non dimensionalization

45
Non-dimensionalisation of the Navier-Stokes equations Michal Kopera Centre for Scientific Computing 24 January 2008 Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Upload: rajeev-kt

Post on 27-Apr-2015

158 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Non Dimensionalization

Non-dimensionalisation of the Navier-Stokes equations

Michal Kopera

Centre for Scientific Computing

24 January 2008

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 2: Non Dimensionalization

Outline

Previously on Research Seminar ...

Navier-Stokes equations (vector and tensor notation)

Different forms of Navier-Stokes equations

Divergent

Dissipative

Skew-symmetric

Rotational

Non-dimensionalization

Dimensionless variables

Derivations of dimensionless equations

Choosing the reference values

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 3: Non Dimensionalization

Previously on Research Seminar...

Continuity equation

∂ρ

∂t+∂(ρu)

∂x+∂(ρv)

∂y+∂(ρw)

∂z= 0

Assumptions

Infinitesimal control volume, but big enough to treat the fluid as acontinuum

ρ = const.

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 4: Non Dimensionalization

Previously on Research Seminar...

Continuity equation

∂ρ

∂t+∂(ρu)

∂x+∂(ρv)

∂y+∂(ρw)

∂z= 0

Assumptions

Infinitesimal control volume, but big enough to treat the fluid as acontinuum

ρ = const.

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 5: Non Dimensionalization

Previously on Research Seminar...

Continuity equation

∂ρ

∂t+∂(ρu)

∂x+∂(ρv)

∂y+∂(ρw)

∂z= 0

Assumptions

Infinitesimal control volume, but big enough to treat the fluid as acontinuum

ρ = const.

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 6: Non Dimensionalization

Previously on Research Seminar...

Continuity equation for incompressible fluid

∂u

∂x+∂v

∂y+∂w

∂z= 0

∇~V = 0

∂ui

∂xi= 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 7: Non Dimensionalization

Previously on Research Seminar...

Continuity equation for incompressible fluid

∂u

∂x+∂v

∂y+∂w

∂z= 0

∇~V = 0

∂ui

∂xi= 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 8: Non Dimensionalization

Previously on Research Seminar...

Continuity equation for incompressible fluid

∂u

∂x+∂v

∂y+∂w

∂z= 0

∇~V = 0

∂ui

∂xi= 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 9: Non Dimensionalization

Previously on Research Seminar...

Linear momentum equation

ρ∂~V

∂t+ ρ(~V · ∇)~V = ρ~g −∇p +∇τij

ρ∂ui

∂t+ ρuj

∂ui

∂xj= ρgi −

∂p

∂xi+∂τij∂xj

Assumptions

Newtonian fluid: τij = µ(∂ui∂xj

+∂uj

∂xi

)

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 10: Non Dimensionalization

Previously on Research Seminar...

Linear momentum equation

ρ∂~V

∂t+ ρ(~V · ∇)~V = ρ~g −∇p +∇τij

ρ∂ui

∂t+ ρuj

∂ui

∂xj= ρgi −

∂p

∂xi+∂τij∂xj

Assumptions

Newtonian fluid: τij = µ(∂ui∂xj

+∂uj

∂xi

)

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 11: Non Dimensionalization

Previously on Research Seminar...

Linear momentum equation

ρ∂~V

∂t+ ρ(~V · ∇)~V = ρ~g −∇p +∇τij

ρ∂ui

∂t+ ρuj

∂ui

∂xj= ρgi −

∂p

∂xi+∂τij∂xj

Assumptions

Newtonian fluid: τij = µ(∂ui∂xj

+∂uj

∂xi

)

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 12: Non Dimensionalization

Previously on Research Seminar...

Linear momentum equation for Newtonian fluid

∂~V

∂t+ (~V · ∇)~V = ~g − 1

ρ∇p + ν4~V

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 13: Non Dimensionalization

Previously on Research Seminar...

Linear momentum equation for Newtonian fluid

∂~V

∂t+ (~V · ∇)~V = ~g − 1

ρ∇p + ν4~V

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 14: Non Dimensionalization

Previously on Research Seminar...

Energy equation

ρdu

dt+ p(∇ · ~V ) = ∇(k · ∇T ) + Φ

Assumptions

Fourier law: ~q = −k∇T

du ≈ cvdT ≈ cpdT

cv , cp, µ, k , ρ ≈ const.

Φ = 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 15: Non Dimensionalization

Previously on Research Seminar...

Energy equation

ρdu

dt+ p(∇ · ~V ) = ∇(k · ∇T ) + Φ

Assumptions

Fourier law: ~q = −k∇T

du ≈ cvdT ≈ cpdT

cv , cp, µ, k , ρ ≈ const.

Φ = 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 16: Non Dimensionalization

Previously on Research Seminar...

Energy equation

ρdu

dt+ p(∇ · ~V ) = ∇(k · ∇T ) + Φ

Assumptions

Fourier law: ~q = −k∇T

du ≈ cvdT ≈ cpdT

cv , cp, µ, k , ρ ≈ const.

Φ = 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 17: Non Dimensionalization

Previously on Research Seminar...

Energy equation

ρdu

dt+ p(∇ · ~V ) = ∇(k · ∇T ) + Φ

Assumptions

Fourier law: ~q = −k∇T

du ≈ cvdT ≈ cpdT

cv , cp, µ, k , ρ ≈ const.

Φ = 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 18: Non Dimensionalization

Previously on Research Seminar...

Energy equation for an incompressible flow without viscous dissipation

∂T

∂t+ (~V · ∇)T =

k

ρcp4T

∂T

∂t+ uj

∂T

∂xj=

k

ρcv

∂2T

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 19: Non Dimensionalization

Previously on Research Seminar...

Energy equation for an incompressible flow without viscous dissipation

∂T

∂t+ (~V · ∇)T =

k

ρcp4T

∂T

∂t+ uj

∂T

∂xj=

k

ρcv

∂2T

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 20: Non Dimensionalization

Different forms of the Navier-Stokes equation

convective form

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

divergent form

∂ui

∂t+∂(uiuj)

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

skew-symmetric form

∂ui

∂t+

1

2uj∂ui

∂xj+

1

2

∂(uiuj)

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 21: Non Dimensionalization

Different forms of the Navier-Stokes equation

convective form

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

divergent form

∂ui

∂t+∂(uiuj)

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

skew-symmetric form

∂ui

∂t+

1

2uj∂ui

∂xj+

1

2

∂(uiuj)

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 22: Non Dimensionalization

Different forms of the Navier-Stokes equation

convective form

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

divergent form

∂ui

∂t+∂(uiuj)

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

skew-symmetric form

∂ui

∂t+

1

2uj∂ui

∂xj+

1

2

∂(uiuj)

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 23: Non Dimensionalization

Different forms of the Navier-Stokes equation

rotational form

∂~V

∂t+ (∇× ~V )× ~V +∇

(1

2|~V |2

)= ~g − 1

ρ∇p + ν4~V

~ω = ∇× ~V

P = p +1

2ρ|~V |2

∂~V

∂t+ ~ω × ~V = ~g − 1

ρ∇P + ν4~V

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 24: Non Dimensionalization

Different forms of the Navier-Stokes equation

rotational form

∂~V

∂t+ (∇× ~V )× ~V +∇

(1

2|~V |2

)= ~g − 1

ρ∇p + ν4~V

~ω = ∇× ~V

P = p +1

2ρ|~V |2

∂~V

∂t+ ~ω × ~V = ~g − 1

ρ∇P + ν4~V

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 25: Non Dimensionalization

Different forms of the Navier-Stokes equation

rotational form

∂~V

∂t+ (∇× ~V )× ~V +∇

(1

2|~V |2

)= ~g − 1

ρ∇p + ν4~V

~ω = ∇× ~V

P = p +1

2ρ|~V |2

∂~V

∂t+ ~ω × ~V = ~g − 1

ρ∇P + ν4~V

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 26: Non Dimensionalization

Different forms of the Navier-Stokes equation

convective term in tensor notation

(∇× ~V )× ~V +∇(

1

2|~V |2

)→ uj

(∂ui

∂xj−∂uj

∂xi

)+

∂xi

(1

2ujuj

)rotational form in tensor notation

∂ui

∂t+ uj

(∂ui

∂xj−∂uj

∂xi

)= gi −

1

ρ

∂P

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 27: Non Dimensionalization

Different forms of the Navier-Stokes equation

convective term in tensor notation

(∇× ~V )× ~V +∇(

1

2|~V |2

)→ uj

(∂ui

∂xj−∂uj

∂xi

)+

∂xi

(1

2ujuj

)rotational form in tensor notation

∂ui

∂t+ uj

(∂ui

∂xj−∂uj

∂xi

)= gi −

1

ρ

∂P

∂xi+ ν

∂2ui

∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 28: Non Dimensionalization

Different forms of the Navier-Stokes equation

Summary of the Navier-Stokes equation formulations

convective ∂ui∂t + uj

∂ui∂xj

= gi − 1ρ∂p∂xi

+ ν ∂2ui∂xj∂xj

divergent ∂ui∂t +

∂(uiuj )∂xj

= gi − 1ρ∂p∂xi

+ ν ∂2ui∂xj∂xj

skew-symmetric ∂ui∂t + 1

2uj∂ui∂xj

+ 12∂(uiuj )∂xj

= gi − 1ρ∂p∂xi

+ ν ∂2ui∂xj∂xj

rotational ∂ui∂t + uj

(∂ui∂xj− ∂uj

∂xi

)= gi − 1

ρ∂P∂xi

+ ν ∂2ui∂xj∂xj

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 29: Non Dimensionalization

Non-dimensionalization - Dimensionless variables

Dimensionless variables

a - variable which has a dimension (unit) (length, velocity)

A - reference constant (eg. length of a football pitch, free streamvelocity)

a∗ = aA - dimensionless variable

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 30: Non Dimensionalization

Non-dimensionalization - Dimensionless variables

Dimensionless variables

a - variable which has a dimension (unit) (length, velocity)

A - reference constant (eg. length of a football pitch, free streamvelocity)

a∗ = aA - dimensionless variable

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 31: Non Dimensionalization

Non-dimensionalization - Dimensionless variables

Dimensionless variables

a - variable which has a dimension (unit) (length, velocity)

A - reference constant (eg. length of a football pitch, free streamvelocity)

a∗ = aA - dimensionless variable

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 32: Non Dimensionalization

Non-dimensionalization - Continuity equation

Continuity equation

∂ui

∂xi= 0

Dimensionless variables

u∗i = uiU x∗i = xi

L

Non-dimensional continuity equation

∂u∗i∂x∗i

= 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 33: Non Dimensionalization

Non-dimensionalization - Continuity equation

Continuity equation

∂ui

∂xi= 0

Dimensionless variables

u∗i = uiU x∗i = xi

L

Non-dimensional continuity equation

∂u∗i∂x∗i

= 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 34: Non Dimensionalization

Non-dimensionalization - Continuity equation

Continuity equation

∂ui

∂xi= 0

Dimensionless variables

u∗i = uiU x∗i = xi

L

Non-dimensional continuity equation

∂u∗i∂x∗i

= 0

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 35: Non Dimensionalization

Non-dimensionalization - Momentum equation

Linear momentum equation

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Dimensionless variables

u∗i = uiU x∗i = xi

L t∗ = t UL p∗ = p

ρU2

Non-dimensional momentum equation

∂u∗i∂t∗

+ u∗j∂u∗i∂x∗j

= giL

U2− ∂p∗

∂x∗i+

ν

UL

∂2u∗i∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 36: Non Dimensionalization

Non-dimensionalization - Momentum equation

Linear momentum equation

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Dimensionless variables

u∗i = uiU x∗i = xi

L t∗ = t UL p∗ = p

ρU2

Non-dimensional momentum equation

∂u∗i∂t∗

+ u∗j∂u∗i∂x∗j

= giL

U2− ∂p∗

∂x∗i+

ν

UL

∂2u∗i∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 37: Non Dimensionalization

Non-dimensionalization - Momentum equation

Linear momentum equation

∂ui

∂t+ uj

∂ui

∂xj= gi −

1

ρ

∂p

∂xi+ ν

∂2ui

∂xj∂xj

Dimensionless variables

u∗i = uiU x∗i = xi

L t∗ = t UL p∗ = p

ρU2

Non-dimensional momentum equation

∂u∗i∂t∗

+ u∗j∂u∗i∂x∗j

= giL

U2− ∂p∗

∂x∗i+

ν

UL

∂2u∗i∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 38: Non Dimensionalization

Non-dimensionalization - Momentum equation

∂u∗i∂t∗

+ u∗j∂u∗i∂x∗j

= giL

U2− ∂p∗

∂x∗i+

ν

UL

∂2u∗i∂x∗j ∂x∗j

Dimensionless parameters

Reynolds number: Re = ULν (always important)

Froude number: Fr = U2

gL (only if there is a free surface)

Non-dimensional momentum equation with dimensionless parameters

∂u∗i∂t∗

+ u∗j∂u∗i∂x∗j

=1

Fr− ∂p∗

∂x∗i+

1

Re

∂2u∗i∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 39: Non Dimensionalization

Non-dimensionalization - Energy equation

Energy equation

∂T

∂t+ uj

∂T

∂xj=

k

ρcp

∂2T

∂xj∂xj

Dimensionless variables

u∗i = uiU x∗i = xi

L t∗ = t · t0 T ∗ = T−T0T1−T0

Non-dimensional energy equation

T1 − T0

t0

∂T ∗

∂t∗+

U

L(T1 − T0)u∗j

∂T ∗

∂x∗j=

k

ρcp

T1 − T0

L2

∂T ∗

∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 40: Non Dimensionalization

Non-dimensionalization - Energy equation

Energy equation

∂T

∂t+ uj

∂T

∂xj=

k

ρcp

∂2T

∂xj∂xj

Dimensionless variables

u∗i = uiU x∗i = xi

L t∗ = t · t0 T ∗ = T−T0T1−T0

Non-dimensional energy equation

T1 − T0

t0

∂T ∗

∂t∗+

U

L(T1 − T0)u∗j

∂T ∗

∂x∗j=

k

ρcp

T1 − T0

L2

∂T ∗

∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 41: Non Dimensionalization

Non-dimensionalization - Energy equation

Energy equation

∂T

∂t+ uj

∂T

∂xj=

k

ρcp

∂2T

∂xj∂xj

Dimensionless variables

u∗i = uiU x∗i = xi

L t∗ = t · t0 T ∗ = T−T0T1−T0

Non-dimensional energy equation

T1 − T0

t0

∂T ∗

∂t∗+

U

L(T1 − T0)u∗j

∂T ∗

∂x∗j=

k

ρcp

T1 − T0

L2

∂T ∗

∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 42: Non Dimensionalization

Non-dimensionalization - Energy equation

T1 − T0

t0

∂T ∗

∂t∗+

U

L(T1 − T0)u∗j

∂T ∗

∂x∗j=

k

ρcp

T1 − T0

L2

∂T ∗

∂x∗j ∂x∗j

Dimensionless parameters

Reynolds number: Re = ULν

Prandtl number: Pr =µcp

k

Strouhal number: St = LUt0

Non-dimensional energy equation with dimensionless parameters

St∂T ∗

∂t∗+ u∗j

∂T ∗

∂x∗j=

1

RePr

∂T ∗

∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 43: Non Dimensionalization

Non-dimensionalization - Energy equation

T1 − T0

t0

∂T ∗

∂t∗+

U

L(T1 − T0)u∗j

∂T ∗

∂x∗j=

k

ρcp

T1 − T0

L2

∂T ∗

∂x∗j ∂x∗j

Dimensionless parameters

Reynolds number: Re = ULν

Prandtl number: Pr =µcp

k

Strouhal number: St = LUt0

Non-dimensional energy equation with dimensionless parameters

St∂T ∗

∂t∗+ u∗j

∂T ∗

∂x∗j=

1

RePr

∂T ∗

∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 44: Non Dimensionalization

Non-dimensionalization - Summary

Summary of dimensionless Navier-Stokes equations

continuity∂u∗i∂x∗i

= 0

momentum∂u∗i∂t∗ + u∗j

∂u∗i∂x∗j

= 1Fr −

∂p∗

∂x∗i+ 1

Re∂2u∗i∂x∗j ∂x∗j

energy St ∂T∗

∂t∗ + u∗j∂T∗

∂x∗j= 1

RePr∂T∗

∂x∗j ∂x∗j

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations

Page 45: Non Dimensionalization

Non-dimensionalization - choosing the parameters

Now how to choose the U, L etc. ?

Michal Kopera Non-dimensionalisation of the Navier-Stokes equations