novel in vivo concentration detector

18
Novel In Vivo Lead Concentration Detector Proposal By: Gerard Trimberger and Felix Ekness June 2, 2012 Abstract The field of synthetic biology has its sights set on designing and constructing new biological functions and systems not found in nature. Because of this, we are proposing a novel genetic circuit that would be in Escherichia coli (E. coli) that would detect safe and harmful lead concentrations within liquid samples. This novel genetic circuit is designed so that phenotype changes within E. coli will represent the degree of biological safety of liquid samples with respect to aqueous lead concentrations. The proposed genetic circuit utilizes already designed lead binding proteins and lead binding protein promoters as well as commonly used metabolite signals, fluorescent reports, and terminator sequences. Although actual construction of the lead concentration detector genetic circuit isn’t feasible yet, through simulating the proposed kinetics of the circuit, it can be seen that the genetic circuit could be possible given the correct biological parts.

Upload: gerard-trimberger

Post on 13-Apr-2017

127 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Novel In Vivo Concentration Detector

 

 

Novel  In  Vivo  Lead  Concentration  Detector  

Proposal  By:  Gerard  Trimberger  and  Felix  Ekness  June  2,  2012    

   Abstract  The  field  of  synthetic  biology  has  its  sights  set  on  designing  and  constructing  new  biological  functions   and   systems   not   found   in   nature.   Because   of   this,   we   are   proposing   a   novel  genetic  circuit  that  would  be  in  Escherichia  coli  (E.  coli)  that  would  detect  safe  and  harmful  lead   concentrations  within   liquid   samples.   This   novel   genetic   circuit   is   designed   so   that  phenotype   changes   within   E.   coli  will   represent   the   degree   of   biological   safety   of   liquid  samples  with  respect  to  aqueous  lead  concentrations.  The  proposed  genetic  circuit  utilizes  already   designed   lead   binding   proteins   and   lead   binding   protein   promoters   as   well   as  commonly   used   metabolite   signals,   fluorescent   reports,   and   terminator   sequences.    Although  actual  construction  of  the  lead  concentration  detector  genetic  circuit  isn’t  feasible  yet,  through  simulating  the  proposed  kinetics  of  the  circuit,  it  can  be  seen  that  the  genetic  circuit  could  be  possible  given  the  correct  biological  parts.  

                                                 

Page 2: Novel In Vivo Concentration Detector

 2  

Table  of  Contents  Introduction  to  Synthetic  Biology…………………………………………………………………………….pp.  03  Project  Overview…………………………………………………………………………………………………….pp.  03  Project  Design  Specifications………………………………………………………………………………...…pp.  04  Internal  Design  Specifications……………………………………………………………………………….…pp.  04     Design  Overview…………………………………………………………………………………………..pp.  04       Overview…………………………………………………………………………………………...pp.  04       Concentration  Detector………………………………………………………………………pp.  04       Memory  Unit…………………………………………………………………………………...…pp.  05       Signal  Amplifying  Fluorescent  Reporter……………………………………………...pp.  05     Specifications  of  Proposed  Kinetic  Responses.……………………………………………….pp.  06       Overview…………………………………………………………………………………………...pp.  06       Concentration  Detector……………………………………………………………………...pp.  06       Memory  Unit……………………………………………………………………………………..pp.  06       Signal  Amplifying  Fluorescent  Reporter……………………………………………...pp.  07       Degradation……………………………………………………………………………………….pp.  07  Computer  Simulation  Test  Implementation………………………………………………………………pp.  08     Complete  Circuit  Simulations………………………………………………………………………...pp.  08     Concentration  Detector  Module  Simulations………………………………………………….pp.  09     Memory  Unit  Module  Simulations……………………………………………………….…………pp.  09  

Signal  Amplifying  Fluorescent  Reporter  Module  Simulations………………………….pp.  09  Implementation  Details…………………………………………………………………………………………...pp.  10  Appendix………………………………………………………………………………………………………………...pp.  11     Device  Pricing  in  2025…………………………………………………………………………………..pp.  11     Design  Specification  Sheet………………………………………………………………...…………..pp.  11       Overview…………………………………………………………………………………………...pp.  11       Concentration  Detector………………………………………………………………………pp.  12       Memory  Unit……………………………………………………………………………………...pp.  13       Signal  Amplifying  Fluorescent  Reporter……………………………………………...pp.  14     Jarnac  Script…………………………………………………………………………………………………pp.  15       Overview  (Complete  System  Simulation)  ……………………………………………pp.  15         Concentration  Detector……………………………………………………………………...pp.  16       Memory  Unit……………………………………………………………………………………..pp.  17       Signal  Amplifying  Fluorescent  Reporter……………………………………………...pp.  18     Sources………………………………………………………………………………………………………...pp.  18  

                         

Page 3: Novel In Vivo Concentration Detector

 3  

Introduction  to  Synthetic  Biology  Before  the  age  of  digital  computers,  man  lived  a  simple  life.  Science  was  primarily  a  pencil  and  paper  type  of  exploration  with  observations  of  the  natural  world  deriving  from  actual  observations  of  nature.  Digital  computers  changed  all  of  this.  Currently  almost  all  complex  calculations,  modeling,  and  observations  are  aided   by   digital   computers.   It  was   predicted   by   Intel   co-­‐founder   Gorgon   E.  Moore   that   the   number   of  transitions  that  can  be  placed  inexpensively  on  an  integrated  circuit  would  double  every  two  years  [1].  Since  Moore’s  law  was  realized  in  1965,  transistors  per  area  have  been  increasing  in  line  with  the  law’s  predictions,  giving  way  to  an  exponential   increase  in  computing  power  over  the  past  few  decades.  This  increase   in   computing  power  has  given   scientists   the  ability   to  effortlessly   create  numerical  models  of  complex  natural  processes,  shedding  new  insights  into  traditionally  difficult  to  explore  areas.    In  1990  the  Human  Genome  Project  (HGP)  was  announced  [2].  This  project  aimed  to  sequence  all  of  the  genes   of   the   human   genome.  Without   the   aid   of   digital   computers,   the   project  would   have   been   near  impossible.  It  was  expected,  at  the  time,  to  take  15  years  of  work  but  the  project  finished  in  2003,  2  years  early   [2].   The   early   completing   of   the   HGP   can   be   partly   attributed   to   the   exponential   increase   in  computing   power   between   1990   and   2003.   Since   that   time,   biologists   have   been   harnessing   digital  computers  more   and  more   to   help   acquire   data,  model   biological   processes,   sequence   organisms,   and  clone  DNA  and  RNA.  This  increase  in  digital  computing  power  and  prevalence  of  digital  computers  in  the  biology  community  has  given  way  to  a  new  field:  synthetic  biology.    Synthetic   biology   is   a   relatively   new   field   that   focuses   on   designing   and   constructing   new   biological  functions  and  systems  not  found  in  nature.  Without  digital  computers,  synthetic  biology  wouldn’t  be  the  field  it  is  today.  Computer  programs,  such  as  Fold  It  (a  numerical  modeling  program  for  proteins),  have  been   integral   to   synthetic   biologists’   understand   of   tertiary   and   quaternary   structures   of   normally  occurring,   as   well   as   engineered,   proteins   and   enzymes.   Natural   and   engineered   enzymatic   and   gene  pathways  are  actively  being  modeled  with  programs  such  as  MatLab,  Mathematica,  and  Jarnac.  Together,  the   use   of   these   modeling   programs   has   lead   to   quantization   of   traditionally   qualitative   biological  processes  and  functions.  Because  of  this,  the  field  of  biology  has  become  more  of  a  quantitative  science  as  well  as  leading  many  to  question  nature’s  autonomy.    Due  to  how  computers  have  shaped  the  field  synthetic  biology  thus  far,  many  synthetic  biologists  believe  that   through   the  use  of   computers   the   field  will  be  able   to  characterize  biology   to   the  point  where   the  construction   of   novel   genetic   circuits/pathways   within   organisms   is   as   straightforward   as   electrical  engineers  utilizing  capacitors,  resistors,  and  inductors  in  building  complex  electrical  circuits.  It  has  been  electrical  engineers  up  to  this  point  building  computers  but  as  Moore’s   law  becomes  increasingly  more  difficult   to  satisfy,  new  types  of  machinery  will  be  required,   some  of  which   is  bound   to  come   from  the  field  of  synthetic  biology.    Project  Overview  Aqueous  lead  is  a  major  problem  around  the  world.  When  lead  is  ingested  by  humans,  both  neurological  and   severe   tissue   damage   can   occur.   Although   lead   test   kits   are   readily   available   in   the   market   for  relatively  cheap  prices,  to  create  a  biologic  test  for  lead  in  bacteria  or  micro-­‐organism  eukaryotes  would  yield   even   cheaper   tests   and  would   act   as   a   proof   of   concept   for   engineering   complex   genetic   circuits  within  bacteria  and/or  micro-­‐organism  eukaryotes.    The  proposed  project  is  to  build  a  novel  genetic  circuit  within  Escherichia  coli  (E.  coli)  that  enables  lead  (Pb2+)   concentration   detection   within   liquid   environments.   The   circuit   is   designed   to   allow   varying  concentrations   of   lead   to   be   detected   in   liquid   samples   through   phenotypic   changes   in   the  E.   coli.   By  

Page 4: Novel In Vivo Concentration Detector

 4  

visualizing   the   relative   levels   of   lead   within   sampled   liquids,   accurate   decisions   can   be   made   about  whether  or  not  the  liquids  are  safe  for  human  consumption.  With  the  creation  of  this  novel  genetic  circuit,  it  is  hoped  that  humans  will  gain  one  more  tool  in  monitoring  the  safety  of  their  environment.    Product  Design  Specifications  The   proposed   novel   genetic   lead   concentration   detector   circuit  works  within  E.   coli   that   is   in   a   liquid  environment.   Depending   on   the   initial   concentration   of   lead   imported   into   the   E.   coli,   one   of   two  incoherent  feed  forward  networks  will  activate  causing  a  regulated  double  negative  feedback  network  to  activate  one  of  two  fluorescence  outputs.  Once  activated,  the  fluorescent  output  will  auto  regulate  itself  to  stay  activated  until  the  E.  coli  runs  out  of  nutrients.  Only  concentrations  of  lead  that  exceed  harmful  levels  will   cause   the   E.   coli   to   fluoresce   red  while   lower   non-­‐harmful   levels   of   lead  will   cause   the  E.   coli   to  fluoresce  green.   If  no  to  very   little  amounts  of   lead  are  present   in  the   liquid  sample,   the  E.  coli  will  not  fluoresce.    Internal  Design  Specifications  A) Design  Overview  Overview  The  engineered  lead  concentration  detector  circuit   is  comprised  of  a  concentration  detector,  a  memory  unit,  and  a  fluorescence  reporter  (Figure  1).  As  a  whole,  these  components  are  comprised  of  three  main  modules,   and   two   submodules:   two   incoherent   feedforward   networks   (concentration   detector),   a  regulated  double  negative  feedback  network  (memory  unit),  and  two  positive  autoregulation  modules    (signal  amplifying  fluorescent  reporters).  

 Figure  1  –  Component  overview  of  the  proposed  lead  concentration  detector  genetic  circuit  

 Concentration  Detector  

The   circuit   will   activate   from   the   binding   of   Pb2+  molecules   to   lead   binding   proteins,   forming   lead-­‐binding  protein  dimers  (LBPD).  These  formed  dimers  act   to   bind   to   specially   designed   promoters   that  enable   transcription   of   two   initial   substrates   (S   and  P)   that   are   interfaced   with   the   designed   circuit   in  Figure   2.   It   can   be   seen   from   Figure   2   that   the   two  main   motifs   that   initial   substrates   S   and   P   interact  with   are   incoherent   feedforward  networks  A   and  B.  Incoherent  feedforward  networks  only  activate  when  an   initial   substrate   concentration   is   at   or   above   a  given  threshold  value  (threshold  value  dependent  on  network   tuning).   In   the   case   of   incoherent  feedforward   networks   A   and   B,   network   A   will  produce   S2   only   for   high   concentrations   of   initial  substrate   S   while   network   B   will   produce   P2   at   a  lower  initial  substrate  concentration  of  P.  Since  initial  substrates   S   and   P   are   equally   produced   from   the  

transcription  initiated  by  the  binding  of  the  lead  protein  dimer  to  the  lead  binding  promoter  ([S]  =  [P]),  network  A   will   be   active  when   network  B   is   active   but  when  B   is   active  A  will   not   be   (side   effect   of  

Figure  2  –  Circuit  diagram  for  the  concentration  detector  module  

Page 5: Novel In Vivo Concentration Detector

 5  

differing   activation   thresholds).   To   make   these   two   network   motifs   act   as   a   concentration   detector,  network   A‘s   product   must   inhibit   B’s   product,   causing   either   A   (high   initial   substrate   concentration  activation)  or  B  (lower  initial  substrate  concentration  activation)  to  produce  a  product  at  any  one  point  in  time.  With  this  in  effect,  networks  A  and  B  act  as  a  concentration  detector  for  lead.    Memory  Unit  In   order   to   produce   a   high   fidelity   visual   representation   of   the  concentration  of  lead  within  the  liquid  sample,  a  decision  must  be  made  within  the  gene  circuit.  The  regulated  double  negative  feedback  module  will   receive   the   signal   from   the   two   concentration   detectors,   and  will  decide   which   signal   to   transmit   to   the   fluorescence   reporter   module.  Depending  on  the  concentration  of  LBPD,  either  protein  S2  or  P2  will  be  produced  by  the  concentration  detector  module.  If  the  concentration  of  substrate   is   high,   above   the   “high   concentration”   threshold,   S2  will   be  produced,  however   if   the   concentration  of   the   substrate   is   low,  below  the  “high  concentration  ”  threshold  but  above  zero,  P2  will  be  produced.  These   input   signals   will   activate   the   transcription   of   a   secondary  species,   either   S3   or   P3   depending   on   the   concentration   of   the   input  molecules.  This  set  of  species  will  activate  the  transcription  of  a  tertiary  species,  S4  or  P4,  and  inhibit  the  transcription  of  its  compliment  species  (i.e.   S3   will   activate   S4   production   and   repress   P4   production;   P3   will  activate  P4  production  and  inhibit  S4  production).  The  accumulation  of  either   tertiary   species,   S4   or   P4,   will   continuously   repress   the  production  of  the  other  unless  a  stimulus  is  great  enough  to  reverse  it.  In  this  way,  the  regulated  double  negative  feedback  module  will  act  as  a  memory   unit   that   remembers   which   tertiary   signal   it   should   display  given  an  input  signal  of  S2  or  P2.    Signal  Amplifying  Fluorescent  Reporter  

Depending   on   the   upstream   effects,   one   of   the  tertiary   species   S4   or   P4   will   be   found   in  abundance.  This  species  will  then  be  amplified  via  its   auto   regulation   pathway   which   also  compliments   the   memory   unit   module   through  complete   inhibition   of   the   transcription   of   its  compliment   species   (i.e.   S4   will   self-­‐replicate   and  shut   down   P4   or   P4   will   self-­‐replicate   and   shut  down   S4   production).   In   order   to   visually   display  the   results   of   the   concentration   detector  module,  the   tertiary   species  will   activate   the   transcription  of   a   fluorescent   protein.   Red   fluorescent   protein  (RFP)   will   be   used   to   visually   represent   high  

concentrations  of  lead.  Transcription  of  RFP  will  be  activated  by  tertiary  species  S4.  The  presence  of  low  concentrations  of  lead  will  be  designated  by  the  production  of  green  fluorescent  protein  (GFP),  which  will  be  activated  by  tertiary  species  P4.  If  no  lead  is  found  within  the  liquid,  neither  fluorescent  reporter  will  be   produced.   In   this   way,   the   auto   regulation   module   displays   the   behavior   of   a   single   amplifying  fluorescent   reporter.   Thus,   the   E.   Coli   will   continuously   present   its   detection   level,   ignoring   minimal  fluctuations  in  the  concentration  of  lead,  given  an  initial  concentration  of  lead.  

Figure  3  -­‐  Circuit  diagram  for  the  memory  unit  module  

Figure   4   -­‐   Circuit   diagram   for   the   signal   amplifying   fluorescence  module  

Page 6: Novel In Vivo Concentration Detector

 6  

B) Specification  of  the  Proposed  Kinetic  Responses    Concentration  Detector  The  kinetics  of   the  concentration  detector  module   is  assumed  to  contain  both  mass-­‐action  kinetics  and  Michaelis-­‐Menten  kinetics.  The  activation  of  species  S1  and  P1  will  be  governed  by  the  Michaelis-­‐Menten  equation  for  activation  based  on  the  concentration  of  the  LBPD:  

𝑣 = (𝑉!"# ∗ 𝐿𝐵𝑃𝐷!)/(𝐾! + 𝐿𝐵𝑃𝐷!)  where   LBPD   represents   the   concentration   of   the   lead   binding   protein   dimer.   No   cooperativity   of   the  enzyme  is  assumed  in  this  particular  case;  therefore  the  hill  coefficient  of  this  reaction,  n,  is  expected  to  be  one.  The  production  of  species  S2   is  governed  by  mass  action  kinetics  as  well,  which   is  activated  by  LBPD  and  repressed  by  S1.  Therefore  the  appropriate  reaction  rate  for  S2  production  is  assumed  to  be:  

𝑣 = (𝑘 ∗ 𝐿𝐵𝑃𝐷)/(1+ 𝑘 ∗ 𝐿𝐵𝑃𝐷 + 𝑘! ∗ 𝑆! +  𝑘 ∗ 𝑘! ∗ 𝐿𝐵𝑃𝐷 ∗ 𝑆!)    where  k  and  k1  are  set  to  a  value  of  one  to  simplify  the  kinetics.  The  production  of  species  P2  is  slightly  more  complicated  than  S2  due  to  the  additional  repression  by  species  S2.  Therefore,  the  reaction  rate  for  P2  production  is  presumed  to  follow  mass-­‐action  kinetics  by  the  following  equation:  

𝑣 = (𝑘 ∗ 𝐿𝐵𝑃𝐷)/(1+ 𝑘 ∗ 𝐿𝐵𝑃𝐷 + 𝑘! ∗ 𝑃! +  𝑘! ∗ 𝑆! + 𝑘 ∗ 𝑘! ∗ 𝐿𝐵𝑃𝐷 ∗ 𝑃!  +𝑘 ∗ 𝑘! ∗ 𝐿𝐵𝑃𝐷 ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆! + 𝑘 ∗ 𝑘! ∗ 𝑘! ∗ 𝐿𝐵𝑃𝐷 ∗ 𝑃! ∗ 𝑆!)  

Again  the  kinetic  constant  k  is  assumed  to  be  one,  but  the  kinetic  constant  k1  is  assumed  to  be  greater  to  enable  adequate  repression  of  the  production  P2  with  increased  concentrations  of  P1.  The  constant  k2  is  assumed  to  be  0.1,  which  will  enable  repression  of  S2  by  P2  at  only  significant  levels  of  S2.  

 Memory  Unit    The  kinetics  of   the  regulated  double  negative   feedback  module  (memory  unit)  are  assumed  to  be  mass  action   governed.   The   transduction   of   the   signal   from   the   incoherent   feed   forward   modules   to   the  regulated   double   negative   feedback  module   needs   to   be   quick   and   simple   with   high   signal   fidelity   to  accomplish   the   functionality   of   the   double   regulated   negative   feedback   network.   Simple   linear   mass  action  kinetics  enables  this  functionality.  These  kinetics  are  expected  to  be  (i.e.  S2  to  S3  and  P2  to  P3):  

S3  production:  𝑣 = (𝑘! ∗ 𝑆!)    P3  production:    𝑣 = (𝑘! ∗ 𝑃!)    

where  the  kinetic  coefficients  ks  and  kp  were  set  to  values  of  10  for  quick  reaction  response.  These  secondary  species  (i.e.  S3  and  P3)  will  influence  the  tertiary  components  (i.e.  S4  and  P4)  both  as  activators  and  repressors.  These  interactions  are  assumed  to  have  mass  action  kinetics  similar  to  those  in  the  concentration  detector.  Each  tertiary  species  will  be  activated  by  its  secondary  species  and  repressed  by  both  the  secondary  and  tertiary  species  of  its  compliment  species  (i.e.  S4  is  activated  by  S3  and  repressed  by  P3  and  P4  while  P4  is  activated  by  P3  and  repressed  by  S3  and  S4).  These  interactions  are  shown  in  the  following  equations:  

S4  production:  𝑣 = (𝑘! ∗ 𝑆!)/(1+ 𝑘! ∗ 𝑆! + 𝑘! ∗ 𝑃! +  𝑘! ∗ 𝑃! + 𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑃!  +𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑃! + 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑃! + 𝑘! ∗ 𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑃! ∗ 𝑃!)  

P4  production:  𝑣 = (𝑘! ∗ 𝑃!)/(1+ 𝑘! ∗ 𝑃! + 𝑘! ∗ 𝑆! +  𝑘! ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆!  +𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆! ∗ 𝑆!)  

where  k1  represents  the  kinetic  coefficient  for  activation  and  is  assumed  to  be  one.  k2  and  k3  represent  the  kinetic  coefficients  for  repression  and  are  assumed  to  be  greater  than  k1  to  allow  repression  of  S4  and  P4  production  to  be  greater  than  activation  of  S4  and  P4  production.  The  kinetic  coefficients  could  be  changed  for  the  different  species,  but  for  simplification  they  are  assumed  to  be  the  same  values.      

Page 7: Novel In Vivo Concentration Detector

 7  

Signal  Amplifying  Fluorescent  Reporter  The  kinetics  of  the  signal  amplifying  fluorescent  reporter  are  similar  to  those  of  the  memory  unit  because  the  positive  autoregulation  of  the  species  S4  and  P4  is  assumed  to  be  repressed  by  the  secondary  and  tertiary  species  of  the  species  compliment  (i.e.  the  positive  autoregulation  of  S4  was  repressed  by  P3  and  P4  while  the  positive  autoregulation  of  P4  is  expected  to  be  repressed  by  the  presence  of  species  S3  and  S4).  Similar  to  the  memory  unit  these  reaction  rates  are  assumed  to  follow  mass-­‐action  kinetics  and  are  simulated  by  the  following  equations:  

S4  positive  autoregulation:  𝑣 = (𝑘! ∗ 𝑆!)/(1+ 𝑘! ∗ 𝑆! + 𝑘! ∗ 𝑃! +  𝑘! ∗ 𝑃! + 𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑃!  +𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑃! + 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑃! + 𝑘! ∗ 𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑃! ∗ 𝑃!)  

P4  positive  autoregulation:  𝑣 = (𝑘! ∗ 𝑃!)/(1+ 𝑘! ∗ 𝑃! + 𝑘! ∗ 𝑆! +  𝑘! ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆!  +𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑆! ∗ 𝑆! + 𝑘! ∗ 𝑘! ∗ 𝑘! ∗ 𝑃! ∗ 𝑆! ∗ 𝑆!)  

where  the  kinetic  coefficients   for  the  different  species  could  be  represented  by  different  values  but  are  assumed  to  be  constant  for  both  species.  The  activation  coefficient,  k1,  is  set  to  a  value  of  one,  while  the  inhibition  coefficients,  k2  and  k3,  are  set  to  a  value  of  two  to  represent  repression  governing  activation.  In  this  particular  case  this  was  necessary  because  the  positive  autoregulation  is  expected  to  be  suppressed  by   the  presence  of   the  compliment   species.  The  production  of   the   fluorescent   species,  RFP  or  GFP,  are  assumed   to   be   linearly   correlated  with   their   respective   tertiary   species,   S4   or   P4,   through  mass   action  kinetics  by  the  following  equations:  

RFP  production:    𝑣 = (𝑘! ∗ 𝑆!)    GFP  production:    𝑣 = (𝑘! ∗ 𝑃!)    

The  kinetic  coefficients   for  these  reactions  are  assumed  to  be  at  unity  so  that  the  production  of  RFP  or  GFP  does  not  dominate  over  the  other  given  equal  S2  and  P2  concentrations.    Degradation  The  majority  of  the  species  produced  in  this  genetic  circuit  are  assumed  to  have  similar  degradation  rates.  The  degradation  for  all  species  is  assumed  to  follow  linear  mass-­‐action  kinetics  by  the  following  equation:  

Degradation  rates:  𝑣 = (𝑘! ∗ 𝐴!)    

where  Ai  represents  all  species  in  the  genetic  circuit  (i.e.  LBPD,  S1  to  S4,  P1  to  P4,  RFP,  and  GFP).  The  kinetic  degradation  coefficient  for  all  species  besides  S4,  P4,  RFP,  and  GFP  are  assumed  to  be  a  value  of  one.  The  degradation  kinetic  coefficient  for  these  other  species  must  be  a  value  of  0.1  to  allow  for  the  signal  to  remain  within  the  E.  Coli  for  long  periods  of  time  (200+  seconds).    

Page 8: Novel In Vivo Concentration Detector

 8  

Computer  Simulation  Test  Implementation  Complete  Circuit  Simulations  Using   the   kinetic   equations   for   the   concentration   detector,   memory   unit,   and   signal   amplifying  fluorescence  unit  as  well  as   the  kinetic  equations   for  degradation,   the  bellow  simulations  were  carried  out.  These  simulations   illustrate   the  projected  characteristics  of   the  proposed  novel   lead  concentration  detector  genetic   circuit   engineered   into  E.  coli.  Given  no   initial   lead   concentration,   the   circuit  does  not  turn  on  (Figure  5).  At  low  levels  of  normalized  initial  lead  concentration  (0.5  units),  the  circuit  activates,  producing   GFP   as   the   reported   molecule   to   signify   safe   initial   concentrations   of   lead   (Figure   6).   At  medium  levels  of  normalized   initial   lead  concentration  (2  units)   the  circuit  activates,  producing  RFP  to  signify   dangerous   levels   of   initial   lead   concentration   (Figure   7).   It   can   be   seen   from   this   graph   that   it  takes  longer  than  at  lower  levels  of  initial   lead  concentration  to  reach  a  steady  state  signaling  molecule  concentration,  indicating  that  the  initial  normalized  lead  concentration  is  close  to  safe  and  unsafe  levels  of   lead   concentration.   At   high   levels   of   normalized   initial   lead   concentration   (10   units),   the   circuit  activates,  producing  RFP  to  signify  dangerous  levels  of  initial  lead  concentration  (Figure  8).  Figures  5  –  8  together   illustrate   the   complete   proposed   dynamics   of   the   lead   concentration   detector   genetic   circuit.  The  Jarnac  script  used  to  generate  Figures  5  –  8  can  be  found  in  the  Jarnac  Script  section  of  the  Appendix.    

 Figure  5  –  With  no  initial  lead  concentration  (p.G),  the  lead                    Figure  6  –  With  a  small  amount  of  initial  lead  concentration  (p.G),  the  lead  concentration  circuit  does  not  activate.                                                                                                concentration  circuit  activates,  with  GFP  dominated  the  output  signal  (p.GFPa).    

 Figure  7  –  With  elevated  levels  of  initial  lead  concentration  (p.G)                          Figure  8  –  At  high  levels  of  initial  lead  concentration  (p.G)  the      the  lead  concentration  circuit  fluoresces  red  (p.RFPa).                                                                    lead  concentration  circuit  fluoresces  red  (p.RFPa).                

Page 9: Novel In Vivo Concentration Detector

 9  

Concentration  Detector  Module  Simulations  The   concentration   detector  module  makes  up   the  decision  making  portion  of   the   lead  concentration   detector   genetic   circuit.   It  can  be  seen  from  the  first  peak  in  Figure  9  that  at   low  levels  of  normalized  initial   lead  concentrations  (0.5  units)  production  of  P2  is   higher   than   S2   (p.P2a   and   p.S2a  respectively).  The  greater  production  of  P2  translates   to   GFP   production   in   the  finalized   circuit   (Figure   6).   At   normalized  initial   lead   concentrations   of   2   units,  production   of   P2   and   S2   are   very   similar,  with  S2  just  barely  out  producing  P2  (second  peak   in   Figure   9).   This   slightly   greater  production  of  P2  leads  to  RFP  production  from  the  circuit  as  a  whole  (Figure  7).  At  normalized  initial  lead  concentrations  of  10  units,  signifying  dangerous  levels  of  initial  lead  concentration,  S2  production  largely  out   weighs   P2   production   (third   peak   in   Figure   9),   which   leads   to   the   quick   reach   of   steady   state  production  of  RFP   in   the   completed   circuit   (Figure  8).  The  equations  used   to   simulate   these  proposed  characteristics   of   the   concentration   detector  module   are   those   found   in   Internal   Design   Specifications  section.  The  Jarnac  scrip  for  these  simulations  can  be  found  in  the  Jarnac  Scrip  section  of  the  Appendix.    Memory  Unit  Module  Simulations  The  memory  unit  module  acts   as   a   temporary  state   chooser.   When   S3   dominates   P3,   the  production  of  S4  occurs  while  no  production  of  P4   is   seen   (first   peak   in   Figure   10).   The  opposite  is  also  true,   if  the  concentration  of  P3  is  greater  than  S3,  P4  is  produced  while  no  S4  is  produced   (second   peak   in   Figure   10).   The  equations   used   to   simulate   these   proposed  characteristics   of   the   memory   unit   are   those  found  in  Internal  Design  Specifications  section.  The   Jarnac   scrip   for   these   simulations   can   be  found   in   the   Jarnac   Script   section   of   the  Appendix.      Signal  Amplifying  Fluorescent  Reporter  Module  Simulations  The  signal  amplifying  fluorescent  reporter  module  causes  the  “decisions”  that  the  memory  unit  module  makes   to  become  permanent.  When  a  decision   is  made  by   the  memory  unit   the   corresponding  output  molecule  S4  or  P4  becomes  constitutively  produced  from  the  autoregulation  inherent  within  this  module  (Figure  4).  It  can  be  seen  from  Figure  11  that  when  P4  is  produced,   it  autoregulates  itself  to  saturation.  The  same  is  true  for  S4  and  can  be  seen  in  Figure  12.  This  autoregulation  is  tied  to  fluorescence,  causing  saturated   P4   concentrations   to   enable   large   amounts   of   GFP   production   as   well   as   saturated   S4  concentrations   enables   large   amounts   of   RFP   production.   In   this   manner,   the   signal   amplifying  fluorescent   reporter  module  acts  as  a   final  memory  unit   and   reporter  of   the   initial   lead  concentration.  The   equations   used   to   simulate   these   proposed   characteristics   of   the   signal   amplifying   fluorescent  

Figure  9  -­‐  Concentration  detector  module  simulations;  the  peaks  correspond  to  low  (0.5  u),  medium  (2  u,)  and  high  (10  u)  normalized  initial  concentrations  of  lead  respectively.  

Figure  10  –  Memory  unit  simulations  illustrating  that  when  one  initial  substrate  (p.S3  or  p.P3)  is  greater  than  the  other  (p.S4a(green)  peak  corresponds  to  p.S3  >  p.P3  and  p.P4a(purple))  a  spike  in  the  corresponding  reporter  molecule  occurs.  

Page 10: Novel In Vivo Concentration Detector

 10  

reporter  module   are   those   found   in   Internal   Design   Specifications   section.   The   Jarnac   script   for   these  simulations  can  be  found  in  the  Jarnac  Script  section  of  the  Appendix.  

 Figure  11  –  At  elevated  levels  of  P4  (p.P4a),  it  self  regulates  itself                      Figure  12  -­‐  At  elevated  levels  of  S4  (p.S4a),  it  self  regulates  itself                        to  saturation.                                                                                                                                                                                                                      to  saturation.    Implementation  Details  Some  of  the  parts  that  could  be  used  to  build  this  lead  concentration  detector  genetic  circuit  are:     Name:   BioBrick  ID:   Description:   Length:   *Cost:  Genes:   Lead  Binding  

Protein  BBa_I721002   This  gene  expresses  a  protein  that  

forms  a  protein  dimer  with  Pb2+.  Useful  in  initiating  transcription  of  initial  substrates.  

399  bp   $199.50  

  Superfolder  GFP  (sfGFP)  

BBa_I746916   This  gene  expresses  sfGFP  that  acts  as  a  reporter  protein.  Useful  in  reporting  safe  concentrations  of  aqueous  lead.  

720  bp   $360.00  

  mCherry  (RFP)   BBa_K180008   This  gene  expresses  a  form  of  RFP  that  acts  as  a  reporter  protein.  Useful  in  reporting  dangerous  concentrations  of  aqueous  lead.  

708  bp   $356.00  

Promoters   Lead  Binding  Promoter  

BBa_I721001   This  coding  sequence  allows  for  the  lead  binding  protein-­‐dimer  to  bind  to  DNA  and  instigate  transcription.  Useful  in  initiating  transcription  of  initial  substrates.  

94  bp   $47.00  

  LacI  Regulated  Promoter  

BBa_R0010   This  promoter  allows  for  transcription  inhibition  caused  by  LacI  and  CAP.  Will  be  useful  in  negative  feedback  loops  

200  bp   $100.00  

Terminators   T1  from  E.  coli  rrnB  

BBa_B0010   This  DNA  sequence  initiates  transcription  termination.  Useful  in  stopping  transcription  at  desired  areas.  

64  bp   $32.00  

*Cost  was  calculated  based  off  of  50  cents  per  base  pair  **Total  cost  for  all  parts  listed  above:  $1,094.50  ***Total  length  of  proposed  genetic  circuit  would  be  >  3000  bp  †**  All  parts  found  within  the  Standard  parts  registry  [3]      

Page 11: Novel In Vivo Concentration Detector

 11  

Appendix  Device  Pricing  in  2025  Employees:  12  people  at  $120,000/year  Fixed  Costs:  Building,  Electricity,  Water,  etc.  =  $1,000,000/year  Estimated  Market  Size:  1000  units/year    

12  𝑝𝑒𝑜𝑝𝑙𝑒 ∗  $120,000

𝑝𝑒𝑜𝑝𝑙𝑒  𝑎  𝑦𝑒𝑎𝑟 +$1,000,000

𝑦𝑒𝑎𝑟  =1,000  𝑢𝑛𝑖𝑡𝑠

𝑦𝑒𝑎𝑟 ∗ 𝑿𝑃𝑟𝑖𝑐𝑒𝑢𝑛𝑖𝑡  

 Thus  total  price  per  unit  =  $2,440  

It  can  be  seen  from  the  above  numbers  that  in  order  for  the  company  to  break  even  given  the  expenses  and  total  units  sold  in  the  fiscal  year  of  2025,  each  unit  would  need  to  be  sold  at  $2,440.    Along  with  this,  the   actual   production   of   the  E.   coli   strain   that   harbors   the   lead   concentration   genetic   circuit   does   not  factor  into  the  total  company  expenditures,  meaning  that  as  long  as  the  price  per  unit  can  be  maintained,  the  actual  production  costs  of  the  E.  coli  strain  are  irrelevant  in  the  year  2025.    Design  Specification  Sheet  Overview  Final  schematic  of  the  lead  concentration  detector  genetic  circuit.  Module  A  and  B  comprise  the  concentration  detector  module  and  are  both  incoherent  feedforward  networks,  module  C  is  the  memory  unit  and  is  comprised  of  a  regulated  double  negative  feedback  network,  and  modules  D  and  E  comprise  the  signal  amplifying  fluorescent  reporter  module  and  are  both  autoregulation  networks.  

   

Page 12: Novel In Vivo Concentration Detector

 12  

Bellow  are  the  simulated  responses  of  the  lead  concentration  detector  genetic  circuit  with  0.0  units,  0.5  units,  2  units,  and  10  units  of  normalized  initial  lead  concentration  (from  left  to  right)  where  production  of  GFP  (p.GFPa)  resembles  safe  concentrations  of  lead  and  production  of  RFP  (p.RFPa)  resembles  unsafe  initial  lead  concentrations.  

 

   

Concentration  Detector  Bellow  is  the  schematic  diagram  for  the  concentration  detector  module  of  the  lead  concentration  detector  genetic  circuit.  Modules  A  and  B  are  incoherent  feedfoward  networks.  

     

Page 13: Novel In Vivo Concentration Detector

 13  

Bellow  are   the   simulated   results  of   the   concentration  detector  given  0.5  units,  2  units,   and  10  units  of  normalized  initial  lead  concentration  (from  left  to  right).  

   

Memory  Unit  Bellow  is  the  schematic  of  the  memory  unit  for  the  lead  concentration  detector  genetic  circuit,  which  is  a  double  regulated  negative  feedback  network.  

             

Page 14: Novel In Vivo Concentration Detector

 14  

Bellow  are  the  simulated  results  of  the  memory  unit  given  greater  concentration  of  S3  or  P3  (from  left  to  right).   At   greater   initial   S3   concentrations   than   P3   concentrations,   only   S4   is   produced   (p.S4a)   and   at  greater  initial  P3  concentrations  than  S3  concentrations,  only  P4  is  produced    (p.P4a).  

   

Signal  Amplifying  Fluorescent  Reporter  Bellow   is   the   schematic   diagram   for   the   signal   amplifying   fluorescent   reporter   module   of   the   lead  concentration   detector   genetic   circuit.   Once   either   P4   or   S4   is   produced,   it   up   regulates   itself,   causing  either  GFP  or  RFP  to  be  constitutively  produced,  respectively.  

   Bellow  are  the  simulated  response  of  the  signal  amplifying  fluorescent  reporter  module  for  initial  substrate  P3  being  in  greater  quantity  (left  graph)  than  S3,  and  S3  being  in  greater  initial  quantity  than  P3  (right  graph).  With  either  P3  or  S3  being  initially  produced  in  greater  quantity,  P4  or  S4  respectively  will  be  autoregulated  to  a  maximum  sustained  value  as  seen  in  the  graphs  bellow.  

   

Page 15: Novel In Vivo Concentration Detector

 15  

Jarnac  Script  Overview  (Complete  System  Simulation)  p  =  defn  cell          $S1  -­‐>  S1a;  Vm1*G/(Km1  +  G);      //  productions  of  activated  S1  given  michaelis-­‐menten  kinetics          //  activation  of  S2  given  michaelis-­‐menten  kinetics  with  substrate  inhibition          $S2  -­‐>  S2a;  k*G/(1  +  k*G  +  ks1*S1a  +  k*ks1*S1a*G);            S1a  -­‐>  $W;  S1a*d;    //  degradation  of  activated  S1  via  mass  action          S2a  -­‐>  $W;  S2a*d;    //  degradation  of  activated  S2  via  mass  action                    $P1  -­‐>  P1a;  Vm2*G/(Km2  +  G);    //  production  of  activated  P1  given  michaelis-­‐menten  kinetics            //  activation  of  S2  given  michaelis-­‐menten  kinetics    with  substrate  inhibition          $P2  -­‐>  P2a;  k*G/(1  +  k*G  +  kp1*P1a  +  k*kp1*P1a*G            +  ksp*S2a  +  k*kp1*ksp*P1a*G*S2a  +  kp1*ksp*P1a*S2a  +  k*ksp*G*S2a);          G  -­‐>  $W;  G*d;      //  degradation  of  initial  substrate  (lead  binding  protein)          P1a  -­‐>  $W;  P1a*d;  //  degradation  of  activated  P1          P2a  -­‐>  $W;  P2a*d;  //  degradation  of  activated  P2                $S3-­‐>  S3a;  kp*S2a;  //  production  of  activated  S3  via  mass  action  kinetics        $P3  -­‐>  P3a;  ks*P2a;  //  production  of  activated  P3  via  mass  action  kinetics        //  activation  of  S4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $S4  -­‐>  S4a;  (k1*S3a)/(1+k1*S3a+k2*P3a+k3*P4a+k1*k2*S3a*P3a+k1*k3*S3a*P4a+                                  k2*k3*P3a*P4a+k1*k2*k3*S3a*P3a*P4a);        //  activation  of  P4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $P4  -­‐>  P4a;  (k4*P3a)/(1+k4*P3a+k5*S3a+k6*S4a+k4*k5*P3a*S3a+k4*k6*P3a*S4a+                                  k5*k6*S3a*S4a+k4*k5*k6*P3a*S3a*S4a);        S3a  -­‐>  $w;  d1*S3a;  //  degradation  of  activated  S3  via  mass  action  kinetics        S4a  -­‐>  $w;  d2*S4a;  //  degradation  of  activated  S4  via  mass  action  kinetics        P3a  -­‐>  $w;  d3*P3a;  //  degradation  of  activated  P3  via  mass  action  kinetics        P4a  -­‐>  $w;  d4*P4a;  //  degradation  of  activated  P4  via  mass  action  kinetics                //  autoregulation  production  of  activated  S4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $S4  -­‐>  S4a;  (k7*S4a)/(1+k7*S4a+k8*P3a+k9*P4a+k7*k8*S4a*P3a+k7*k9*S4a*P4a+                                  k8*k9*P3a*P4a+k7*k8*k9*S4a*P3a*P4a);        //  autoregulation  production  of  activated  P4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $P4  -­‐>  P4a;  (k10*P4a)/(1+k10*P4a+k11*S3a+k12*S4a+k10*k11*P4a*S3a+k10*k12*P4a*S4a+                                  k11*k12*S3a*S4a+k10*k11*k12*P4a*S3a*S4a);                $RFP-­‐>  RFPa;  kr*S4a;  //  production  of  activated  RFP  via  mass  action  kinetics        $GFP  -­‐>  GFPa;  kg*P4a;    //  production  of  activated  GFP  via  mass  action  kinetics                                      S4a  -­‐>  $w;  d5*S4a;  //  additional  degradation  of  activated  S4  via  mass  action  kinetics        P4a  -­‐>  $w;  d6*P4a;  //  additional  degradation  of  activated  P4  via  mass  action  kinetics        RFPa  -­‐>  $w;  d7*RFPa;  //  degradation  of  activated  RFP  via  mass  action  kinetics        GFPa  -­‐>  $w;  d8*GFPa;  //  degradation  of  activated  GFP  via  mass  action  kinetics  end;    //  rate  kinetics  and  initial  conditions  for  the  given  model  p.d  =  0.1;      p.Vm1  =  1;    p.Km1  =  0.5;    p.k  =  1;    p.ks1  =  1;    p.Vm2  =  1;    p.Km2  =  5;    p.kp1  =  3;    p.ksp  =  0.1;    p.ks  =  10;  p.kp  =  10;  p.k1  =  1;  p.k2  =  2;  p.k3  =  2;  p.k4  =  1;  p.k5  =  2;  p.k6  =  2;  p.d1  =  0.1;  p.d2  =  0.1;  p.d3  =  0.1;  p.d4  =  0.1;  p.kr  =  1;  p.kg  =  1;  p.k7  =  1;  p.k8  =  2;  

Page 16: Novel In Vivo Concentration Detector

 16  

p.k9  =  2;  p.k10  =  1;  p.k11  =  2;  p.k12  =  2;  p.d5  =  0.1;  p.d6  =  0.1;  p.d7  =  0.1;  p.d8  =  0.1;    h1  =  10;  //  modular  time  step  interval    //  simulation  of  given  model  p.G  =  0.5;  //  0.5  units  of  normalized  initial  lead  concentration  m1  =  p.sim.eval(0,h1,50,[<p.Time>,<p.G>,<p.RFPa>,<p.GFPa>]);  p.G  =  0;  m2  =  p.sim.eval(h1,300,50,[<p.Time>,<p.G>,<p.RFPa>,<p.GFPa>]);          p.G  =  2;  //  2  units  of  normalized  initial  lead  concentration  m3  =  p.sim.eval(200,200+h1,50,[<p.Time>,<p.G>,<p.RFPa>,<p.GFPa>]);  p.G  =  0;  m4  =  p.sim.eval(200+h1,300,50,[<p.Time>,<p.G>,<p.RFPa>,<p.GFPa>]);    p.G  =  10;  //  10  units  of  normalized  initial  lead  concentration  m5  =  p.sim.eval(300,300+h1,50,[<p.Time>,<p.G>,<p.RFPa>,<p.GFPa>]);  p.G  =  0;  m6  =  p.sim.eval(300+h1,400,50,[<p.Time>,<p.G>,<p.RFPa>,<p.GFPa>]);        //  list  augmentations  m  =  augr(m1,  m2);    m  =  augr(m,  m4);      m  =  augr(m,  m5);      m  =  augr(m,  m6);    graph(m);    //graphed  simulated  results    Concentration  Detector  p  =  defn  cell          //  low    sensitivity  incoherent  feedforward  network          $S1  -­‐>  S1a;  Vm1*G/(Km1  +  G);      //  activation  of  S1  via  michaelis-­‐menten  kinetics        //  activation  of  S2  via  michaelis-­‐menten  kinetics  with  substrate  inhibition          $S2  -­‐>  S2a;  k*G/(1  +  k*G  +  ks1*S1a  +  k*ks1*S1a*G);            S1a  -­‐>  $W;  S1a*d;  //  degradation  of  activated  S1  via  mass  action  kinetics          S2a  -­‐>  $W;  S2a*d;    //  degradation  of  activated  S2  via  mass  action  kinetics                    //  high  sensitivity  incoherent  feedforward  network          $P1  -­‐>  P1a;  Vm2*G/(Km2  +  G);        //  activation  of  P1  via  michaelis-­‐menten  kinetics          //  activation  of  P2  via  michaelis-­‐menten  kinetics  with  substrate  inhibition          $P2  -­‐>  P2a;  k*G/(1  +  k*G  +  kp1*P1a  +  k*kp1*P1a*G          +  ksp*S2a  +  k*kp1*ksp*P1a*G*S2a  +  kp1*ksp*P1a*S2a  +  k*ksp*G*S2a);          G  -­‐>  $W;  G*d;      //  degradation  of  initial  lead  concentration  bound  protein  via  mass  action  kinetics            P1a  -­‐>  $W;  P1a*d;  //  degradation  of  activated  P1  via  mass  action  kinetics          P2a  -­‐>  $W;  P2a*d;    //  degradation  of  activated  P2  via  mass  action  kinetics  end;    //  rate  kinetics  and  initial  conditions  for  the  given  model  p.d  =  0.1;      p.Vm1  =  1;    p.Km1  =  0.5;    p.k  =  1;      p.ks1  =  1;    p.Vm2  =  1;    p.Km2  =  5;    p.kp1  =  3;    p.ksp  =  0.1;        //  modular  time  intervals  for  simulation  h1  =  10;  h2  =  10;  h3  =  10;  p.G  =  0;      //  simulation  of  given  model  m1  =  p.sim.eval(0,  100,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);    p.G  =  0.5;  //  0.5  units  of  normalized  initial  lead  concentration  m2  =  p.sim.eval(100,  100+h1,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);    

Page 17: Novel In Vivo Concentration Detector

 17  

p.G  =  0;    m3  =  p.sim.eval(100+h1,  200,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);  p.G  =  2;  //  2  units  of  normalized  initial  lead  concentration  m4  =  p.sim.eval(200,  200+h1,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);  p.G  =  0;  m5  =  p.sim.eval(200+h1,  300,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);  p.G  =  10;  //  10  units  of  normalized  initial  lead  concentration  m6  =  p.sim.eval(300,  300+h3,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);  p.G  =  0;  m7  =  p.sim.eval(300+h3,  400,  100,  [<p.Time>,  <p.S2a>,  <p.P2a>]);    //  list  augmentations  m  =  augr(m1,m2);  m  =  augr(m,m3);  m  =  augr(m,m4);  m  =  augr(m,m5);  m  =  augr(m,m6);  m  =  augr(m,m7);  graph(m);  //  graphed  simulated  results    Memory  Unit  p  =  defn  cell        $S3-­‐>  S3;  kp*S3a;  //  production  of  additional  S3  from  activated  S3  via  mass  action  kinetics        $P3  -­‐>  P3;  ks*P3a;  //  production  of  additional  P3  from  activated  P3  via  mass  action  kinetics        //  activation  of  S4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $S4  -­‐>  S4a;  (k1*S3a)/(1+k1*S3a+k2*P3a+k3*P4a+k1*k2*S3a*P3a+k1*k3*S3a*P4a+                                  k2*k3*P3a*P4a+k1*k2*k3*S3a*P3a*P4a);        //  activation  of  P4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $P4  -­‐>  P4a;  (k4*P3a)/(1+k4*P3a+k5*S3a+k6*S4a+k4*k5*P3a*S3a+k4*k6*P3a*S4a+                                  k5*k6*S3a*S4a+k4*k5*k6*P3a*S3a*S4a);        S3a  -­‐>  $w;  d1*S3a;  //degradation  of  activated  S3  via  mass  action  kinetics        S4a  -­‐>  $w;  d2*S4a;  //degradation  of  activated  S4  via  mass  action  kinetics        P3a  -­‐>  $w;  d3*P3a;  //degradation  of  activated  P3  via  mass  action  kinetics        P4a  -­‐>  $w;  d4*P4a;  //degradation  of  activated  P4  via  mass  action  kinetics  end;    //  rate  kinetics  and  initial  conditions  for  the  given  model  p.ks  =  10;  p.kp  =  10;  p.k1  =  1;  p.k2  =  2;  p.k3  =  2;  p.k4  =  1;  p.k5  =  2;  p.k6  =  2;  p.d1  =  0.1;  p.d2  =  0.1;  p.d3  =  0.1;  p.d4  =  0.1;  p.S3  =  0;  p.P3  =  0;    //  modular  time  intervals  for  simulation  h1  =  10;  h2  =  10;  //  simulation  of  given  model  m1  =  p.sim.eval(0,100,50,[<p.Time>,<p.S3>,<p.P3>,<p.S4a>,<p.P4a>]);  p.S3a  =  2;  //  initial  substrate  of  activated  S3  fed  into  the  memory  unit  m2  =  p.sim.eval(100,100+h1,50,[<p.Time>,<p.S3>,<p.P3>,<p.S4a>,<p.P4a>]);  p.S3a  =  0;  m3  =  p.sim.eval(100+h1,200,50,[<p.Time>,<p.S3>,<p.P3>,<p.S4a>,<p.P4a>]);  p.P3a  =  2;    //  initial  substrate  fed  of  activated  P3  into  the  memory  unit      m4  =  p.sim.eval(200,200+h2,50,[<p.Time>,<p.S3>,<p.P3>,<p.S4a>,<p.P4a>]);  p.P3a  =  0;  m5  =  p.sim.eval(200+h2,300,50,[<p.Time>,<p.S3>,<p.P3>,<p.S4a>,<p.P4a>]);          //  list  augmentations  m  =  augr(m1,  m2);  m  =  augr(m,  m3);  m  =  augr(m,  m4);  m  =  augr(m,  m5);  graph(m);  //graphed  simulated  results  

Page 18: Novel In Vivo Concentration Detector

 18  

   Signal  Amplifying  Fluorescent  Reporter  p  =  defn  cell          //  activation  of  S4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $S4  -­‐>  S4a;  (k7*S4a)/(1+k7*S4a+k8*P3a+k9*P4a+k7*k8*S4a*P3a+k7*k9*S4a*P4a+                                  k8*k9*P3a*P4a+k7*k8*k9*S4a*P3a*P4a);        //  activation  of    P4  via  michaelis-­‐menten  kinetics  with  substrate  inhibition        $P4  -­‐>  P4a;  (k10*P4a)/(1+k10*P4a+k11*S3a+k12*S4a+k10*k11*P4a*S3a+k10*k12*P4a*S4a+                                  k11*k12*S3a*S4a+k10*k11*k12*P4a*S3a*S4a);                $RFP-­‐>  RFPa;  kr*S4a;  //  activation  of  RFP  via  mass  action  kinetics        $GFP  -­‐>  GFPa;  kg*P4a;    //  activation  of  GFP  via  mass  action  kinetics                                      S4a  -­‐>  $w;  d5*S4a;  //  degradation  of  activated  S4  via  mass  action  kinetics        P4a  -­‐>  $w;  d6*P4a;  //  degradation  of  activated  P4  via  mass  action  kinetics        RFPa  -­‐>  $w;  d7*RFPa;  //  degradation  of  activated  RFP  via  mass  action  kinetics        GFPa  -­‐>  $w;  d8*GFPa;  //  degradation  of  activated  GFP  via  mass  action  kinetics  end;    //  rate  kinetics  and  initial  conditions  for  the  given  model  p.kr  =  1;  p.kg  =  1;  p.k7  =  1;  p.k8  =  2;  p.k9  =  2;  p.k10  =  1;  p.k11  =  2;  p.k12  =  2;  p.d5  =  0.1;  p.d6  =  0.1;  p.d7  =  0.1;  p.d8  =  0.1;  p.P3a  =  0;  p.S3a  =  0;  p.S4a  =  0;  p.P4a  =  0;    //  modular  time  intervals  for  simulation  h1  =  10;  h2  =  10;  //  simulation  of  given  model  m1  =  p.sim.eval(0,10,50,[<p.Time>,<p.S4a>,<p.P4a>]);  p.P4a  =  0;  m2  =  p.sim.eval(10,10+h1,50,[<p.Time>,<p.S4a>,<p.P4a>]);  m3  =  p.sim.eval(10+h1,100,50,[<p.Time>,<p.S4a>,<p.P4a>]);              m4  =  p.sim.eval(100,100+h2,50,[<p.Time>,<p.S4a>,<p.P4a>]);    m5  =  p.sim.eval(100+h2,1000,50,[<p.Time>,<p.S4a>,<p.P4a>]);          //  list  augmentations  m  =  augr(m1,  m2);  m  =  augr(m,  m3);  m  =  augr(m,  m4);  m  =  augr(m,  m5);  graph(m);  //  graphing  of  simulated  results    References  [1]  G.  E.  Moore,  “Cramming  more  components  onto  integrated  circuits,”  Electronics,  vol.  38,  no.  8,  pp.    1-­‐4,  

April  1965.  [2]  US  Department  of  Energy  Genome  (2011,  Sept.  19).    Human  Genome  Project  [Online].  Available:  

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml    [3]  Registry  of  Standard  Biological  Parts.  Available:  http://partsregistry.org/