non-platinum bimetallic cathode electrocatalysts · project start data: january, 2007 project end...

21
Non-Platinum Bimetallic Cathode Electrocatalysts D. Myers , X. Wang, N. Kariuki, S. Niyogi, J. Mawdsley, and J. D. Carter Argonne National Laboratory W.A. Goddard, III , B. Merinov, Y. Sha, and T. Yu California Institute of Technology J. Regalbuto, S. Ekambaram, and H.-R. Cho University of Illinois at Chicago C. Heske , T. Hofmann, and Y. Zhang University of Nevada, Las Vegas K. More , Oak Ridge National Laboratory P. Zelenay , F. Garzon, H. Chung, and G. Wu Los Alamos National Laboratory 2008 DOE Hydrogen Program Review Arlington, VA, May 18-22, 2009 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: fc_20_myers

Upload: others

Post on 21-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

Non-Platinum Bimetallic Cathode Electrocatalysts

D. Myers, X. Wang, N. Kariuki, S. Niyogi, J. Mawdsley, and J. D. Carter Argonne National Laboratory

W.A. Goddard, III, B. Merinov, Y. Sha, and T. YuCalifornia Institute of Technology

J. Regalbuto, S. Ekambaram, and H.-R. Cho

University of Illinois at Chicago

C. Heske, T. Hofmann, and Y. ZhangUniversity of Nevada, Las Vegas

K. More, Oak Ridge National Laboratory

P. Zelenay, F. Garzon, H. Chung, and G. WuLos Alamos National Laboratory

2008 DOE Hydrogen Program Review

Arlington, VA, May 18-22, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: fc_20_myers

Page 2: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

2

Overview

TimelineProject start data: January, 2007Project end data: December, 2010 Percentage complete: 65%

BudgetTotal project funding:– DOE: $5,434 K– Contractor share: $172 K

Funding received in FY’08:– DOE: $1480 K– Contractor share: $42 K

Funding for FY’09:– DOE: $1350 K– Contractor share: $40 K

BarriersBarriers addressedA. DurabilityB. CostC. Electrode performance

PartnersCalifornia Institute of Technology (Caltech)University of Illinois at Chicago (UIC)University of Nevada at Las Vegas (UNLV)Oak Ridge National Laboratory (ORNL)Los Alamos National Laboratory (LANL)Lead Lab: Argonne

Page 3: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

3

ObjectivesDevelop a non-platinum cathode electrocatalyst for polymer electrolyte fuel cells to meet DOE targets that:– Promotes the direct four-electron oxygen reduction reaction (ORR) with high

electrocatalytic activity(0.44 A/mgPGM; 720 μA/cm2 @0.9 ViR-free)

• O2 reduction reaction (ORR) in acidic media

– Two-electron transfer Four-electron transferO2 + 2H+ + 2e− = H2O2 O2 + 4H+ + 4e− = 2 H2O

– Is chemically compatible with the acidic electrolyte and resistant to dissolution (<40% electrochemical area loss over 5000 h@≤80oC and 2000 h@>80°C)

– Is low cost ($5/KW, 0.3 mg PGM/cm2)

Objective in the past year:– Optimize ORR activity and stability of Pd-Cu nano-particles; study correlation

between Pd-Cu electronic structure and activity; perform MEA tests

– Synthesize and evaluate the oxygen reduction activity and stability of nano-particles of one palladium alloy system and two rhodium alloy systems (Pd-Co, Rh-Co, and Rh-Fe)

Page 4: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

4

ApproachBimetallic systems (base metal-noble metal)– Surface skin of minor noble metal component over noble metal-base metal

alloy particle interior to form protective layer– Base metal component chosen to modify electronic properties of noble

metal making it more “Pt-like”– Initial choice of bimetallic systems based on published surface segregation

energies and d-band center shifts (A.V. Ruban, H.L. Skriver, J.K. Nørskov, Phys. Rev. B, 59 (1999)15990.; A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, and J.K. Nørskov, J. Mol. Catal. A 115 (1997) 421.)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

d-ba

nd c

ente

r (eV

)

Pt Pd Rh Ir

PtPt

3Co

PdPd

Ru

PdC

u PdN

i, Pd

Fe

Ir

RhC

oR

hNi

RhF

e

Rh

IrRu

PdC

o-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

d-ba

nd c

ente

r (eV

)

Pt Pd Rh Ir

PtPt

3Co

PdPd

Ru

PdC

u PdN

i, Pd

Fe

Ir

RhC

oR

hNi

RhF

e

Rh

IrRu

PdC

o

Ru, very strongCu, moderateNi strong Fe, very strongCo, strong

Fe, strongCo, strong Ni, moderate

Ru, moderate

PdRhIr

Noble Metal Segregation

Ru, very strongCu, moderateNi strong Fe, very strongCo, strong

Fe, strongCo, strong Ni, moderate

Ru, moderate

PdRhIr

Noble Metal Segregation

Page 5: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

5

How this project addresses the DOE barriersA. Durability:– Altering oxophilicity of catalyst to prevent oxidation-related degradation

• Alloying Pt and Pd with base metals decreases their oxophilicity [e.g., V. Stamenkovic, B. Mun, K. Mayrhofer, P. Ross, N. Markovic, J. Rossmeisl, J. Greeley, and J. K. Nørskov, Angew. Chem. Int. Ed., 45, 2897 (2006).; M. Shao, P. Liu, J. Zhang, and R. Adzic, J. Phys. Chem. B, 111, 6772 (2007).]

• Alloying Pt with base metals results in improved resistance to electrochemically-active surface area loss [e.g., studies by GM, Johnson Matthey, UTC and others]

• Computational studies have shown that alloying with base metals can increase the dissolution potential of surface noble metals[J. Greeley and J.K. Nørskov, “Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations”, Electrochim. Acta 52 5829 (2007).]

B. Cost– Lowering PGM loading by replacing PGM in electrocatalyst particle core with

base metal

C. Electrode performance:– Modifying surface electronic properties to enhance ORR activity

• Studies on Pt alloys have shown a correlation between surface valence band energy and ORR activity [e.g., V. Stamenkovic, B. Mun, K. Mayrhofer, P. Ross, N. Markovic, J. Rossmeisl, J. Greeley, and J. K. Nørskov, Angew. Chem. Int. Ed., 45, 2897 (2006).]

Base Metal $$

¢¢

¢¢

Base Metal $$

¢¢

¢¢

Base Metal $$

¢¢

¢¢

Page 6: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

6

Project tasksComputational studies (Caltech)

– Guide choice of systems and compositions (beyond systems from Norskov et al. calc.)

– Quantum mechanical and large scale molecular dynamics for reaction pathways, kinetics, and preferred catalyst structures

Model systems: bulk electrode fabrication and characterization (UNLV, Argonne)

– Guide choice of systems and compositionsNano-particle synthesis on high-surface-area carbon support (Argonne, UIC)

– Impregnation (screening)– Colloidal (controlled composition)– Strong-electrostatic adsorption

Nano-particle characterization (Argonne, ORNL, UNLV, UIC)

– ORR activity and stability screening (rotating ring-disk technique), composition, electronic structure, and morphology

Membrane-electrode assembly fabrication and testing (LANL, ORNL)

– Performance and durability using accelerated test protocol

2H2 + O2 2H2O2H2 + O2 2H2OORR intermediates: H, O, OH, O2,OOH, H2O

2H2 + O2 2H2O2H2 + O2 2H2O2H2 + O2 2H2O2H2 + O2 2H2OORR intermediates: H, O, OH, O2,OOH, H2OORR intermediates: H, O, OH, O2,OOH, H2O

High dynamic rangeXPS, UPS, Auger, IPES

High resolutionXPS, UPS, Auger

Sample preparation and distribution

Scanning ProbeMicroscope

GloveboxHigh dynamic rangeXPS, UPS, Auger, IPES

High resolutionXPS, UPS, Auger

Sample preparation and distribution

Scanning ProbeMicroscope

Glovebox

Page 7: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

7

W

Mo

FeCoRu

NiRh

CuIr

PdPt

Ag

Au

Relative ORR Activity

W

Mo

FeCoRu

NiRh

CuIr

PdPt

Ag

Au

Relative ORR Activity

Adapted from J. Nørskov et al., J. Phys. Chem. B 108 (2004) 17886.

Measured DOS in the valence band

Trends in oxygen reduction activity

D-band center and ORR activity

Pt and Cu have similar d-and centers, but ORR activity and overall density of states (DOS) differ significantly

– D-band center does not adequately reflect valence band (VB) structure and interaction of metal with oxygen

– Spectral distribution (DOS vs energy) needs to be analyzed to determine if catalyst has a “Pt-like” electronic structure

10 8 6 4 2 0

Au foil

Ag foil

Pt foil

Pd foilCu foil

Co foil

Nor

mal

ized

Inte

nsity

Binding Energy (eV)

Fe foil

XPSAl Kα(mono)

d-band center

Page 8: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

8

DOS calculations provide insight into the relative strength of the different contributions to the overall DOS

First step towards analysis of contributions to valence band structure and involvement of various states in the ORR

Calculated and experimental density of states

Theoretical DOS calculation using Gaussian basis set, DFT (PBE) and

periodic code, modified for instrumental broadening and Fermi distribution

10 8 6 4 2 0

d-t2g d-eg p s total DOS

Cu foil XPS

Nor

mal

ized

Inte

nsity

Binding Energy (eV)

*spectra shifted -0.5 eV

for illustration purposes

CopperTheoretical andExperimental DOS

1

2

34

Theoretical and experimental VB structures show similarities in the overall spectral shape – final state effects are responsible for the observed differences

Spectral features in the measured DOS (1-4) are correlated with peaks in the DOS of the individual wave functions10 8 6 4 2 0

Pd foil

Cu DFT

Pd DFT

Pt DFT

Pt foil

Cu foil

Nor

mal

ized

Inte

nsity

Binding Energy (eV)

XPSAl Kα (mono)

10 8 6 4 2 0

Pd foil

Cu DFT

Pd DFT

Pt DFT

Pt foil

Cu foil

Nor

mal

ized

Inte

nsity

Binding Energy (eV)

XPSAl Kα

Page 9: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

9

Technique Impregnation Colloidal Core-shell structure synthesis

System Pd-Cu Pd-Co Rh-Co Rh-Fe Pd-Fe Pd-Cu-Ni Pd-W Pd-Mo-Ni Pd@1:1PdCu Pd@1:3PdCu

PGM loading (wt%)

10, 20 30

20, 25 2-22 2-22 102013

2027, 2820, 11

10, 16, 23, 26 9, 11, 17, 19, 21, 26, 31

CompositionPGM:BM1:BM2molar ratio

25:7533:6740:6050:50

80:2067:3350:50

90:10 75:2550:5025:7510:90

90:10 75:2550:5025:7510:90

63:27

50:5025:75

64:18:18 33:60:7

75:2567:3369:3155:45

33:14:53

63:3764:3673:2676:24

67:33 70:30

72:28 73:2774:26

77:23 81:19

PGM precursor chloride nitrate acac nitrate nitrate acac

acetateacac

chloride acac1:1 Pd:Cu alloy

particles acetate amine

1:3 Pd:Cu alloy particles

acetate amineBM precursor chloride nitrate acac nitrate nitrate carbonyl

acetateacac

tungstatecarbonyl

acac

Post-depositionheat treatment temperature (ºC)

400 415

300 400 470 550 650 700

250 400 500 550 650

500500550

500700

550700570

80180200500

80180200500

Heat treatment atmosphere

4% H2pure H2

4% H24% H2

pure H2

4% H2

pure H24% H2 4% H2 4% H2

4% H2

pure H2

Vacuum4%H2

Vacuum4%H2

Summary of nanoparticle systems studied this year

Page 10: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

10

Summary of Palladium-Copper nano-particle activity and stabilityHighest area-specific ORR activity: acid-treated Pd:Cu showing Pd-rich shell on Pd:Cu 1:1 core (21 nm) Pd:Cu 1:1 is more stable than Pd:Cu 1:3 (aqueous tests)MEA testing confirmed instability of Pd:Cu 1:3; Pd:Cu 1:1 MEA testing is underway

RDE, 0.1 M HClO4, 12.5 μg Pd/cm², GC area: 0.196 cm², 10 mV/s, anodic scan, 1600 rpm, RT

E-Tek20%Pd

E-Tek20%Pt

E-Tek20%Pd

Pd:Cu Imp.1:3 acid-treat.

Pd:Cu 1:3Alt. Coll.

E-Tek20%Pt

Pd:Cu 1:1Coll.

PdCu3 on Vulcan XC-72: 8.9 wt% Pd; 15.5 wt% Cu

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

Current Density (A/cm²)

Cel

l Vol

tage

(V) Pd:Cu 1:3

IR-corr.

-3000

-2400

-1800

-1200

-600

0

ik ( μ

A/c

m2 P

GM

)-1800

-1400

-1000

-600

-200

Ik (m

A/m

g PG

M)

0.90 V 0.85 V 0.80 V

3 nm

21.5 nm

3.3 nm2.3 nm

10 nm

0.2 mg Pdcm-²/2 x Nafion® 1135/ 0.25 mg Ptcm-²,

H2/Air, 30/30 psig, 80°C

Page 11: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

11

Palladium-Copper model systems and nano-particles

Ep/2 (V)

0.806

0.849

0.857

0.883

Bulk alloys and nano-particles have very similar ORR activity (rel. to Pt) and similar DOS

DOS of Pd-Cu alloys show shift to higher binding energies and are dominated by contribution from Pd

Nano-particles, RDE, 0.1 M HClO4, 12.5 μg PGM/cm² (Pt and Pd:Cu), 28.6 μg Pd/cm² (Pd), 10 mV/s cathodic scan, GC area: 0.196 cm², 1600 rpm, RT

Ingots in oxygen-saturated, quiescent 0.1 M HClO4, 10 mV/s, room temp.

Nano-particles

Foils

Foils

Nano-particles

Page 12: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

12

Computational results for Palladium-Copper alloy system

*PdCu3: L12

L11

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ene

rgy

O2 Dissociation MechanismPt

Pd

Cu

PdCu-L11-layerPdCu-L11-nonlayerPdCu3-L12

-7.00 -6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ene

rgy

OOH Dissociation MechanismPt

Pd

Cu

PdCu-L11-layerPdCu-L11-nonlayerPdCu3-L12

Rate-determining step: water formationReduced OH formation barrier (~0.33 eV) for non-layered PdCu

Pd:Cu 1:1 has a higher density of states near the Fermi energy than Pd:Cu 1:3 (as observed experimentally)“Non-layered” Pd:Cu 1:1 shows lowest barrier for ORR

*PdCu: L11

10 8 6 4 2 0

Pd:Cu 1:1

Pd:Cu 1:3

Pt

Nor

mal

ized

Inte

nsity

Binding Energy (eV)10 8 6 4 2 0

Pd:Cu 1:1

Pd:Cu 1:3

Pt

Nor

mal

ized

Inte

nsity

Binding Energy (eV)10 8 6 4 2 0

Pd:Cu 1:1

Pd:Cu 1:3

Pt

Nor

mal

ized

Inte

nsity

Binding Energy (eV)

* Source of structure models - http://cst-www.nrl.navy.mil

Page 13: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

13

Summary of Rhodium-Iron alloy ORR activityRh to Fe molar ratio varied from 1:9 to 9:1; Vulcan XC72-supported nanoparticles synthesized via co-impregnation of nitrate precursorsPost-deposition heat treatment in 4% hydrogen or 100% hydrogen at 250°C to 550°CHighest ORR mass activity observed: 37 mA/mg Rh (@ 0.8 V, room temp.)Highest ORR area specific activity observed: 53 μA/cm² (@ 0.8 V, room temp.)

1:9 1:3 1:1 3:1 9:1

-60

-50

-40

-30

-20

-10

0

ik a

t 0.8

V v

s SH

E ( μ

A/c

m²)

Molar ratio of Rh to Fe

1:9 1:3 1:1 3:1 9:1

-40

-35

-30

-25

-20

-15

-10

-5

0

ik a

t 0.8

V v

s SH

E (m

A/m

g)

Molar ratio of Rh to Fe

250°C, 4% H2400°C, 100% H2400°C, 4% H2500°C, 4% H2500°C, 100% H2550°C, 100% H2

Page 14: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

14

Summary of Rhodium-Cobalt alloy ORR activityRh to Co molar ratio varied from 1:9 to 9:1; Vulcan XC72-supported nanoparticles synthesized via co-impregnation of nitrate precursorsPost-deposition heat treatment in 4% H2 or 100% H2 at 300°C-700°CHighest ORR mass activity observed: 275 mA/mg Rh (@ 0.8 V, room temp.)Highest ORR area specific activity observed: 290 μA/cm² (@ 0.8 V, room temp.)

9:1 3:1 1:1 1:3 1:9700, 4

650, 4550, 4

470, 4400, 4

400, 100300, 4

-300

-250

-200

-150

-100

-50

0

Ik a

t 0.8

V v

s SH

E (m

A/m

g R

h)

Temperature (°C), H2%

Mass activity at 0.8 V vs SHE

9:1 3:1 1:1 1:3 1:9

-300

-250

-200

-150

-100

-50

0

Area specific activity at 0.8 V vs SHE

700, 4650, 4

550, 4470, 4

400, 4400, 100

300, 4

Ik a

t 0.8

V v

s SH

E (μ

A/c

m²)

Page 15: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

15

What next? Calculations of transition metal alloy surface segregation

Solute\Noble

Pd (eV)

Pt (eV)

Rh (eV)

Co -0.41 -0.49Ir -0.76 -0.57Mo -1.23 -1.00Ni -0.43Os -1.32 -0.91Ta -0.33Tc -0.74 -1.03 -0.56Re -2.09 -1.69 -0.85Rh -0.47 -0.39Ru -0.88 -0.83 -0.56W -1.99 -1.37

Noble MetalSolute Metal

75-75-75-75%“Surface Uniform”

Case

100-50-75-75%“Surface Segregated”

Case

Blue Box – Noble Metals StudiedRed Box – Solute Metals Studied

Energy difference between surface segregated and surface uniform

The goal of these DFT slab calculations is to find binary alloys favoring surface segregation of the noble metal

Page 16: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

16

What next? Surface d-band Center of Pt, Pd and Rh alloys

Gold – Noble MetalGreen – Solute Metal

-1.86-2.55-2.25Zr-1.91-2.58-1.89Zn-1.59-2.23-1.97Y-2.27-2.95-2.39W-2.26n/an/aV-2.10-2.78n/aTi-2.29-2.79-2.21Tc-2.13-2.85-2.44Ta-1.77-2.52-2.12Sc-2.23-2.68-2.11Ru-2.16-2.59-1.95Rh-2.31-2.85-2.28Re-2.09-2.47-1.83Pt-2.04-2.44-1.82Pd-2.27-2.76n/aOs-2.19-2.69-2.03Ni-2.10-2.79n/aNb-2.26-2.83-2.25Mo-2.16-2.65-1.98Mn-2.24-2.65-2.03Ir-1.69-2.13-1.57Hg-2.10-2.72n/aFe-2.11-2.58-1.92Cu-2.26-2.73-2.11Cr-2.17-2.76-2.08Co-1.70-2.24-1.66Cd-1.88-2.18-1.61Au-1.85-2.17-1.59AgRhPtPdSolute\

Noble

Of the noble metal alloys, Pd-Mo, Pd-Re, Pd-Ta, and Pd-W have desirable d-band centers closest to that of Pt

Initial choices based on d-band center until full VB structure calculations are completedThe d-band center of the surface noble metal in 3:1 (noble:base molar ratio) alloys was calculated

Page 17: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

17

Summary of new systems currently being studied

Binary systems identified as having promising surface segregation and electronic structure properties

– Pd-Mo– Pd-Re– Pd-Ta– Pd-W

Ternary systems to enhance activity and stability of highest activity binary system identified to date

– Pd-Cu-Mo– Pd-Cu-W– Pd-Cu-Re– Pd-Cu-Ta– Pd-Cu-Ni

Page 18: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

18

Ongoing computational studies - solvent effect on ORR

Continuum model– Poisson Boltzmann– UFF radii– Charge from slab

calculations

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ene

rgy(

eV)

O2 Dissociation Mechanism PtCoNiCuRuRhPdAgOsIrAu

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ene

rgy(

eV)

OOH Dissociation Mechanism PtCoNiCuRuRhPdAgOsIrAu

Solvent helps dissociate O2 and OOHOH and OOH formation become more difficult in the presence of solventOH formation becomes dominant barrier for both mechanisms

Page 19: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

19

Milestones/Summary of Progress

Synthesize and evaluate the oxygen reduction reaction (ORR) activity and stability of nano-particles of with goals of specific activity: 720 μA/cm²; mass activity: 0.44 A/mg PGM (@900 mViR-free)– Milestone (09/08): one palladium alloy system (Pd-Co) and two rhodium

alloy systems (Rh-Fe and Rh-Co)– Milestone (09/09): one rhodium-base metal alloy system and two iridium-

base metal alloy systems (on-going; milestone and focus changing based on recent computational results)

Progress:– Synthesized and tested the ORR activity of palladium-cobalt, rhodium-cobalt,

and rhodium-iron alloy nanoparticle systems– Highest room temperature nanoparticle ORR specific and mass activity

observed:• 95 μA/cm² for Pd:Cu 1:1 by co-impregnation; 20 nm (900 mV; room

temperature)• 0.06 A/mg Pd for Pd:Cu 1:3 by alternative colloidal; 3.3 nm

(900 mV; room temperature)

Page 20: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

20

Milestones/Summary of Progress (continued)

Determined that Cu modifies the electronic structure of Pd and correlated that modification with ORR activity

Tested PdCu3 electrocatalyst in MEAs

Developed capability to calculated the full valence band structure of pure metals and alloys and correlated the calculated structure of Pt, Pd, and Pd-Cu alloys with experimentally-determined structure

Correlated Pd-Cu nano-particle ORR activity and electronic structure with model systems

Using computational studies, identified several Pd alloys favoring noble metal surface segregation

Identified several non-Pt systems having d-band centers similar to Pt’s (as a first approximation for choice of systems with desirable electronic structures)

Fabricated model systems of binary and ternary Pd alloys identified as promising in computational effort

Page 21: Non-Platinum Bimetallic Cathode Electrocatalysts · Project start data: January, 2007 Project end data: December, 2010 Percentage complete: 65%. Budget Total project funding: –

21

On-going and future work (FY’09 and FY’10)Computational analyses– Based on DFT calculations, determine complete energetics for the ORR on

Pd-Mo, Pd-Re, Pd-Ta, and Pd-W alloys– In cooperation with experimentalists (UNLV) continue to determine alloy

electronic structures using density of states (DOS) analysis– Investigate solvation effect for the ORR on Pd-based alloys– Continue developing ReaxFF reactive force field for the ORR on relevant alloys

Model systems– Characterize ingots of Pd-Mo, Pd-Re, Pd-Ta, and Pd-W binaries and Pd-Cu-

Mo, Pd-Cu-W, Pd-Cu-Re, Pd-Cu-Ta, and Pd-Cu-Ni ternaries with varying Pd to base metal ratios• ORR activity, electronic structure, and surface composition as a function of

annealing temperatureNano-particle fabrication, activity, and stability characterization

• Testing of Pd:Cu 1:1 nano-particle catalyst activity and stability in MEA• Synthesis of alloy and core/shell Pd-Cu, Pd-Mo, and Pd-W catalysts using

strong-electrostatic adsorption technique• Fabricate Pd-Cu-M ternaries and Pd-M binaries using colloidal techniques