder Fracture Tests at Intermediate Temperature

    0

    100

    200

    300

    400

    500

    600

    Max

    imum

    Str

    ess,

    kPa

    HMA Sasobit Evotherm Foaming

    HMA 2011HMA 2013Sas 2011Sas 2013Evo 2011Evo 2013Foam 2011Foam 2013

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    Frac

    ture

    Ene

    rgy,

    kPa

    HMA Sasobit Evotherm Foaming

    HMA 2011HMA 2013Sas 2011Sas 2013Evo 2011Evo 2013Foam 2011Foam 2013

  • 31

    MT I-15 Project: 2013 Vs 2011 Field Cores Binder Fracture Tests at Low Temperature

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    Failu

    re S

    trai

    n, m

    m/m

    m

    HMA Sasobit Evotherm Foaming

    HMA 2011HMA 2013Sas 2011Sas 2013Evo 2011Evo 2013Foam 2011Foam 2013

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Material Properties Changes

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    32

  • 33

    TN SR 125 Project: HMA Pavement

    Before Construction During Construction

    After Construction 3 years After Construction

  • 34

    TN SR 125 Project: 2014 Vs 2011 Field Cores Binder PG Tests

    0

    20

    40

    60

    80

    100

    High

    Tem

    p. P

    G

    HMA Evotherm

    HMA 2011

    HMA 2014

    Evo 2011

    Evo 2014

    -24

    -18

    -12

    -6

    0

    Low

    Tem

    p. P

    G

  • 35

    TN SR 125 Project: 2014 Vs 2011 Field Cores

    Binder MSCR Tests

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Jnr3

    .2, k

    Pa

    HMA Evotherm

    HMA2011HMA2014Evo 2011

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    R3.2

    HMA Evotherm

    HMA 2011

    HMA 2014

    Evo 2011

    Evo 2014

  • 36

    TN SR 125 Project: 2014 Vs 2011 Field Cores Binder Fracture Tests at Intermediate Temperature

    0.0

    500.0

    1000.0

    1500.0

    2000.0

    2500.0

    3000.0

    Max

    imum

    Str

    ess,

    kPa

    HMA Evotherm

    HMA 2011

    HMA 2014

    Evo 2011

    Evo 2014

    0.0

    1000.0

    2000.0

    3000.0

    4000.0

    5000.0

    Frac

    ture

    Ene

    rgy,

    kPa

    HMA Evotherm

    HMA 2011

    HMA 2014

    Evo 2011

    Evo 2014

  • 37

    TN SR 125 Project: 2014 Vs 2011 Field Cores Binder Fracture Tests at Low Temperature

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    Failu

    re S

    trai

    n, m

    m/m

    m

    HMA Evotherm

    HMA 2011

    HMA 2014

    Evo 2011

    Evo 2014

  • Outline Objectives & Research Progress Preliminary Findings

    Transverse Cracking Top-down Longitudinal Cracking Rutting & Moisture Susceptibility Material Properties Changes

    MT I-15 Project TN SR 125 Project IA US 34 Project

    Summary and Future Work

    38

  • 39

    IA US 34 Project: 2014 Vs 2011 Field Cores Binder PG Tests

    0

    12

    24

    36

    48

    60

    72

    84

    High

    Tem

    p. P

    G

    HMA Sasobit Evotherm HMA2011HMA2014Sas 2011

    Sas 2014

  • 40

    IA US 34 Project: 2014 Vs 2011 Field Cores

    Binder MSCR Tests

    0.0

    0.3

    0.6

    0.9

    1.2

    1.5

    1.8

    Jnr3

    .2, k

    Pa

    HMA Sasobit Evotherm

    HMA 2011HMA 2014Sas 2011Sas 2014Evo 2011Evo 2014

    0.02.04.06.08.0

    10.012.014.016.018.0

    R3.2

    HMA Sasobit Evotherm

    HMA 2011HMA 2014Sas 2011Sas 2014Evo 2011Evo 2014

  • 41

    IA US 34 Project: 2014 Vs 2011 Field Cores Binder Fracture Tests at Intermediate Temperature

    0.0

    400.0

    800.0

    1200.0

    1600.0

    2000.0

    Max

    imum

    Str

    ess,

    kPa

    HMA Sasobit Evotherm

    HMA 2011HMA 2014Sas 2011Sas 2014Evo 2011Evo 2014

    0.0

    500.0

    1000.0

    1500.0

    2000.0

    2500.0

    Frac

    ture

    Ene

    rgy,

    kPa

    HMA Sasobit Evotherm

    HMA 2011HMA 2014Sas 2011Sas 2014Evo 2011Evo 2014

  • 42

    IA US 34 Project: 2014 Vs 2011 Field Cores Binder Fracture Tests at Low Temperature

    0.00.20.40.60.81.01.21.41.61.8Fa

    ilure

    Str

    ain,

    mm

    /mm

    HMA Sasobit Evotherm

    HMA 2011

    HMA 2013

    Sas 2011

    Sas 2013

    Evo 2011

    Evo 2013

  • Block 1 43

    Carbonyl area (function of aging temperature and time)

    Inverse of log crossover modulus

    Crossover frequency

    G* and δ

    linear

    linear

    Arrhenius Equation

    Analysis

  • Aging Asphalt Binder: IA PG58-22, MT PG70-28(SBS) LA PG76-22(SBS)

    Temperature Aging time, days 55°C 2,5,10,18, 26, 35, 45, 60, 90 70°C 1, 3, 6,10,15, 22, 30, 40 85°C 1, 3, 5, 8,13,18, 24, 30

    100°C 1, 2, 4, 6, 8,11,14,17 ≤1mm

  • Block 1 45

    Analysis of crossover modulus data

    PG 58-28 PG 70-28

    PG 76-22 Figure 1/log Gc* growth of PG binders at four temperature in air

  • Block 1 46

    Predicted master curve of G* and δ (CA model) (aged 40 days at 70C)

    PG58-28 G* PG58-28 δ

    PG70-28 G* PG70-28 δ

  • Block 1 47

    Use Universal Model Parameters

    CA Shear Modulus

    Performance Grade DSR Function

    y = 0.99x R² = 0.94

    0

    0.5

    1

    1.5

    2

    2.5

    0 0.5 1 1.5 2 2.5

    Pred

    icte

    d C

    A (a

    .u.)

    Measured CA (a.u.)

    line of equality

    y = 1.00x R² = 0.96

    0.13

    0.14

    0.15

    0.16

    0.17

    0.18

    0.19

    0.13 0.14 0.15 0.16 0.17 0.18 0.19

    Pred

    icte

    d 1/

    log

    |Gc*

    | (1/

    log

    Pa)

    Measured 1/log |Gc*| (1/log Pa)

    line of equality

    y = 1.00x R² = 0.91

    55

    65

    75

    85

    95

    105

    55 65 75 85 95 105

    Pred

    icte

    d Pe

    rfor

    man

    ce g

    rade

    (PG

    )

    Measured Performance grade (PG)

    line of equality

    y = 1.00x R² = 0.97

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6

    Pred

    icte

    d G

    '/(η'/G

    ') (lo

    g Pa

    /s)

    Measured G'/(η'/G') (log Pa/s)

    line of equality

  • Thank You! Any questions?

    48

    Slide Number 1OutlineResearch ObjectivesNew (2011 Construction) Pavement ProjectsIn-service (as of 2011) Pavement ProjectsProjects DistributionSlide Number 7Slide Number 8Slide Number 9OutlineSlide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16OutlineSlide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22OutlineSlide Number 24Slide Number 25Slide Number 26OutlineSlide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32OutlineSlide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38OutlineSlide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44AgingSlide Number 46Slide Number 47Slide Number 48Slide Number 49