new physics at the lhc · 2016. 5. 13. · ...after the higgs discovery...and requiring...

99
New Physics at the LHC Tilman Plehn BSM physics Anomalies Higgs EFT Top EFT DM EFT Higgs sectors DM sectors SUSY New Physics at the LHC Tilman Plehn Universit ¨ at Heidelberg Frascati, May 2016

Upload: others

Post on 08-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

New Physics at the LHC

Tilman Plehn

Universitat Heidelberg

Frascati, May 2016

Page 2: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Beyond the Standard Model

What is the Standard Model?

– a gauge theory with the group structure SU(3)⊗ SU(2)⊗ U(1)

– massless SU(3) and U(1) gauge bosons

– massive electroweak gauge bosons

– single light Higgs scalar

– Dirac fermions in doublets and with masses equal to Yukawas

– generation mixing in quark and neutrino sector

⇒ QFT defined by particle content and (gauge) interactions

Page 3: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Beyond the Standard Model

What is the Standard Model?

– a gauge theory with the group structure SU(3)⊗ SU(2)⊗ U(1)

– massless SU(3) and U(1) gauge bosons

– massive electroweak gauge bosons

– single light Higgs scalar

– Dirac fermions in doublets and with masses equal to Yukawas

– generation mixing in quark and neutrino sector

⇒ QFT defined by particle content and (gauge) interactions

More physics at higher scales

– renormalizable Lagrangian [all operators to D4]

– neutrino masses? [see-saw at 1011 GeV?]

– flavor physics? [new operators above 104 GeV?]

– dark matter? [only solid evidence for new physics]

– gravity? [mostly negligible, and unrenormalizable in usual sense]

⇒ general effective–theory Lagrangian with those interactions and particles

⇒ cutoff scale built in, size of Λ negotiable

⇒ who the hell cares....???

Page 4: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Beyond the Standard Model H

t

H

W...theorists care more than even [Higgs discovery]

– top loop in Higgs self energy Σ

Σ ∼ −(

g mt

v

)2 ∫ d4q(2π)4

( /p + mt ) ( /p + /q + mt )

[q2 − m2t ] [(q + p)2 − m2

t ]∼ − 1

(4π)2

(g mt

v

)2Λ2 + · · ·

– sum to Higgs–mass correction1

p2 − m2H

−→ 1p2 − m2

H

+1

p2 − m2H

Σ1

p2 − m2H

+1

p2 − m2H

Σ1

p2 − m2H

Σ1

p2 − m2H

+ ...

=1

p2 − m2H

∞∑j=0

p2 − m2H

)j

=1

p2 − m2H

1

1− Σm2 − m2

H=

1p2 − m2

H − Σ

– and see the desaster after collecting all loop functions

m2H −→ m2

H −3g2

32π2

Λ2

m2W

[m2

H + 2m2W + m2

Z − 4m2t

]+ · · ·

⇒ Higgs mass including loops wants to be cutoff scale Λ

⇒ effective Standard–Model destabilized [Higgs wants to be at Λ, but does not function there]

⇒ hierarchy problem

Page 5: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Beyond the Standard Model

Starting from data...

...after the Higgs discovery

...and requiring high–scale physics

– Higgs mass driven to cutoff of effective Standard Model

⇒ easy solution: counter term to cancel loops ⇒ artificial, unmotivated, ugly

⇒ or new physics at TeV scale: supersymmetryextra dimensionslittle Higgs (Goldstone Higgs)Higgsless, composite Higgs, TopColor,YourFavoriteNewPhysics...

⇒ typically cancellation by new particles or discussing away high scale

⇒ beautiful concepts, but problematic at TeV scale [data seriously in the way]

⇒ new physics models in baroque state

Page 6: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Strategies

Theory tool box

– Lagrangian language established by Higgs discovery

– full new physics model [built to solve problems]

– simplified models [capturing experimental features, theoretically poor]

– effective field theory [symmetries and particles fixed, non-renormalizable operators]

– matter of convenience and tastebottom-up EFT simplified models full models

agnostic lecture 2data-driven lecture 3 lecture 4theory-driven lecture 3

Page 7: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Strategies

Theory tool box

– Lagrangian language established by Higgs discovery

– full new physics model [built to solve problems]

– simplified models [capturing experimental features, theoretically poor]

– effective field theory [symmetries and particles fixed, non-renormalizable operators]

– matter of convenience and tastebottom-up EFT simplified models full models

agnostic lecture 2 pre-LHCdata-driven lecture 3 lecture 4theory-driven lecture 3 pre-LHC

Page 8: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Strategies

Theory tool box

– Lagrangian language established by Higgs discovery

– full new physics model [built to solve problems]

– simplified models [capturing experimental features, theoretically poor]

– effective field theory [symmetries and particles fixed, non-renormalizable operators]

– matter of convenience and tastebottom-up EFT simplified models full models

agnostic lecture 2 dishonest pre-LHCdata-driven boring lecture 3 lecture 4theory-driven pointless lecture 3 pre-LHC

Page 9: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

750 GeV — the finger to particle theory

mγγ

spin-0

spin-1

spin-2

narrow

wide

not true

not true

not true

actual model

2 effective couplings

X → γγ

X → aa→ 4γ

‘vector quarks’

impossible

NMSSM

Furry

taste

tastetaste

My take on all those 750 GeV papers

– open questions due to limited significance

– general problem: signal rate large

– largely EFT exercise

– dimension-5 operators XGµνGµν and XAµνAµν −→ avoid di-jet constraints

– gauge invariant XBµνBµν and XWµνWµν −→ avoid VV constraints

– no clear link to other data

⇒ great to play with, but only for fun, please

Page 10: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

– look at gamma ray spectrum in galaxy

– remove all foregrounds

– check radial distributions

– explain by annihilating DM into photons

– mχ ∼ 25 ... 30 GeV from spectrum

Page 11: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

– look at gamma ray spectrum in galaxy

– remove all foregrounds

– check radial distributions

– explain by annihilating DM into photons

– mχ ∼ 25 ... 30 GeV from spectrum

Page 12: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

– look at gamma ray spectrum in galaxy

– remove all foregrounds

– check radial distributions

– explain by annihilating DM into photons

– mχ ∼ 25 ... 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

– analysis with all uncertainties

– fit without dark matter not good

Page 13: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

– look at gamma ray spectrum in galaxy

– remove all foregrounds

– check radial distributions

– explain by annihilating DM into photons

– mχ ∼ 25 ... 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

– analysis with all uncertainties

– fit without dark matter not good

– improved with NFW contribution

Page 14: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

– look at gamma ray spectrum in galaxy

– remove all foregrounds

– check radial distributions

– explain by annihilating DM into photons

– mχ ∼ 25 ... 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

– analysis with all uncertainties

– fit without dark matter not good

– improved with NFW contribution

– even better with modified NFW contribution

Page 15: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

– look at gamma ray spectrum in galaxy

– remove all foregrounds

– check radial distributions

– explain by annihilating DM into photons

– mχ ∼ 25 ... 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

– analysis with all uncertainties

– fit without dark matter not good

– improved with NFW contribution

– even better with modified NFW contribution

– different DM candidates [Calore etal]

⇒ DM model playground

101 102

mχ [GeV]

10−27

10−26

10−25

〈σv〉/

A[c

m3s−

1]

τ+τ−

qq

cc

bb

gg

W+W−

ZZ

hh

tt

Page 16: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings

Agnostic: why super-simple SM-Higgs sector? [SFitter]

– or: all couplings proportional to masses?

– assume: narrow CP-even scalarStandard Model operators

– total production/decay rates only– Lagrangian

L = LSM + ∆W gmW H WµWµ + ∆Zg

2cwmZ H ZµZµ −

∑τ,b,t

∆fmf

vH(fR fL + h.c.

)+ ∆gFG

Hv

GµνGµν + ∆γFAHv

AµνAµν + invisible + unobservable

t W,Z

b,tW,Z

– electroweak renormalizability through some UV completion

– QCD renormalizability not an issue

gg → Hqq → qqHgg → t tHqq′ → VH

←→ gHXX = gSMHXX (1 + ∆X ) ←→

H → ZZH → WWH → bbH → τ+τ−

H → γγ

Page 17: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings

Agnostic: why super-simple SM-Higgs sector? [SFitter]

– or: all couplings proportional to masses?

– assume: narrow CP-even scalarStandard Model operators

– total production/decay rates only– Lagrangian

L = LSM + ∆W gmW H WµWµ + ∆Zg

2cwmZ H ZµZµ −

∑τ,b,t

∆fmf

vH(fR fL + h.c.

)+ ∆gFG

Hv

GµνGµν + ∆γFAHv

AµνAµν + invisible + unobservable

t W,Z

b,tW,Z

Total width

– coupling extraction impossible without width assumption– observed partial widths:

N = σ BR ∝g2

p√Γtot

g2d√

Γtot∼ g4

g2∑ Γi (g2)

g2+ Γunobs

g2→0−→ = 0

gives constraint from∑

Γi (g2) < Γtot → ΓH |min

– WW → WW unitarity: gWWH . gSMWWH → ΓH |max [HiggsSignals]

– our assumption Γtot =∑

obs Γj [plus generation universality]

Page 18: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

-0.6

-0.4

-0.2

0

0.2

0.4

∆H

∆V

∆f

∆W

∆Z

∆t

∆b

∆τ

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Page 19: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆γSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Page 20: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

– gg vs gt barely possible

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Page 21: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

– gg vs gt barely possible

– including invisible decays

⇒ Standard Model within 25%-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Page 22: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

– gg vs gt barely possible

– including invisible decays

⇒ Standard Model within 25%-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

– LHC extrapolations unclear

– systematic/theory uncertainties large

– e+e− linear collider much betterunobserved decays avoidedwidth measured from σZHH → cc accessibleinvisible decays hugely improvedQCD theory error bars avoided

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

∆H

∆W

∆Z

∆t

∆c

∆b

∆τ

∆γ

∆g

gx = gxSM

(1+∆x)

68% CL: 3000 fb-1

, 14 TeV LHC and 250 fb-1

, 250 GeV LC

3000 fb-1

, 14 TeV LHC

250 fb-1

, 250 GeV LCLHC + LCLHC + LC (∆t ≠ ∆c)

Page 23: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

– gg vs gt barely possible

– including invisible decays

⇒ Standard Model within 25%-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

– LHC extrapolations unclear

– systematic/theory uncertainties large

– e+e− linear collider much betterunobserved decays avoidedwidth measured from σZHH → cc accessibleinvisible decays hugely improvedQCD theory error bars avoided

– 500 GeV linear collider even better

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

∆H

∆W

∆Z

∆t

∆c

∆b

∆τ

∆γ

∆g

gx = gxSM

(1+∆x)

68% CL: 3000 fb-1

, 14 TeV LHC and 500 fb-1

, 500 GeV LC

3000 fb-1

, 14 TeV LHC

500 fb-1

, 500 GeV LCHL-LHC + LC500HL-LHC + LC500 (∆t ≠ ∆c)

Page 24: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

– gg vs gt barely possible

– including invisible decays

⇒ Standard Model within 25%-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

– LHC extrapolations unclear

– systematic/theory uncertainties large

– e+e− linear collider much betterunobserved decays avoidedwidth measured from σZHH → cc accessibleinvisible decays hugely improvedQCD theory error bars avoided

– 500 GeV linear collider even better

⇒ Higgs factory case obvious-0.1

-0.05

0

0.05

0.1

0.15

0.2

∆H

∆W

∆Z

∆c

∆b

∆τ

∆γ

∆g

gx = gxSM

(1+∆x)

68% CL

250 GeV LC, 250 fb-1

250 GeV TLEP, 4 exp. × 2.5 ab-1

Page 25: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

– assume SM-like [secondary solutions possible]

– SFitter: correct theory uncertainties

– gγ with new loops

– gg vs gt barely possible

– including invisible decays

⇒ Standard Model within 25%-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

Three major problems with approach

1– theory: no electroweak renormalizability

2– experiment: no kinematic distributions

3– phenomenology: no link to other sectors

Page 26: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

Page 27: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

– relevant part after equation of motion, etc

LHVV =− αsv8π

fgΛ2OGG +

fBB

Λ2OBB +

fWW

Λ2OWW +

fBΛ2OB +

fWΛ2OW +

fφ,2Λ2Oφ,2

Page 28: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

– relevant part after equation of motion, etc

LHVV =− αsv8π

fgΛ2OGG +

fBB

Λ2OBB +

fWW

Λ2OWW +

fBΛ2OB +

fWΛ2OW +

fφ,2Λ2Oφ,2

– Higgs couplings to SM particles [derivatives = momentum, #2 solved]

LHVV = gg HGaµνGaµν + gγ HAµνAµν

+ g(1)Z ZµνZµ∂νH + g(2)

Z HZµνZµν + g(3)Z HZµZµ

+ g(1)W

(W +µνW−µ∂νH + h.c.

)+ g(2)

W HW +µνW−µν + g(3)

W HW +µW−µ + · · ·

Page 29: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

– relevant part after equation of motion, etc

LHVV =− αsv8π

fgΛ2OGG +

fBB

Λ2OBB +

fWW

Λ2OWW +

fBΛ2OB +

fWΛ2OW +

fφ,2Λ2Oφ,2

– Higgs couplings to SM particles [derivatives = momentum, #2 solved]

LHVV = gg HGaµνGaµν + gγ HAµνAµν

+ g(1)Z ZµνZµ∂νH + g(2)

Z HZµνZµν + g(3)Z HZµZµ

+ g(1)W

(W +µνW−µ∂νH + h.c.

)+ g(2)

W HW +µνW−µν + g(3)

W HW +µW−µ + · · ·

– plus Yukawa structure fτ,b,t– 9 operators for Run I data

Page 30: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

– linked to Higgs couplings

gg =fGGvΛ2≡ −αs

8πfgvΛ2

gγ = − g2vs2w

2Λ2

fBB + fWW

2

g(1)Z =

g2v2Λ2

c2w fW + s2

w fB2c2

wg(1)

W =g2v2Λ2

fW2

g(2)Z = − g2v

2Λ2

s4w fBB + c4

w fWW

2c2w

g(2)W = − g2v

2Λ2fWW

g(3)Z = M2

Z (√

2GF )1/2

(1− v2

2Λ2fφ,2

)g(3)

W = M2W (√

2GF )1/2

(1− v2

2Λ2fφ,2

)

gf = −mf

v

(1− v2

2Λ2fφ,2

)+

v2

√2Λ2

ff

Page 31: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

Run 1 legacy

– kinematics: pT ,V ,∆φjj [remember #2]

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM(SM Higgs) x 70

(fW

/Λ2 =20TeV

-2) x 70

2leptons

0 50 100 150 200 250

103

102

Page 32: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

Run 1 legacy

– kinematics: pT ,V ,∆φjj [remember #2]

20

30

40

50

60

70

80

90

100

0 1.0472 2.0944 3.1416

∆Φjj

Ev

ents

/bin

SM Higgs

fWW

/Λ2=-f

BB/Λ

2=20TeV

-2

fWW

/Λ2=-f

BB/Λ

2=-20TeV

-2

γγ jj

0 π/3 2π/3 π10

102

Page 33: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

Run 1 legacy

– kinematics: pT ,V ,∆φjj [remember #2]

– with impact...

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

Page 34: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

Run 1 legacy

– kinematics: pT ,V ,∆φjj [remember #2]

– with impact...

...in last bin

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

Page 35: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

– set of Higgs operators [renormalizable, #1 solved]

OGG = φ†φGa

µνGaµν OWW = φ†WµνWµν

φ OBB = · · ·

OBW = φ†BµνWµν

φ OW = (Dµφ)†Wµν(Dνφ) OB = · · ·

Oφ,1 = (Dµφ)† φ φ†(Dµφ

)Oφ,2 =

12∂µ(φ†φ)∂µ(φ†φ)

Oφ,3 =13

(φ†φ)3

Oφ,4 = (Dµφ)†(Dµφ

) (φ†φ)

Run 1 legacy

– kinematics: pT ,V ,∆φjj [remember #2]

– with impact...

...in last bin

⇒ Run I sensitivity limited

-50

-40

-30

-20

-10

0

OGG

OW

W

OBB

OW

OB

Oφ2

0.15

0.2

0.25

0.3

0.5∞

0.5

f/Λ2

[TeV-2

]Λ/√|f|[TeV]

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

rate only

rate+distributions

-15

-10

-5

0

5

Ot

Ob

0.3

0.4

0.5

1∞1

0.5

f/Λ2

[TeV-2

]Λ/√|f|[TeV]

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

Page 36: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

– one more Higgs-gauge operator [#3 solved]

OW = (Dµφ)†Wµν(Dνφ) OB= (Dµφ)†Bµν(Dνφ) OWW = Tr(

WµνWνρWµρ

)– kinematics: pT ,` in VV production

1

10

102

103

104

100 200 300 400 500 600 700 800 900 1000

pT

lead(GeV)

Ev

ents

/bin

BackgroundSM WW

Data

fW

/Λ2=25TeV

-2

fB/Λ

2=25TeV

-2

fWWW

/Λ2=25TeV

-2

100 300 500 700 900

104

103

102

10

1

Page 37: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

– one more Higgs-gauge operator [#3 solved]

OW = (Dµφ)†Wµν(Dνφ) OB= (Dµφ)†Bµν(Dνφ) OWW = Tr(

WµνWνρWµρ

)– kinematics: pT ,` in VV production

– combined LHC channels

]-2 [TeV2ΛWf

30− 20− 10− 0 10 20 30

]-2

[TeV

2ΛBf

80−60−40−20−0

20

40

60

80

7 WZ

7 semi

8 WW

8 WZ

ATLASCMS

combined

Page 38: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

– one more Higgs-gauge operator [#3 solved]

OW = (Dµφ)†Wµν(Dνφ) OB= (Dµφ)†Bµν(Dνφ) OWW = Tr(

WµνWνρWµρ

)– kinematics: pT ,` in VV production

– combined LHC channels

– affecting correlations

]-2 [TeV2ΛWf

20− 15− 10− 5− 0 5 10 15 20

]-2

[TeV

2ΛBf

60−

40−

20−

0

20

Page 39: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

– one more Higgs-gauge operator [#3 solved]

OW = (Dµφ)†Wµν(Dνφ) OB= (Dµφ)†Bµν(Dνφ) OWW = Tr(

WµνWνρWµρ

)– kinematics: pT ,` in VV production

– combined LHC channels

– affecting correlations

⇒ complete Higgs-gauge analysis

-50

-40

-30

-20

-10

0

10

20

OGG

OW

W

OBB

OW

OB

Oφ2

OW

WW

0.15

0.2

0.250.3

0.5∞

0.5

0.30.25

f/Λ2

[TeV-2

]Λ/√|f|[TeV]

LHC-Higgs, 95% CL

LHC-Higgs + LHC-TGV + LEP-TGV, 95% CL

-20

-15

-10

-5

0

5

10

15

Ot

Ob

0.25

0.3

0.5

0.5

0.3

f/Λ2

[TeV-2

]Λ/√|f|[TeV]

Page 40: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

– one more Higgs-gauge operator [#3 solved]

OW = (Dµφ)†Wµν(Dνφ) OB= (Dµφ)†Bµν(Dνφ) OWW = Tr(

WµνWνρWµρ

)– kinematics: pT ,` in VV production

– combined LHC channels

– affecting correlations

⇒ complete Higgs-gauge analysis

LHC vs LEP

– triple gauge vertices g1, κ, λ vs operators

– semileptonic analyses missing for 8 TeV

⇒ Run I LHC beating LEP

]-2 [TeV2ΛWf

10− 5− 0 5 10 15 20 25 30 35]

-2 [T

eV2

ΛBf80−

60−

40−

20−

0

20

40

LHC

LEP

LHC+LEP

Page 41: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

Page 42: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

first operator, wave function renormalization

Oφ,2 =12∂µ(φ†φ) ∂µ(φ†φ)=

12

(H + v)2∂µH ∂

µH

proper normalization of combined kinetic term [LSZ]

Lkin =12∂µH ∂

µH

(1 +

fφ,2v2

Λ2

)!

=12∂µH ∂

µH ⇔ H = H

√1 +

fφ,2v2

Λ2

Page 43: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

first operator, wave function renormalization

Oφ,2 =12∂µ(φ†φ) ∂µ(φ†φ)=

12

(H + v)2∂µH ∂

µH

proper normalization of combined kinetic term [LSZ]

Lkin =12∂µH ∂

µH

(1 +

fφ,2v2

Λ2

)!

=12∂µH ∂

µH ⇔ H = H

√1 +

fφ,2v2

Λ2

second operator, minimum condition giving v

v2 = −µ2

λ− fφ,3µ4

4λ3Λ2

Page 44: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

first operator, wave function renormalization

Oφ,2 =12∂µ(φ†φ) ∂µ(φ†φ)=

12

(H + v)2∂µH ∂

µH

proper normalization of combined kinetic term [LSZ]

Lkin =12∂µH ∂

µH

(1 +

fφ,2v2

Λ2

)!

=12∂µH ∂

µH ⇔ H = H

√1 +

fφ,2v2

Λ2

second operator, minimum condition giving v

v2 = −µ2

λ− fφ,3µ4

4λ3Λ2

both operators contributing to Higgs mass

Lmass = −µ2

2H2 − 3

2λv2H2 − fφ,3

Λ2

1524

v4H2 != −m2

H

2H2

⇔ m2H = 2λv2

(1− fφ,2v2

Λ2+

fφ,3v2

2Λ2λ

)

Page 45: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

Higgs self couplings momentum dependent

Lself =− m2H

2v

[(1− fφ,2v2

2Λ2+

2fφ,3v4

3Λ2m2H

)H3 − 2fφ,2v2

Λ2m2H

H ∂µH ∂µH

]

− m2H

8v2

[(1− fφ,2v2

Λ2+

4fφ,3v4

Λ2m2H

)H4 − 4fφ,2v2

Λ2m2H

H2∂µ H∂µH

]

Page 46: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

Higgs self couplings momentum dependent

Lself =− m2H

2v

[(1− fφ,2v2

2Λ2+

2fφ,3v4

3Λ2m2H

)H3 − 2fφ,2v2

Λ2m2H

H ∂µH ∂µH

]

− m2H

8v2

[(1− fφ,2v2

Λ2+

4fφ,3v4

Λ2m2H

)H4 − 4fφ,2v2

Λ2m2H

H2∂µ H∂µH

]alternatively, strong multi-Higgs interactions

H =

(1 +

fφ,2v2

2Λ2

)H +

fφ,2v2Λ2

H2 +fφ,26Λ2

H3 +O(H4)

Page 47: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

LD6 =2∑

i=1

fiΛ2Oi with Oφ,2 =

12∂µ(φ†φ) ∂µ(φ†φ) , Oφ,3 = − 1

3(φ†φ)3

Higgs self couplings momentum dependent

Lself =− m2H

2v

[(1− fφ,2v2

2Λ2+

2fφ,3v4

3Λ2m2H

)H3 − 2fφ,2v2

Λ2m2H

H ∂µH ∂µH

]

− m2H

8v2

[(1− fφ,2v2

Λ2+

4fφ,3v4

Λ2m2H

)H4 − 4fφ,2v2

Λ2m2H

H2∂µ H∂µH

]alternatively, strong multi-Higgs interactions

H =

(1 +

fφ,2v2

2Λ2

)H +

fφ,2v2Λ2

H2 +fφ,26Λ2

H3 +O(H4)

⇒ operators and distributions linked to poor UV behavior

Page 48: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 top operators

Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

– single, pair-wise, and associated top production [plus decays]

– including anomalous AFB from Tevatron– 4-quark, Yang-Mills, electroweak operators

Oqq = qγµq tγµt OG = fABCGAνµ GBλ

ν GCµλ OφG = φ

†φGa

µνGaµν · · ·

– profile likelihoods and individual limits

⇒ Generic D6 reach ∼ 500 GeV [C = 1]

-1 -0.5 0 0.5 1Ci = Civ

2/Λ2

individualmarginalizedCG

C33uG

C1u

C2u

C1d

C2d

C33uW

Ct

C3φq

C33uB

Cφu

C1φq

Page 49: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 top operators

Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

– single, pair-wise, and associated top production [plus decays]

– including anomalous AFB from Tevatron– 4-quark, Yang-Mills, electroweak operators

Oqq = qγµq tγµt OG = fABCGAνµ GBλ

ν GCµλ OφG = φ

†φGa

µνGaµν · · ·

– profile likelihoods and individual limits

⇒ Generic D6 reach ∼ 500 GeV [C = 1]

-1 -0.5 0 0.5 1Ci = Civ

2/Λ2

individualmarginalizedCG

C33uG

C1u

C2u

C1d

C2d

C33uW

Ct

C3φq

C33uB

Cφu

C1φq

For theorists: in terms of models

– axigluon: MA > 1.4 TeV [t t resonance]

– SM-like W ′: MW ′ > 1.2 TeV [t-channel,...]

⇒ models less sensitive to correlations

Page 50: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 dark matter operators

Combining direct, indirect, collider results for WIMPs [Tait etal]

– choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon]

– consider D6 scattering process χχ→ SM SM

– relic density from annihilation [mχ/T ∼ 30]

– indirect detection even later

– direct detection non-relativistic [E ∼ 10 MeV]

– LHC tricky: single scale mχ mmediator?

– example: scalar dark matterLabelCoefficient Operator σSI〈σannv〉

Real scalar

R1 λ1 ∼ 1/(2M2) mqχ2 qq X s-waveR2 λ2 ∼ 1/(2M2) imqχ2 qγ5q s-waveR3 λ3 ∼ αs/(4M2)χ2GµνGµν X s-waveR4 λ4 ∼ αs/(4M2)iχ2Gµν Gµν s-wave

Complex scalar

C1 λ1 ∼ 1/(M2) mqχ†χqq X s-waveC2 λ2 ∼ 1/(M2) imqχ†χqγ5q s-waveC3 λ3 ∼ 1/(M2) χ†∂µχqγµq X p-waveC4 λ4 ∼ 1/(M2) χ†∂µχqγµγ5q p-waveC5 λ5 ∼ αs/(8M2)χ†χGµνGµν X s-waveC6 λ6 ∼ αs/(8M2)iχ†χGµν Gµν s-wave

Page 51: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 dark matter operators

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

– default input: relic density

– scalar dark matterLabelCoefficient Operator σSI〈σannv〉

Real scalar

R1 λ1 ∼ 1/(2M2) mqχ2 qq X s-waveR2 λ2 ∼ 1/(2M2) imqχ2 qγ5q s-waveR3 λ3 ∼ αs/(4M2)χ2GµνGµν X s-waveR4 λ4 ∼ αs/(4M2)iχ2Gµν Gµν s-wave

– profile likelihood

– flat prior on logλi [prior 1/λi ]

– Dirichlet prior preferingsimilar-sized Wilson coefficients

Page 52: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 dark matter operators

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

– default input: relic density

– scalar dark matterLabelCoefficient Operator σSI〈σannv〉

Real scalar

R1 λ1 ∼ 1/(2M2) mqχ2 qq X s-waveR2 λ2 ∼ 1/(2M2) imqχ2 qγ5q s-waveR3 λ3 ∼ αs/(4M2)χ2GµνGµν X s-waveR4 λ4 ∼ αs/(4M2)iχ2Gµν Gµν s-wave

– profile likelihood

– flat prior on logλi [prior 1/λi ]

– Dirichlet prior preferingsimilar-sized Wilson coefficients

– Fermi: GCE plus dwarf galaxies

⇒ with data, the method hardly matters...

Page 53: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) Higgs portal

Higgs sector minimal? [theory-driven question]

– secondary question: D6 Higgs approach applicable?

– renormalizable extended potential [with or without VEV]

V (φ,S) =− µ21(φ†φ) + λ1|φ†φ|2 − µ2

2S2 + κS3 + λ2S4 + λ3|φ†φ|S2

→− µ21(φ†φ) + λ1|φ†φ|2 − µ2

2S2 + λ2S4 + λ3|φ†φ|S2

– mixing to the observed Higgs mass eigenstate

H1 = cosχHφ + sinχS

– decays to SM and hidden sectors [plus H2 → H1H1 cascade decays]

Γ1 = cos2χ ΓSM

1 + sin2χ Γhid

1 = cos2χ ΓSM

1

(1 + tan2

χΓhid

1

ΓSM1

)– constraints on event rate

σH1→SM

σSMH1→SM

=cos2 χ

1 + tan2 χΓhid

1

ΓSM1

!< R

– collider reach

Page 54: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) Higgs portal

Higgs sector minimal? [theory-driven question]

– secondary question: D6 Higgs approach applicable?

– renormalizable extended potential [with or without VEV]

V (φ,S) =− µ21(φ†φ) + λ1|φ†φ|2 − µ2

2S2 + κS3 + λ2S4 + λ3|φ†φ|S2

→− µ21(φ†φ) + λ1|φ†φ|2 − µ2

2S2 + λ2S4 + λ3|φ†φ|S2

– mixing to the observed Higgs mass eigenstate

H1 = cosχHφ + sinχS

– decays to SM and hidden sectors [plus H2 → H1H1 cascade decays]

Γ1 = cos2χ ΓSM

1 + sin2χ Γhid

1 = cos2χ ΓSM

1

(1 + tan2

χΓhid

1

ΓSM1

)– constraints on event rate

σH1→SM

σSMH1→SM

=cos2 χ

1 + tan2 χΓhid

1

ΓSM1

!< R

⇒ resonance, rates, and invisible Higgs decays

Page 55: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Invisible Higgs decays

LHC challenges: invisible decays [Eboli & Zeppenfeld]

– WBF best choice to boost Higgs

– backgrounds: Zνν jj in QCD [σ ∝ αα2s ]

Zνν jj WBF-like [σ ∝ α3]

– cut on missing energy and ∆φjj

Page 56: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Invisible Higgs decays

LHC challenges: invisible decays [Eboli & Zeppenfeld]

– WBF best choice to boost Higgs

– backgrounds: Zνν jj in QCD [σ ∝ αα2s ]

Zνν jj WBF-like [σ ∝ α3]

– cut on missing energy and ∆φjj

Page 57: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Invisible Higgs decays

LHC challenges: invisible decays [Eboli & Zeppenfeld]

– WBF best choice to boost Higgs

– backgrounds: Zνν jj in QCD [σ ∝ αα2s ]

Zνν jj WBF-like [σ ∝ α3]

– cut on missing energy and ∆φjj

– central jet veto to suppress QCD background

⇒ trigger the problem

Page 58: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Invisible Higgs decays

LHC challenges: invisible decays [Eboli & Zeppenfeld]

– WBF best choice to boost Higgs

– backgrounds: Zνν jj in QCD [σ ∝ αα2s ]

Zνν jj WBF-like [σ ∝ α3]

– cut on missing energy and ∆φjj

– central jet veto to suppress QCD background

⇒ trigger the problem

Multivariate update [Bernaciak, TP, Schichtel, Tattersall]

– baseline cuts: jet veto plus ∆φjjmultivariate: 2-jet, 3-jet sample

– reach BRinv ∼ 4% for 3000 fb−1

– further improvement to 2%from QCD jets to 10 GeV...

⇒ QCD the limiting factor

0.000 0.005 0.010 0.015 0.020 0.025 0.030εs

0.15

0.1

0.05

0

ε b[1

0−5]

Baseline

Baseline + C.J.V.

Baseline + C.J.V. + ∆Φ

20 GeV Jets

2-Jet sample BDT3-Jet sample BDTCombined BDTBox Cuts

Page 59: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Invisible Higgs decays

LHC challenges: invisible decays [Eboli & Zeppenfeld]

– WBF best choice to boost Higgs

– backgrounds: Zνν jj in QCD [σ ∝ αα2s ]

Zνν jj WBF-like [σ ∝ α3]

– cut on missing energy and ∆φjj

– central jet veto to suppress QCD background

⇒ trigger the problem

Multivariate update [Bernaciak, TP, Schichtel, Tattersall]

– baseline cuts: jet veto plus ∆φjjmultivariate: 2-jet, 3-jet sample

– reach BRinv ∼ 4% for 3000 fb−1

– further improvement to 2%from QCD jets to 10 GeV...

⇒ QCD the limiting factor

0.000 0.005 0.010 0.015 0.020 0.025 0.030εs

0.15

0.1

0.05

0

ε b[1

0−5]

Baseline

Baseline + C.J.V.

Baseline + C.J.V. + ∆Φ

10 GeV Jets

2-Jet sample BDT3-Jet sample BDTCombined BDTBox Cuts

Page 60: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) two Higgs doublets

Doublet extension

– two complex doublets, 8 degrees of freedomthree Goldstones W±,Z 0

five Higgs fields h0,H0,A0,H±

– renormalizable extended potential

V (φ1, φ2) = m211φ†1φ1 + m2

22φ†2φ2 −

[m2

12φ†1φ2 + h.c.

]+λ1

2(φ†1φ1)2 +

λ2

2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4|φ†1φ2|2

+

[λ5

2(φ†1φ2)2 + λ6(φ†1φ1)(φ†1φ2) + λ7(φ†2φ2)(φ†1φ2) + h.c.

]

Two doublets [no flavor, CP, custodial troubles]

– angle β = atan(v2/v1)angle α defining h and H → gauge boson coupling gW ,Z = sin(β − α)gSM

W ,Z

– type-I: all fermions with φ2type-II: up-type fermions with φ2lepton-specific: type-I quarks and type-II leptonsflipped: type-II quarks and type-I leptons

– single hierarchy mh mH,A,H± with sin2 α ∼ 1/(1 + tan2 β) [custodial symmetry]

Page 61: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) scalar/gauge extensions

Scalar top partners [simplfied supersymmetry]

– toy model for non-Higgs scalar

– Lagrangian with scalar top partner, singlet plus doublet

L ⊃(Dµ )†

(DµQ) + (Dµ tR)∗(Dµ tR)− Q†M2Q − M2 t∗R tR

− κLL(φ · Q)†(φ · Q)− κRR (t∗R tR)(φ†φ)−[κLRMt∗R (φ · Q) + h.c.

]– contribution through loops all over Higgs-gauge sector

Triplet gauge extension [whatever that becomes in the UV]

– additional vector triplet field Vµ

L ⊃− 14

V aµν Vµνa +

M2V

2V aµVµa + i

gV

2cH V a

µ

[φ†σ

a←→D µφ]

+g2

w

2gVV aµ

∑fermions

cF F Lγµσ

aFL

+gV

2cVVV εabc V a

µV bνD[µVν]c + g2

V cVVHH V aµVµa(φ†φ)− gw

2cVVW εabcWµν V b

µV cν

– new states, mixing with W± and Zweak gauge coupling to W ,Z mass eigenstates

– strongly interacting towards UV

Page 62: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

– phenomenology: does D6 capture all model features at LHC?theory: how do D6 vs EFT vs full model differences appear?

Page 63: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

– phenomenology: does D6 capture all model features at LHC?theory: how do D6 vs EFT vs full model differences appear?

– push (simplified) models to visible deviations at 13 TeVHiggs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)]∣∣∣∣∣ σ × BR

(σ × BR)SM− 1

∣∣∣∣∣ =g2m2

h

Λ2& 10% ⇔ Λ . 400 GeV

no scale hierarchy for testable models?!

Page 64: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

– phenomenology: does D6 capture all model features at LHC?theory: how do D6 vs EFT vs full model differences appear?

– push (simplified) models to visible deviations at 13 TeVHiggs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)]∣∣∣∣∣ σ × BR

(σ × BR)SM− 1

∣∣∣∣∣ =g2m2

h

Λ2& 10% ⇔ Λ . 400 GeV

no scale hierarchy for testable models?!

– construct and match D6-Lagrangian to modelcoupling modifications v2/Λ2 vs new kinematics ∂/Λ?matching conditions with v . Λ, v -improved matching?

Page 65: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

– phenomenology: does D6 capture all model features at LHC?theory: how do D6 vs EFT vs full model differences appear?

– push (simplified) models to visible deviations at 13 TeVHiggs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)]∣∣∣∣∣ σ × BR

(σ × BR)SM− 1

∣∣∣∣∣ =g2m2

h

Λ2& 10% ⇔ Λ . 400 GeV

no scale hierarchy for testable models?!

– construct and match D6-Lagrangian to modelcoupling modifications v2/Λ2 vs new kinematics ∂/Λ?matching conditions with v . Λ, v -improved matching?

– LHC simulations: D6-Lagrangian vs full modelproduction: WBF, VH, HHdecays: H → γγ, 4`

– check where differences appear at 13 TeVkinematic distributions like pT ,j or mVH?resonance peaks of new states?

Page 66: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

Singlet EFT EFT (v -improved)

mH sinα vs/v ∆singletx Λ cH ∆EFT

x cH ∆EFTx

500 0.2 10 −0.020 491 0.036 −0.018 0.040 −0.020350 0.3 10 −0.046 336 0.073 −0.037 0.092 −0.046200 0.4 10 −0.083 190 0.061 −0.031 0.167 −0.083

1000 0.4 10 −0.083 918 0.183 −0.092 0.167 −0.092500 0.6 10 −0.200 407 0.461 −0.231 0.400 −0.200

– effects in WBF and hh

[fb/

bin]

σ

3−10

2−10

1−10

1

(S5)missT E

- l+ u d l→u d

EFT

full

SM

[GeV]Tm0 1000 2000 3000

full

σfu

llσ

-

EF

0.5−

0

0.5

EFT error

[fb/

bin]

σ

0.5

1

1.5

h h (S4)→p p

full (no H)

EFT

full

SM

[GeV]hhm400 600 800 1000

full

σfu

llσ

-

EF

0.5−

0

0.5

EFT error

Page 67: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

2HDM EFT

Type tan β α/π m12 mH0 mA0 mH± |Λ| [GeV] cu cd,`

I 1.5 −0.086 45 230 300 350 100 −0.744 −0.744II 15 −0.023 116 449 450 457 448 0.000 0.065II 10 0.032 157 500 500 500 99 0.465 −46.5I 20 0 45 200 500 500 142 0.003 0.003

Page 68: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

2HDM EFT

Type tan β α/π m12 mH0 mA0 mH± |Λ| [GeV] cu cd,`

I 1.5 −0.086 45 230 300 350 100 −0.744 −0.744II 15 −0.023 116 449 450 457 448 0.000 0.065II 10 0.032 157 500 500 500 99 0.465 −46.5I 20 0 45 200 500 500 142 0.003 0.003

– effects in H → γγ

[fb/

bin]

σ

0.5

1

1.5

2

6−10× (D1)γ γ → 0 h→p p

EFT

fullSM

[GeV]γγm500 600 700 800

full

σfu

llσ

-

EF

1−

0

1

EFT error

Page 69: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

Scalar top-partner model EFT

M κLL κRR κLR mt1mt2

cH cW cHW

500 −1.16 2.85 0.147 500 580 6.22 · 10−3 −3.11 · 10−7 3.99 · 10−7

350 −3.16 −2.82 0.017 173 200 4.30 · 10−3 −2.55 · 10−4 2.55 · 10−4

500 −7.51 −7.17 0.012 173 200 1.66 · 10−2 −2.97 · 10−4 2.97 · 10−4

Page 70: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

Scalar top-partner model EFT

M κLL κRR κLR mt1mt2

cH cW cHW

500 −1.16 2.85 0.147 500 580 6.22 · 10−3 −3.11 · 10−7 3.99 · 10−7

350 −3.16 −2.82 0.017 173 200 4.30 · 10−3 −2.55 · 10−4 2.55 · 10−4

500 −7.51 −7.17 0.012 173 200 1.66 · 10−2 −2.97 · 10−4 2.97 · 10−4

– effects in WBF and Vh

[fb/

bin]

σ

20

40

60

80

V h (P2)→p p

EFTfull

SM

[GeV]Vhm200 250 300 350 400

full

σfu

llσ

-

EF

0.5−

0

0.5EFT error

Page 71: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

– effects in WBF and Vh

Vector triplet [Brehmer, Biekotter, Kramer, TP]

– testable benchmarks for LHCTriplet model EFT

MV gV cH cF cVVHH mξ cW cH c6 cf

591 3.0 −0.47 −5.0 2.0 1200 −0.044 0.000 0.000 0.000946 3.0 −0.47 −5.0 1.0 1200 −0.017 0.000 0.000 0.000941 3.0 −0.28 3.0 1.0 1200 0.006 0.075 0.100 0.025

1246 3.0 −0.50 3.0 −0.2 1200 0.006 0.103 0.138 0.034846 1.0 −0.56 −1.32 0.08 849 −0.007 −0.020 −0.027 −0.007

Page 72: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

– effects in WBF and Vh

Vector triplet [Brehmer, Biekotter, Kramer, TP]

– testable benchmarks for LHCTriplet model EFT

MV gV cH cF cVVHH mξ cW cH c6 cf

591 3.0 −0.47 −5.0 2.0 1200 −0.044 0.000 0.000 0.000946 3.0 −0.47 −5.0 1.0 1200 −0.017 0.000 0.000 0.000941 3.0 −0.28 3.0 1.0 1200 0.006 0.075 0.100 0.025

1246 3.0 −0.50 3.0 −0.2 1200 0.006 0.103 0.138 0.034846 1.0 −0.56 −1.32 0.08 849 −0.007 −0.020 −0.027 −0.007

– effects in Vh and WBF

[fb/

bin]

σ

1

10

210

310

V h (T4)→p p

)ξfull (no EFT

full

SM

[GeV]Vhm500 1000

full

σfu

llσ

-

EF

1−

0

1

EFT error

Page 73: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

– effects in WBF and Vh

Vector triplet [Brehmer, Biekotter, Kramer, TP]

– testable benchmarks for LHCTriplet model EFT

MV gV cH cF cVVHH mξ cW cH c6 cf

591 3.0 −0.47 −5.0 2.0 1200 −0.044 0.000 0.000 0.000946 3.0 −0.47 −5.0 1.0 1200 −0.017 0.000 0.000 0.000941 3.0 −0.28 3.0 1.0 1200 0.006 0.075 0.100 0.025

1246 3.0 −0.50 3.0 −0.2 1200 0.006 0.103 0.138 0.034846 1.0 −0.56 −1.32 0.08 849 −0.007 −0.020 −0.027 −0.007

– effects in Vh and WBF

[fb/

bin]

σ

1−10

1

10

210

V h (T4')→p p

)ξfull (no EFT

full

SM

[GeV]Vhm500 1000

full

σfu

llσ

-

EF

1−

0

1

EFT error

Page 74: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

– effects in WBF and Vh

Vector triplet [Brehmer, Biekotter, Kramer, TP]

– testable benchmarks for LHCTriplet model EFT

MV gV cH cF cVVHH mξ cW cH c6 cf

591 3.0 −0.47 −5.0 2.0 1200 −0.044 0.000 0.000 0.000946 3.0 −0.47 −5.0 1.0 1200 −0.017 0.000 0.000 0.000941 3.0 −0.28 3.0 1.0 1200 0.006 0.075 0.100 0.025

1246 3.0 −0.50 3.0 −0.2 1200 0.006 0.103 0.138 0.034846 1.0 −0.56 −1.32 0.08 849 −0.007 −0.020 −0.027 −0.007

– effects in Vh and WBF

[fb/

bin]

σ

1−10

1

10

210

u d h (T5)→u d

)ξfull (no EFT

full

SM

[GeV]T,j1

p200 400 600 800 1000

full

σfu

llσ

-

EF

1−

0

1EFT error

Page 75: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Higgs portal

– testable benchmarks for LHC

– effects in WBF and hh

2HDM

– testable benchmarks for LHC

– effects in H → γγ

Top partners

– testable benchmarks for LHC

– effects in WBF and Vh

Vector triplet [Brehmer, Biekotter, Kramer, TP]

– testable benchmarks for LHCTriplet model EFT

MV gV cH cF cVVHH mξ cW cH c6 cf

591 3.0 −0.47 −5.0 2.0 1200 −0.044 0.000 0.000 0.000946 3.0 −0.47 −5.0 1.0 1200 −0.017 0.000 0.000 0.000941 3.0 −0.28 3.0 1.0 1200 0.006 0.075 0.100 0.025

1246 3.0 −0.50 3.0 −0.2 1200 0.006 0.103 0.138 0.034846 1.0 −0.56 −1.32 0.08 849 −0.007 −0.020 −0.027 −0.007

– effects in Vh and WBF

[fb/

bin]

σ

1−10

1

10

210

V h (T4')→p p

)ξfull (no EFT

full

SM

[GeV]Vhm500 1000

full

σfu

llσ

-

EF

1−

0

1

EFT error

Page 76: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Reasons for D6-breakdown in Higgs sector at LHC

Model Process EFT failure

resonance kinematics matching

singlet on-shell h → 4`, WBF, Vh, . . . ×off-shell WBF, . . . (×) ×hh × × ×

2HDM on-shell h → 4`, WBF, Vh, . . . ×off-shell H → γγ, . . . (×) ×hh × × ×

top partner WBF, Vh ×vector triplet WBF (×) ×

Vh × (×) ×

Page 77: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

Reasons for D6-breakdown in Higgs sector at LHC

Model Process EFT failure

resonance kinematics matching

singlet on-shell h → 4`, WBF, Vh, . . . ×off-shell WBF, . . . (×) ×hh × × ×

2HDM on-shell h → 4`, WBF, Vh, . . . ×off-shell H → γγ, . . . (×) ×hh × × ×

top partner WBF, Vh ×vector triplet WBF (×) ×

Vh × (×) ×

Lessons from Higgs sector

– start with D6 description [data-driven era of particle physics]

– EFT expansion in E/Λ known to be dodgy

– simplified models theory-driven

– test of D6 in comparison with (simplified) models

– all relevant effect at tree level

– resonance peaks the key feature

Page 78: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM scalar

DM scalar from Higgs sector [data-driven question]

– scalar dark matter, mS = 10 ... 100 GeV

– coupling to Standard Model through renormalizable portal [Higgs as mediator]

– extended potential [Z2 symmetry, no VEV]

V (φ,S) =− µ2(φ†φ) + λ4|φ†φ|2 − µ2SS2 + λ3(φ†φ)S2

– physical masses and parameters

mS =√

2µ2S − λ3v2

H gSSH = −2λ3vH gSSHH = −2λ3

Page 79: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM scalar

DM scalar from Higgs sector [data-driven question]

– scalar dark matter, mS = 10 ... 100 GeV

– coupling to Standard Model through renormalizable portal [Higgs as mediator]

– extended potential [Z2 symmetry, no VEV]

V (φ,S) =− µ2(φ†φ) + λ4|φ†φ|2 − µ2SS2 + λ3(φ†φ)S2

– physical masses and parameters

mS =√

2µ2S − λ3v2

H gSSH = −2λ3vH gSSHH = −2λ3

DM conditions

– (in-) direct detection: same as DM EFTLHC: mS ↔ mH open, all propagating states

– thermal relic density Ωh2 ∼ 0.12 [SS → bb, HH]

σann ∝

λ23m2

b

m4H

mS mH

2λ3 ≈ 0.3

λ23m2

b

m2H Γ2

H

mS =mH

2λ3 ≈ 10−3

λ23

m2S

mS > mZ ,mH λ3 ≈ 0.1

Page 80: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM scalar

DM scalar from Higgs sector [data-driven question]

– scalar dark matter, mS = 10 ... 100 GeV

– coupling to Standard Model through renormalizable portal [Higgs as mediator]

– extended potential [Z2 symmetry, no VEV]

V (φ,S) =− µ2(φ†φ) + λ4|φ†φ|2 − µ2SS2 + λ3(φ†φ)S2

– physical masses and parameters

mS =√

2µ2S − λ3v2

H gSSH = −2λ3vH gSSHH = −2λ3

DM conditions

– (in-) direct detection: same as DM EFTLHC: mS ↔ mH open, all propagating states

– thermal relic density Ωh2 ∼ 0.12 [SS → bb, HH]

σann ∝

λ23m2

b

m4H

mS mH

2λ3 ≈ 0.3

λ23m2

b

m2H Γ2

H

mS =mH

2λ3 ≈ 10−3

λ23

m2S

mS > mZ ,mH λ3 ≈ 0.1

DM

1

50

XENON100

−2

WMAP

10−3

λ hSS

Br = 10%inv

10

10

−1

XENON1T

XENONUP

Max

MinLattice

150100 200

M (GeV)

Page 81: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM scalar

(In-) direct detection boundary conditions

– Higgs mediator coupling to protonsame effective ggH interaction as for gluon fusion production

σSA→SA ≈ 3 · 10−7 λ23

m2S

– Fermi GCE explained on the pole: 〈vσann〉 ≈ 〈vσGCE〉

LHC searches

– important: for this (simplified) model we have discovered the mediator

– mS mH/2 invisible Higgs decays [mDM mmediator]

LHC searches really for mediator

– mS & mH off-shell invisible Higgs decays? [mDM & mmediator]

LHC searches for DM particles

⇒ depressing in particular for small λ3

Page 82: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

Requirements for a valid simplified model [1506.03116]

(I) Besides the SM, the model should contain a DM candidate that is eitherabsolutely stable or lives long enough to escape the LHC detectors, as well as amediator that couples the two sectors. The dark sector can be richer, but theadditional states should be somewhat decoupled...

(II) The Lagrangian should contain (in principle) all terms that are renormalizableand consistent with Lorentz invariance, the SM gauge symmetries, and DMstability. However, it may be permissible to neglect interactions or to studycases where couplings are set equal to one another...

(III) The additional interactions should not violate the exact and approximateaccidental global symmetries of the SM...

Page 83: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

Requirements for a valid simplified model [1506.03116]

(I) Besides the SM, the model should contain a DM candidate that is eitherabsolutely stable or lives long enough to escape the LHC detectors, as well as amediator that couples the two sectors. The dark sector can be richer, but theadditional states should be somewhat decoupled...

(II) The Lagrangian should contain (in principle) all terms that are renormalizableand consistent with Lorentz invariance, the SM gauge symmetries, and DMstability. However, it may be permissible to neglect interactions or to studycases where couplings are set equal to one another...

(III) The additional interactions should not violate the exact and approximateaccidental global symmetries of the SM...

Things not required: simplified models...

...need a good motivation, theoretical or experimental

...need a UV completion

...need to be agreed on by everyone in the field

...should be really hard/easy to experimentally test

⇒ there is no such thing as a wrong simplified model

Page 84: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

Requirements for a valid simplified model [1506.03116]

(I) Besides the SM, the model should contain a DM candidate that is eitherabsolutely stable or lives long enough to escape the LHC detectors, as well as amediator that couples the two sectors. The dark sector can be richer, but theadditional states should be somewhat decoupled...

(II) The Lagrangian should contain (in principle) all terms that are renormalizableand consistent with Lorentz invariance, the SM gauge symmetries, and DMstability. However, it may be permissible to neglect interactions or to studycases where couplings are set equal to one another...

(III) The additional interactions should not violate the exact and approximateaccidental global symmetries of the SM...

General structure of simplified DM models

– relatively light dark matter candidate

– mediator, often inducing 2→ 2 scattering process χχ→ SM SM

– predicting relice density, (in-) direct detection, LHC observables

Page 85: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM–mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

Lfermion,φ ⊃ −gχφχχ−φ√2

∑f

gf yfi fi

– mono-jet(s), mono-V , mono-Higgs [not necessarily ISR]

g

g

g

t

t t

t/a

g

g

t

t

t

/a

q

q

/a

g

g

t

t

t

t

q(0)

h1/h2

q W/Z

W/Zg

g

g

g

t t

t

t

t

t

t

h1/h2

h1h1

h2h2

⇒ mediators almost more relevant than DM states

Page 86: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM–mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

Lfermion,φ ⊃ −gχφχχ−φ√2

∑f

gf yfi fi

– mono-jet(s), mono-V , mono-Higgs [not necessarily ISR]

(2) vector mediator, fermion/scalar DM

Lfermion,V ⊃ Vµχγµ(gV

χ − gAχγ5)χ +

∑f

Vµ fγµ(gVf − gA

f γ5)f ,

Lscalar,V ⊃ igϕVµ(ϕ∗∂µϕ− ϕ∂µϕ∗) +∑

f

Vµ fγµ(gVf − gA

f γ5)f

– mono-jet(s) or di-jet resonances

q

q

qg

q

g

V

qg

V

q

g

V

g

⇒ mediators almost more relevant than DM states

Page 87: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM–mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

Lfermion,φ ⊃ −gχφχχ−φ√2

∑f

gf yfi fi

– mono-jet(s), mono-V , mono-Higgs [not necessarily ISR]

(2) vector mediator, fermion/scalar DM

Lfermion,V ⊃ Vµχγµ(gV

χ − gAχγ5)χ +

∑f

Vµ fγµ(gVf − gA

f γ5)f ,

Lscalar,V ⊃ igϕVµ(ϕ∗∂µϕ− ϕ∂µϕ∗) +∑

f

Vµ fγµ(gVf − gA

f γ5)f

– mono-jet(s) or di-jet resonances

(3) t-channel mediator, fermion DM [scalar darkoquark]

Lfermion,u ⊃∑

f

gf∗χPR f + h.c.

– mono-jet(s), associated, pair production [mono-jet vs jet(s + MET]

u

u

u

u

g

g g

g

u

u

u

u

u

u

u

⇒ mediators almost more relevant than DM states

Page 88: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM–mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

Lfermion,φ ⊃ −gχφχχ−φ√2

∑f

gf yfi fi

– mono-jet(s), mono-V , mono-Higgs [not necessarily ISR]

(2) vector mediator, fermion/scalar DM

Lfermion,V ⊃ Vµχγµ(gV

χ − gAχγ5)χ +

∑f

Vµ fγµ(gVf − gA

f γ5)f ,

Lscalar,V ⊃ igϕVµ(ϕ∗∂µϕ− ϕ∂µϕ∗) +∑

f

Vµ fγµ(gVf − gA

f γ5)f

– mono-jet(s) or di-jet resonances

(3) t-channel mediator, fermion DM [scalar darkoquark]

Lfermion,u ⊃∑

f

gf∗χPR f + h.c.

– mono-jet(s), associated, pair production [mono-jet vs jet(s + MET]

– scalar DM, spin-2 mediators, flavored DM, spin-17/2 DM,....

⇒ mediators almost more relevant than DM states

Page 89: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by SU(2)L representation

– Z ,H mediators known [extended Higgs sector possible]

– singlet (Majorana) fermion DM [‘bino’]

coupling only through mixing

– doublet fermion DM [1/2 ‘higgsino’]

charged partner, ZH0H0 and hH0W 0 couplings

– triplet fermion DM [‘wino’]

charged partner, W±W 0W± coupling

Page 90: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by SU(2)L representation

– Z ,H mediators known [extended Higgs sector possible]

– singlet (Majorana) fermion DM [‘bino’]

coupling only through mixing

– doublet fermion DM [1/2 ‘higgsino’]

charged partner, ZH0H0 and hH0W 0 couplings

– triplet fermion DM [‘wino’]

charged partner, W±W 0W± coupling

Relic density of (simplified) electroweakinos

– DM relic density: light, mixed bino DMefficient annihilation to weak bosonsco-annihilation with charged states

– pure states typically heavy [Sommerfeld enhancement]

ΩW h2 ≈ 0.12

( mχ0

1

2.1 TeV

)2Sommerfeld−→ 0.12

( mχ0

1

2.6 TeV

)2

ΩH h2 ≈ 0.12

( mχ0

1

1.13 TeV

)2Sommerfeld−→ 0.12

( mχ0

1

1.14 TeV

)2

Page 91: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by SU(2)L representation

– Z ,H mediators known [extended Higgs sector possible]

– singlet (Majorana) fermion DM [‘bino’]

coupling only through mixing

– doublet fermion DM [1/2 ‘higgsino’]

charged partner, ZH0H0 and hH0W 0 couplings

– triplet fermion DM [‘wino’]

charged partner, W±W 0W± coupling

Relic density of (simplified) electroweakinos

– DM relic density: light, mixed bino DMefficient annihilation to weak bosonsco-annihilation with charged states

– pure states typically heavy [Sommerfeld enhancement]

– pure-state WIMP electroweakinos heavy

– chargino co-annihilation crucial

– mixed bino scenario through mixing

⇒ not covered by usual simplified models

Page 92: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by SU(2)L representation

– Z ,H mediators known [extended Higgs sector possible]

– singlet (Majorana) fermion DM [‘bino’]

coupling only through mixing

– doublet fermion DM [1/2 ‘higgsino’]

charged partner, ZH0H0 and hH0W 0 couplings

– triplet fermion DM [‘wino’]

charged partner, W±W 0W± coupling

Relic neutralino surface [MSSM; Bramante,...]

tan β=10

mχ10= 0.1 |0.2 |0.5 |1.0 |1.5 |2.0 |2.5 TeVLSP mass

No Sommerfeld =

-4 -3 -2 -1 0 1 2 3 4

m@TeVD1234

M1 @TeVD

0

1

2

3

4

M2@Te

VD

mχ1±-mχ10= <0.15 |0.25 |0.35 |1 |20 |>40 GeVCLSP-LSP mass splitting

tan β=10

-4 -3 -2 -1 0 1 2 3 4

m@TeVD1234

M1@Te

VD

0

1

2

3

4

M2@Te

VD

Page 93: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Minimal supersymmetric extension: MSSM

MSSM spectrumspin d.o.f.

fermion fL, fR 1/2 1+1→ sfermion fL, fR 0 1+1gluon Gµ 1 n-2→ gluino g 1/2 2 Majoranagauge bosons γ, Z 1 2+3Higgs bosons ho, Ho, Ao 0 3→ neutralinos χo

i 1/2 4 · 2 SM

gauge bosons W± 1 2 · 3Higgs bosons H± 0 2→ charginos χ

±i 1/2 2 · 4

– mechanism for SUSY masses unknownblind mediation: MSUGRA/CMSSMscalars: m0, fermions: m1/2, tri-scalar: A0plus sign(µ) and tanβ in Higgs sector

– gauge, anomaly, gaugino mediation...?

⇒ measure spectrum at LHC [pMSSM]

Page 94: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Minimal supersymmetric extension: MSSM

MSSM spectrumspin d.o.f.

fermion fL, fR 1/2 1+1→ sfermion fL, fR 0 1+1gluon Gµ 1 n-2→ gluino g 1/2 2 Majoranagauge bosons γ, Z 1 2+3Higgs bosons ho, Ho, Ao 0 3→ neutralinos χo

i 1/2 4 · 2 SM

gauge bosons W± 1 2 · 3Higgs bosons H± 0 2→ charginos χ

±i 1/2 2 · 4

– mechanism for SUSY masses unknownblind mediation: MSUGRA/CMSSMscalars: m0, fermions: m1/2, tri-scalar: A0plus sign(µ) and tanβ in Higgs sector

– gauge, anomaly, gaugino mediation...?

⇒ measure spectrum at LHC [pMSSM]

Search strategies at the LHC [Oliver’s talk]

– squarks, gluinos strongly interactingpp → qq∗, qg, gg

decays to jets and DM stateg → qq, qL → qχ0

2, qR → qχ01

additional jets and leptons possible

⇒ jets plus missing energy

– strongly interacting Majorana gluinos

final–state leptons with both charges

⇒ like–sign dileptons 10-2

10-1

1

10

10 2

10 3

100 150 200 250 300 350 400 450 500

χ2oχ1

+

t1t−

1

qq−

gg

νν−

χ2og

χ2oq

NLOLO

√S = 14 TeV

m [GeV]

σtot[pb]: pp → gg, qq− , t1t−

1, χ2oχ1

+, νν−, χ2og, χ2

oq

Prospino2 (T Plehn)

Page 95: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Supersymmetric Hooperon

Spirit of ambulance chasing: Hooperon←→ LHC [Butter etal]spin d.o.f.

fermion fL, fR 1/2 1+1→ sfermion fL, fR 0 1+1gluon Gµ 1 n-2→ gluino g 1/2 2 Majoranagauge bosons γ, Z 1 2+3Higgs bosons ho, Ho, Ao 0 3complex singlet Ho, Ao 0 2→ neutralinos χo

i 1/2 5 · 2 DM

gauge bosons W± 1 2 · 3Higgs bosons H± 0 2→ charginos χ

±i 1/2 2 · 4

– MSSM pushing error bars [χχ → WW ]

linked to χ0χ± production

– NMSSM dark matter

– simplified model: pseudo-scalar mediatorMajorana fermion DM

– MSSM-like DM composition [B − H]

mixed singlino DM

⇒ linked to LHC signatures?

Page 96: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Supersymmetric Hooperon

Spirit of ambulance chasing: Hooperon←→ LHC [Butter etal]spin d.o.f.

fermion fL, fR 1/2 1+1→ sfermion fL, fR 0 1+1gluon Gµ 1 n-2→ gluino g 1/2 2 Majoranagauge bosons γ, Z 1 2+3Higgs bosons ho, Ho, Ao 0 3complex singlet Ho, Ao 0 2→ neutralinos χo

i 1/2 5 · 2 DM

gauge bosons W± 1 2 · 3Higgs bosons H± 0 2→ charginos χ

±i 1/2 2 · 4

– MSSM pushing error bars [χχ → WW ]

linked to χ0χ± production

– NMSSM dark matter

– simplified model: pseudo-scalar mediatorMajorana fermion DM

– MSSM-like DM composition [B − H]

mixed singlino DM

⇒ linked to LHC signatures?

LHC signatures [Butter etal]

– requiring relic density

– requiring GCE rate

– passing Xenon limits

⇒ chargino-neutralino rate [Cao, Zurek,...]

1M20 30 40 50 60 70 80 90

κ∼

0.05

0.1

0.15

0.2

0.25

0

10

20

30

40

50<0.1215N

>0.9215N

01

χmass

Page 97: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Supersymmetric Hooperon

Spirit of ambulance chasing: Hooperon←→ LHC [Butter etal]spin d.o.f.

fermion fL, fR 1/2 1+1→ sfermion fL, fR 0 1+1gluon Gµ 1 n-2→ gluino g 1/2 2 Majoranagauge bosons γ, Z 1 2+3Higgs bosons ho, Ho, Ao 0 3complex singlet Ho, Ao 0 2→ neutralinos χo

i 1/2 5 · 2 DM

gauge bosons W± 1 2 · 3Higgs bosons H± 0 2→ charginos χ

±i 1/2 2 · 4

– MSSM pushing error bars [χχ → WW ]

linked to χ0χ± production

– NMSSM dark matter

– simplified model: pseudo-scalar mediatorMajorana fermion DM

– MSSM-like DM composition [B − H]

mixed singlino DM

⇒ linked to LHC signatures?

LHC signatures [Butter etal]

– requiring relic density

– requiring GCE rate

– passing Xenon limits

⇒ chargino-neutralino rate [Cao, Zurek,...]

⇒ BRinv up to 40%

1M20 30 40 50 60 70 80 90

κ∼

0.05

0.1

0.15

0.2

0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

=220 GeVµ

01χ 0

1χ → 125BR H

Page 98: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Questions

Questions waiting

– is it really the Standard Model Higgs?

– is there WIMP dark matter?

– is there TeV-scale physics beyond the Standard Model?

– should I become a particle physicist? — yes!

– is our experimental/theoretical program exciting? — yes!

Lectures on LHC Physics and dark matter updated under www.thphys.uni-heidelberg.de/˜plehn/

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

Page 99: New Physics at the LHC · 2016. 5. 13. · ...after the Higgs discovery...and requiring high–scale physics –Higgs mass driven to cutoff of effective Standard Model)easy solution:

New Physicsat the LHC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY