nrdc document bank: wat 15043001c · volume, was designed to facilitate prospecting for large...

65
APPENDIX 10

Upload: others

Post on 21-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

APPENDIX 10

Page 2: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

West VirginiaGeological Survey

West Virginia Mine Pool Atlas

WEST VIRGINIA

Page 3: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

1

West Virginia Mine Pool Atlas

Final Project Reportfor the project period

January 1, 2010 through December 31, 2011

Submitted to:

West Virginia Department of Environmental Protection601 57th Street SE

Charleston, WV 25304

Submitted by:

West Virginia Geological and Economic Survey1 Mont Chateau Road

Morgantown, WV 26508-8079

Principal InvestigatorJane S. McColloch, Senior Geologist

Co-InvestigatorsRichard D. Binns, Jr., GIS Database AdministratorBascombe M. Blake, Jr., Manager, Coal Programs

Michael T. Clifford, GIS AnalystSarah E. Gooding, Geologist and GIS Cartographer

May 2012

Inter-Agency Agreement Number 036

Page 4: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

i

ACKNOWLEDGMENTS

This study was greatly facilitated by the ongoing work of the Coal Bed Mapping Program (CBMP) staff. In addition, several individuals provided information, technical expertise, and technical support during the course of the project. Notable among these:

•WilliamC.Borth,WestVirginiaDepartmentofEnvironmentalProtection •A.NickSchaer,WestVirginiaDepartmentofEnvironmentalProtection •WilliamJ.Toomey,WestVirginiaBureauforPublicHealth •MaryC.Behling,WestVirginiaGeologicalandEconomicSurvey •GayleH.McColloch,WestVirginiaGeologicalandEconomicSurvey •EdwardI.Loud,WestVirginiaGeologicalandEconomicSurvey •BettyL.Schleger,WestVirginiaGeologicalandEconomicSurvey •SusanE.Pool,WestVirginiaGeologicalandEconomicSurvey •SamanthaJ.McCreery,WestVirginiaGeologicalandEconomicSurvey

Page 5: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

ii

ABSTRACT

TheWestVirginiaMinePoolAtlasprojectwasatwo-yearstudybytheWestVirginiaGeologicalandEconomicSurvey(WVGES)toevaluateabandonedcoalminesaspotentialgroundwatersources.ThisstudywasfundedbytheWestVirginiaDepartmentofEnvironmentalProtection(WVDEP).AlthoughWestVirginiareceivesanaverageof44.31inchesofprecipitationperyear(SERCC,2011)andisconsideredtohaveanabundantsupplyofwater,muchofWestVirginia’sprecipitationrunsoffandleavesthestatebywayofitsmanystreams.Theremainderinfiltratesthegroundsurface,butonlyasmallfractionofthiswaterrechargesgroundwateraquifers.Onecurrentlyunderutilizedandfrequentlyoverlookedsourceofstoredgroundwaterisabandonedcoalmines.Recently,inthesearchforlargewatersuppliestofacilitatevariousprocesses,suchasaquaculture,publicsupply,coal-to-liquidhydrocarbons,hydraulicfracturingwaterforgaswells,andpowerplantcooling,arealizationhasdeveloped that these underground mine pools may be more of an asset than previously assumed.

This study, which addressed the potential for large volumes of groundwater storage based on mine void volume, was designed to facilitate prospecting for large volumes of water by identifying underground coal mines thathavethepotentialtostorelargequantitiesofgroundwater,especiallythoseminesthatarelocatedbeloworneardrainage.ThisstudyprovidesaninitialattempttolocateallofthelargeminepoolsinWestVirginiastratigraphicallyandgeographicallyandtoestimatetheirpotentialvolumesbasedonWVGESCoalBedMappingProgram(CBMP)GISdatacurrentlybeingdevelopedtoprovideamodern,up-to-datepictureoftheState’scoalresource base for various uses. These data include many mine maps that have been collected by the CBMP for many years.

Significantundergroundmininghastakenplacein69of73ofWestVirginia’smineablecoalbeds.Variousinformationforthe69coalbeds,includingminepolygons,coalcropline,structurecontouroftheelevation,andscannedminemaps,werevisuallyexaminedtoestablishwhichareashadadequatedatatodeterminethepositionof each mine relative to major drainage and to develop a tool to predict which mines could be partially or totally filledwithgroundwater.

Coalbedscontainingundergroundminesthatwere500acresorlargerinareaandlocatednearorbelowdrainagewereconsideredmajorseamsinthisstudy,and19suchseamswereidentified.Coalandmininginformation from the CBMP were used to generate maps and statistics about potential mine pools in these seams fortheMinePoolAtlas.AstheindividualCBMPdatalayersaredynamicratherthanstatic,allresultspresentedinthis report are preliminary and are undergoing constant updating.

Page 6: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

iii

EXECUTIVE SUMMARY

TheMinePoolAtlasprojectwasatwo-yearstudyfundedbytheWestVirginiaDepartmentofEnvironmentalProtection(WVDEP)toevaluateabandonedcoalminesaspotentialgroundwatersources.AlthoughWestVirginiareceivesanaverageof44.31inchesofprecipitationperyear(SERCC,2011)andisconsideredtohaveanabundantsupplyofwater,muchofWestVirginia’sprecipitationrunsoffandleavesthestatebywayofitsmanystreams.Theremainderinfiltratesthegroundsurface,butonlyasmallfractionofthiswaterrechargesgroundwateraquifers.Onecurrentlyunderutilizedandfrequentlyoverlookedsourceofstoredgroundwaterisabandonedcoalmines.Recently,inthesearchforlargewatersuppliestofacilitatevariousprocesses,suchasaquaculture,publicsupply,coal-to-liquidhydrocarbons,hydraulicfracturingforgaswells,andpowerplantcooling,arealizationhasdeveloped that these underground mine pools may be more of an asset than previously assumed.

This study, which addressed the potential for large volumes of groundwater storage based on mine void volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program(CBMP)productstoidentifyundergroundcoalminesthathavethepotentialtostorelargequantitiesofgroundwater, especially those mines that are located below or near drainage. This study provides an initial effort tolocateallofthelargeminepoolsinWestVirginiastratigraphicallyandgeographicallyandtoestimatetheirpotentialvolumesbasedontheWVGESCoalBedMappingProgram(CBMP)GISdatacurrentlybeingdevelopedtoprovideamodern,up-to-datepictureoftheState’scoalresourcebaseforvarioususes.Thesedataincludemanymine maps that have been collected by the CBMP for many years.

Significantundergroundmininghastakenplacein69of73ofWestVirginia’smineablecoalbeds.Variousinformationforthese69coalbeds,includingminepolygons,coalcropline,structurecontouroftheelevation,andscannedminemaps,werevisuallyexaminedtoestablishwhichareashadadequatedatatodeterminethepositionof each mine relative to major drainage and to develop a tool to predict which mines could be partially or totally filledwithgroundwater

Coalbedscontainingundergroundmineslocatednearorbelowdrainagethatwere500acresorlargerinareaandlocatednearorbelowdrainagewereconsideredmajorcoalbedsinthisstudy,and19suchcoalbedswereidentified.CBMPcoalandmininginformationwereusedtogeneratemapsandstatisticsaboutpotentialminepoolsinthesecoalsfortheMinePoolAtlas.

The results of this investigation are summarized in this report; and maps and statistics potential mine pools ofmajorcoalbedsreflectthestatusofCBMPworkduringthestudy.AstheindividualCBMPdatalayersaredynamic rather than static, all results presented in this report are preliminary and are undergoing constant updating.

TheMinePoolAtlascontains:

• Generaldescriptionsofmajorcoalbedswithineachformation. • Stratigraphiccolumnsshowingthepositionofallcoalbedswithineachformation • Tablesshowingthedistributionofpotentialtotallyandpartiallyfloodedminesineachseambymine

footprint area and position with respect to drainage • Tablesshowingthedistributionofpotentialpartiallyfloodedareasofaboveandneardrainage

underground mines by coal bed • Mapsofcoalbedsinwhichpotentialpartialand/ortotalfloodingwaspresentinminesthathadareasof

500acresorgreater ▪ Structurecontourofelevation ▪ Isopach(totalbedthickness) ▪ Seamoverview ▪ Extentofpotentialtotalflooding ▪ Extentofpotentialpartialflooding • Overviewtablesforseamsinwhichpotentialpartialand/ortotalfloodingwerepresentinmineslessthan

500acresinarea

MuchoftheundergroundminingintheWestVirginiahasoccurredabovedrainage.Examinationof9,539minepolygonsin69coalbedsdeterminedthat8,907minesareabovedrainage;325neardrainage,178arebelowdrainage,and129arecurrentlyundetermined.

Page 7: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

iv

Studyresultsshowedthat99mines,whichexceed500acresinarea,aregenerallylocatedbelowdrainageandarepotentiallytotallyflooded.Theseminesarelocatedin14majorcoalbeds:

• PittsburghcoalinOhio,Marshall,Monongalia,Marion,andHarrisoncounties • UpperFreeportcoalinPrestonCounty • MiddleKittanningcoalinPrestonandBarbourcounties • CoalburgcoalinWayneandLincolncounties • PeerlesscoalinKanawha,Nicholas,andMingocounties • Number2GascoalinLogan,Mingo,Boone,andKanawhacounties • PowelltoncoalinBoone,Logan,andMingocounties • LowerPowelltoncoalinMingoCounty • EaglecoalinNicholas,Fayette,Kanawha,Boone,Logan,andMingocounties • SewellcoalinNicholas,Fayette,Raleigh,andWyomingcounties • BeckleycoalinFayette,Raleigh,andWyomingcounties • PocahontasNo.6coalinRaleighCounty • PocahontasNo.4coalinMcDowellCounty • PocahontasNo.3coalinWyoming,McDowell,andRaleighcounties

Fivehundredthirty-twominesexceeding500acresinareaarepotentiallypartiallyflooded;and147oftheseminesarelocatedneardrainageand385minesareabovedrainage.Theseminesarein19majorcoals.Fourteenofthesecoalsalsohaveminesthatarepotentiallytotallyfloodedandhavebeendescribedabove.Thesefivecoalbedshavepotentiallypartiallyfloodedmines:

• SewickleycoalinMonongaliaandMarioncounties • BakerstowncoalinPreston,Grant,andTuckercounties • Number5BlockcoalinBraxton,Nicholas,Clay,Kanawha,Boone,Lincoln,Mingo,andWayne

counties • StocktoncoalinBraxton,Nicholas,Kanawha,Boone,Logan,Lincoln,andMingocounties. • PocahontasNo.2coalinRaleighCounty.

Althougheffortsaremadetousethebestavailabledataandlocateminesasaccuratelyaspossible,minelocationsshouldbeconsideredapproximate.Theactualextentofminingmaybeunknownbecausefinalminemaps at the time of mine closure are not always available and not all underground mining has been documented by minemaps.Thequalityofminemapsishighlyvariableintheamountofdetailandinformationpresented.Someof the newer mine maps are available in digital form; however, many older mine maps have been photographically reduced from dimensionally unstable paper copies. Photographic reduction also introduced distortion due to lens geometry.Also,coalcorrelationsmaychangewithadditionalinformation.Activeminesarenotdifferentiatedfrom recently closed mines in the CBMP database.

Theextentofpotentialminefloodingisdependentonseveralfactors,includingmineorientation,mineentrylocation,proximitytootherundergroundmines,anddirectionofgroundwaterflow.Groundwaterpumpingtoenableundergroundminingcanaffectwaterlevelsinadjacentundergroundmines.Thegroundwaterfloodingpotential for underground mines in one coal bed also may be affected by underground mining in stratigraphically lowercoals.Ingeneral,oncepumpingceases,theminesbegintoflood. Theresultsofthisstudyshouldbeconsidereda“snapshot”ratherthanafinishedproduct.NewminescontinuallyopeninWestVirginiaandinadjoiningstatesneartheState’sborders.Inaddition,newlyobtainedminingcoveragesarebeingconstantlyupdatedintheCBMPGISasnewinformationbecomesavailable.Allofthesefactorsreinforcetheneedfordetailedsite-specificstudiestodeterminethepresenceofadequatewaterresources.

Page 8: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

v

TABLE OF CONTENTS

Acknowledgments ..........................................................................................................................................................i

Abstract ........................................................................................................................................................................ ii

ExecutiveSummary .................................................................................................................................................... iii

Introduction ...................................................................................................................................................................1

Purpose .......................................................................................................................................................................1

PreviousWork ............................................................................................................................................................1

Methodology .................................................................................................................................................................2

Scope ..........................................................................................................................................................................2

MiningData ...............................................................................................................................................................2

GISModels ................................................................................................................................................................2

MinePoolEvaluationProcess ...................................................................................................................................3

GISAttributeTables ...................................................................................................................................................3

MinePoolVolumetricCalculationMethod ...............................................................................................................4

Deliverables ...............................................................................................................................................................4

DeliverableDataLayersDescription .........................................................................................................................4

StructureoftheReport ...............................................................................................................................................5

RegionalEvaluation ......................................................................................................................................................5

SeamAnalysesbyFormation/Group ............................................................................................................................6

DunkardGroup ..........................................................................................................................................................6

MonongahelaGroup ..................................................................................................................................................6

ConemaughGroup .....................................................................................................................................................7

AlleghenyFormation .................................................................................................................................................7

KanawhaFormation ...................................................................................................................................................9

NewRiverFormation ..............................................................................................................................................13

PocahontasFormation ..............................................................................................................................................14

Discussion ...................................................................................................................................................................16

Conclusions .................................................................................................................................................................17

References ...................................................................................................................................................................18

Page 9: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

vi

LIST OF FIGURESMinePoolAtlasFigures..............................................................................................................................................19

Figure1.CoalBedMappingProgram(CBMP)ProgressasofJune30,2011 ......................................................20

Figure2.PotentialUndergroundMinePools—AllSeams .....................................................................................21

Figure3.WatershedModel .....................................................................................................................................22

Figure4.MajorDrainageModel ............................................................................................................................23

Figure5.PerennialDrainageModel .......................................................................................................................24

Figure6a.StratigraphicchartofPennsylvaniancoal-bearingstratainWestVirginia ...........................................25

Figure6b.StratigraphiccolumnsoftheDunkardandMonongahelaGroups ........................................................25

Figure6c.StratigraphiccolumnoftheConemaughGroup ....................................................................................25

Figure6d.StratigraphiccolumnoftheAlleghenyFormation ................................................................................26

Figure6e.StratigraphiccolumnoftheKanawhaFormation ..................................................................................26

Figure6f.StratigraphiccolumnsoftheNewRiverandPocahontasFormations ...................................................26

Figure7a.Percentestimatedstorageinpotentialtotallyandpartiallyfloodedmines ...........................................27

Figure7b.Percentestimatedstorageinpotentialtotallyfloodedmines ................................................................28

Figure7c.Percentestimatedstorageinpotentialpartiallyfloodedmines .............................................................29

Figure8.SelectedMajorStructuresofWestVirginia ............................................................................................30

Figure9a.SewickleyMinePools—StructureContour ..........................................................................................31

Figure9b.SewickleyMinePools—Isopach ..........................................................................................................32

Figure9c.SewickleyMinePools—SeamOverview .............................................................................................33

Figure9d.SewickleyMinePools—PotentialTotalFlooding ...............................................................................34

Figure9e.SewickleyMinePools—PotentialPartialFlooding .............................................................................35

Figure10a.PittsburghMinePools—StructureContour .........................................................................................36

Figure10b.PittsburghMinePools—Isopach .........................................................................................................37

Figure10c.PittsburghMinePools—SeamOverview ............................................................................................38

Figure10d.PittsburghMinePools—PotentialTotalFlooding ...............................................................................39

Figure10e.PittsburghMinePools—PotentialPartialFlooding ............................................................................40

Figure11a.BakerstownMinePools—StructureContour ......................................................................................41

Figure11b.BakerstownMinePools—Isopach ......................................................................................................42

Figure11c.BakerstownMinePools—SeamOverview .........................................................................................43

Figure11d.BakerstownMinePools—PotentialTotalFlooding ............................................................................44

Figure11e.BakerstownMinePools—PotentialPartialFlooding ..........................................................................45

Figure12a.UpperFreeportMinePools—StructureContour .................................................................................46

Figure12b.UpperFreeportMinePools—Isopach .................................................................................................47

Figure12c.UpperFreeportMinePools—SeamOverview ....................................................................................48

Figure12d.UpperFreeportMinePools—PotentialTotalFlooding ......................................................................49

Figure12e.UpperFreeportMinePools—PotentialPartialFlooding ....................................................................50

Figure13a.MiddleKittanningMinePools—StructureContour ............................................................................51

Figure13b.MiddleKittanningMinePools—Isopach ............................................................................................52

Figure13c.MiddleKittanningMinePools—SeamOverview ...............................................................................53

Figure13d.MiddleKittanningMinePools—PotentialTotalFlooding .................................................................54

Figure13e.MiddleKittanningMinePools—PotentialPartialFlooding ...............................................................55

Figure14a.No.5BlockMinePools—StructureContour ......................................................................................56

Figure14b.No.5BlockMinePools—Isopach ......................................................................................................57

Page 10: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

vii

Figure14c.No.5BlockMinePools—SeamOverview .........................................................................................58

Figure14d.No.5BlockMinePools—PotentialTotalFlooding ............................................................................59

Figure14e.No.5BlockMinePools—PotentialPartialFlooding .........................................................................60

Figure15a.StocktonMinePools—StructureContour ...........................................................................................61

Figure15b.StocktonMinePools—Isopach ...........................................................................................................62

Figure15c.StocktonMinePools—SeamOverview ..............................................................................................63

Figure15d.StocktonMinePools—PotentialTotalFlooding ................................................................................64

Figure15e.StocktonMinePools—PotentialPartialFlooding ..............................................................................65

Figure16a.CoalburgMinePools—StructureContour .........................................................................................66

Figure16b.CoalburgMinePools—Isopach .........................................................................................................67

Figure16c.CoalburgMinePools—SeamOverview.............................................................................................68

Figure16d.CoalburgMinePools—PotentialTotalFlooding ...............................................................................69

Figure16e.CoalburgMinePools—PotentialPartialFlooding .............................................................................70

Figure17a.PeerlessMinePools—StructureContour ...........................................................................................71

Figure17b.PeerlessMinePools—Isopach ...........................................................................................................72

Figure17c.PeerlessMinePools—SeamOverview ..............................................................................................73

Figure17d.PeerlessMinePools—PotentialTotalFlooding .................................................................................74

Figure17e.PeerlessMinePools—PotentialPartialFlooding ...............................................................................75

Figure18a.No.2GasMinePools—StructureContour ........................................................................................76

Figure18b.No.2GasMinePools—Isopach ........................................................................................................77

Figure18c.No.2GasMinePools—SeamOverview ...........................................................................................78

Figure18d.No.2GasMinePools—PotentialTotalFlooding ..............................................................................79

Figure18e.No.2GasMinePools—PotentialPartialFlooding ............................................................................80

Figure19a.PowelltonMinePools—StructureContour ........................................................................................81

Figure19b.PowelltonMinePools—Isopach ........................................................................................................82

Figure19c.PowelltonMinePools—SeamOverview ...........................................................................................83

Figure19d.PowelltonMinePools—PotentialTotalFlooding ..............................................................................84

Figure19e.PowelltonMinePools—PotentialPartialFlooding ............................................................................85

Figure20a.LowerPowelltonMinePools—StructureContour .............................................................................86

Figure20b.LowerPowelltonMinePools—Isopach .............................................................................................87

Figure20c.LowerPowelltonMinePools—SeamOverview ................................................................................88

Figure20d.LowerPowelltonMinePools—PotentialTotalFlooding ..................................................................89

Figure20e.LowerPowelltonMinePools—PotentialPartialFlooding ................................................................90

Figure21a.EagleMinePools—StructureContour ...............................................................................................91

Figure21b.EagleMinePools—Isopach ...............................................................................................................92

Figure21c.EagleMinePools—SeamOverview ..................................................................................................93

Figure21d.EagleMinePools—PotentialTotalFlooding .....................................................................................94

Figure21e.EagleMinePools—PotentialPartialFlooding ...................................................................................95

Figure22a.SewellMinePools—StructureContour .............................................................................................96

Figure22b.SewellMinePools—Isopach .............................................................................................................97

Figure22c.SewellMinePools—SeamOverview ................................................................................................98

Figure22d.SewellMinePools—PotentialTotalFlooding ...................................................................................99

Figure22e.SewellMinePools—PotentialPartialFlooding ...............................................................................100

Figure23a.BeckleyMinePools—StructureContour .........................................................................................101

Page 11: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

viii

Figure23b.BeckleyMinePools—Isopach .........................................................................................................102

Figure23c.BeckleyMinePools—SeamOverview ............................................................................................103

Figure23d.BeckleyMinePools—PotentialTotalFlooding ...............................................................................104

Figure23e.BeckleyMinePools—PotentialPartialFlooding .............................................................................105

Figure24a.PocahontasNo.6MinePools—StructureContour ..........................................................................106

Figure24b.PocahontasNo.6MinePools—Isopach ..........................................................................................107

Figure24c.PocahontasNo.6MinePools—SeamOverview .............................................................................108

Figure24d.PocahontasNo.6MinePools—PotentialTotalFlooding ................................................................109

Figure24e.PocahontasNo.6MinePools—PotentialPartialFlooding ..............................................................110

Figure25a.PocahontasNo.4MinePools—StructureContour ..........................................................................111

Figure25b.PocahontasNo.4MinePools—Isopach ..........................................................................................112

Figure25c.PocahontasNo.4MinePools—SeamOverview .............................................................................113

Figure25d.PocahontasNo.4MinePools—PotentialTotalFlooding ................................................................114

Figure25e.PocahontasNo.4MinePools—PotentialPartialFlooding ..............................................................115

Figure26a.PocahontasNo.3MinePools—StructureContour ..........................................................................116

Figure26b.PocahontasNo.3MinePools—Isopach ..........................................................................................117

Figure26c.PocahontasNo.MinePools—SeamOverview ................................................................................118

Figure26d.PocahontasNo.3MinePools—PotentialTotalFlooding ................................................................119

Figure26e.PocahontasNo.3MinePools—PotentialPartialFlooding ..............................................................120

Figure27a.PocahontasNo.2MinePools—StructureContour ..........................................................................121

Figure27b.PocahontasNo.MinePools—Isopach .............................................................................................122

Figure27c.PocahontasNo.2MinePools—SeamOverview .............................................................................123

Figure27d.PocahontasNo.2MinePools—PotentialTotalFlooding ................................................................124

Figure27e.PocahontasNo.2MinePools—PotentialPartialFlooding ..............................................................125

Page 12: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

ix

LIST OF TABLES

MinePoolAtlasTables .............................................................................................................................................126

Table1.SummaryofPotentiallyTotallyFloodedUndergroundMinesbyCoalSeam .......................................127

Table2.SummaryofPotentiallyPartiallyFloodedUndergroundMinesbyCoalSeam ....................................128

Table3.PotentialTotallyandPartiallyFloodedMinesbyDrainagePositionandMineFootprintArea ...........129

Table4.PotentialExtentofPartialFloodinginAboveDrainageMines<500AcresinArea .............................130

Table5.PotentialExtentofPartialFloodinginAboveDrainageMines>500AcresinArea .............................131

Table6.PotentialExtentofPartialFloodinginNearDrainageMines<500AcresinArea ...............................132

Table7.PotentialExtentofPartialFloodinginNearDrainageMines>500AcresinArea ...............................133

TableA–1.MethodComparison ........................................................................................................................... A-3

APPENDICES

MinePoolAtlasAppendixA.................................................................................................................................... A-1

AppendixA.TestResultsofMiningAbove/BelowDrainageGISModels ........................................................ A-2

MinePoolAtlasAppendixB ....................................................................................................................................B-1

AppendixB.PotentialTotallyFloodedUndergroundMines>500AcresinArea ...............................................B-2

MinePoolAtlasAppendixC ....................................................................................................................................C-1

AppendixC.PotentialPartiallyFloodedUndergroundMines>500AcresinArea .............................................C-2

MinePoolAtlasAppendixD ................................................................................................................................... D-1

AppendixD.OverviewsofMinorSeams ........................................................................................................... D-2

Page 13: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

1

INTRODUCTION

Purpose

TheMinePoolAtlasprojectwasatwo-yearstudyfundedbytheWestVirginiaDepartmentofEnvironmentalProtection(WVDEP)toevaluatethepotentialofabandonedundergroundcoalminestoserveasasourceoflargevolumesofgroundwater.AlthoughWestVirginiareceivesanaverageof44.31inchesofprecipitationperyear(SERCC,2011)andisconsideredtohaveanabundantsupplyofwater,muchofWestVirginia’sprecipitationrunsoffandleavesthestatebywayofitsmanystreams.Theremainderinfiltratesthegroundsurface,butonlyafractionofthiswaterrechargestogroundwateraquifers.Onecurrentlyunderutilizedandfrequentlyoverlookedsource of stored groundwater is abandoned coal mines. This study, which addressed the potential for large volumes of groundwater storage based on mine void volume, is designed to facilitate prospecting for large amounts of water byidentifyingundergroundcoalminesthathavethepotentialtostorelargequantitiesofgroundwater,especiallythoseminesthatarelocatedbeloworneardrainage.Recently,inthesearchforlargewatersuppliestofacilitatevariousprocesses,suchasaquaculture,publicsupply,coal-to-liquidhydrocarbons,hydraulicfracturingwaterforgas wells, and power plant cooling, a realization has developed that these underground mine pools may be more of an asset than previously assumed.

This study, which addressed the potential for large volumes of groundwater storage based on mine void volume, was designed to facilitate prospecting for large volumes of water by identifying underground coal mines thathavethepotentialtostorelargequantitiesofgroundwater,especiallythoseminesthatarelocatedbeloworneardrainage.ThisstudyprovidesaninitialattempttolocateallofthelargeminepoolsinWestVirginiastratigraphicallyandgeographicallyandtoestimatetheirpotentialvolumesbasedontheWestVirginiaGeologicalandEconomicSurvey(WVGES)CoalBedMappingProgram(CBMP)GISdatacurrentlybeingdevelopedtoprovideamodern,up-to-datepictureoftheState’scoalresourcebaseforvarioususes.Thesedataincludemanymine maps that have been collected by the CBMP for many years.

Previous Work

The initial concept for this project was developed from a map showing estimated mine pool data for the PocahontasNo.3andPocahontasNo.4seamsinsouthernWestVirginiapreparedbyWestVirginiaDepartmentofEnvironmentalProtection(WVDEP,2008).Severalrecentreports(ZiemkiewiczandVandivort,2004,Ziemkiewiczetal.,2004,andDonovan,2004a,2004b)havestudiedtheextentofMonongahelaBasinminepoolfloodingbasedonwater-levelmeasurementswithinspecificminesofthePittsburghcoalinnorthernWestVirginiaandsouthwesternPennsylvania.ThehydrogeologyoffloodedandunfloodedundergroundcoalminesintheUpperFreeportseaminnorthernWestVirginiaandwesternMarylandhasbeenreportedinareconnaissancemappingstudybyMorrisetal.(2008).

Page 14: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

2

METHODOLOGY

Undergroundmininghasoccurredin69of73ofWestVirginia’smineablecoals.Coalbedandmininginformation for these beds including mine polygons, coal cropline, structure contour of the elevation, and scanned imagesofminemaps(WVGES,2011)wereexaminedtoestablishwhereadequatedataexistedtodeterminethepositionofeachminerelativetomajordrainagewherethepotentialforeachminetobepartiallyortotallyfilledwith groundwater to be determined.

Toaidinunderstandingthepotentialofthiswatersourcefordevelopment,availableWVGESCBMPdataandmodelswereusedtodeterminewhichseamshaveminevoidscapableofstoringlargequantitiesofgroundwater.Adynamic,interactiveGeographicInformationSystem(GIS)wascreatedtoportraythelocationofminepoolsthatmightprovidelargevolumesofwaterforvariousprivate,public,andindustrialuses.ThisGISprovidedtoolstoestimateminepoolvolumes.Figure1showsthestatusofworkbeingconductedbyCBMP(B.M.Blake,unpub.data,2011).

Scope

The scope of the project was limited to the following tasks: • Evaluationofeachcoalseambyregiontodeterminewhichpartsoftheseamareabove,near,andbelow

major drainage. • EstimatemaximumminepoolvolumeofeachseamassuminganaveragethicknessbasedonWVGES

CBMPGISdataanda50percentextractionrate—collapsedanduncollapsedmineswouldhaveessentially the same volume because additional voids are created in the crushed pillars and fractured overburden of collapsed mines.

• DevelopmaptemplatesforuseinthePDFatlas. • PreparemapsofeachmajorminepoolforPDFreport.

Theoriginalscopeincludedcollectionandevaluationofavailablewaterqualitydata.Unfortunately,muchoftheavailablewaterqualitydatawerefromtreatedminewater,andtheseanalyseswerenotusefulindeterminingin-situwaterquality.

Mining Data

DataavailablefromtheongoingCBMPusedinthisstudyinclude:minepolygonsofapproximately9,500underground mines; coal bed croplines; structure contours of the base of each coal bed; coal bed elevation raster data;andcoalisopachs.Astheindividualdatalayersaredynamicratherthanstaticandaresubjecttointermittentupdating as new data warrant, all results presented in this report are preliminary and subject to change.

CBMP has digitized footprints of mine maps, and these mine polygons have been compiled to document the extentofundergroundmineworks(Figure2).Althougheffortsaremadetousethebestavailabledataandlocatemines as accurately as possible, mine locations should be considered approximate. The actual extent of mining may beunknownbecausefinalminemapsatthetimeofmineclosurearenotalwaysavailableandnotallundergroundmininghasbeendocumentedbyminemaps.Thequalityofminemapsishighlyvariableintheamountofdetailandinformationpresented.Someofthenewerminemapsareavailableindigitalform;however,manyolderminemaps have been photographically reduced from dimensionally unstable paper copies. Photographic reduction also introduceddistortedduetolensgeometry.Also,coalbedcorrelationsmaychangewithadditionalinformation.ActivemineswerenotdifferentiatedfromrecentlyclosedminesintheCBMPdatabase.

GIS Models

GISmodelswereusedinthisstudytoassistindeterminingthepositionofeachminewithrespecttodrainage,theamountofpotentialgroundwaterflooding,anddirectionofgroundwaterflow.

TheWatershedModel,whichwasusedtodeterminegroundwaterflowdirection,isastandardEsri© ArcMap™10.0geoprocessingmodelthatusestheSpatialAnalyst™HydrologytoolsettoconverttheCBMPcoalbedelevationrasterdataintopredictivehydrologicflowdirectionandflowaccumulationrasters.Fromthesegenerated datasets the model outputs generalized “stream” features which can be used to predict the direction of groundwater movement through mine voids relative to the coal outcrop. This model was run for all coal beds to aidindeterminingtheextentofpotentialfloodinginundergroundmines.AnexampleofmodeloutputfortheSewellcoalseamisshowninFigure3.

Page 15: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

3

TheMiningAbove/BelowDrainageModel(MABD),whichisageoprocessingmodel(aseriesofstandardArcGIS™ tools executed in a certain order), was developed for this study to determine the position of mines with respecttodrainagebasedonperennialstreamelevations.TwoversionsoftheMABDModel,theMajorDrainageElevationModel(MDEM)andthePerennialDrainageElevationModel(PDEM),weregeneratedbyassigningUSGS7.5-minutequadrangleelevationstopointsselectedfromtheNationalHydrographyDataset(NHD).TheMDEMselectedpointslocatedwithindigitizedperennialstreampolygons;thePDEMselectedpointslocatedalongdigitizedperennialstreamlines.Theresolutionofthesedigitalelevationmodels(DEMs)weregeneratedto10meterstomatchtheCBMPseamelevationrasterdata.ThecoalelevationDEMwassubtractedfromtheMDEMandthePDEMtoindicateregionsofthecoalbedthatlieaboveandbelowmajordrainage,theseresultswereindividuallyoverlaidwiththeminefootprinttoobtainthetwoversionsofthefinalGISlayerofpotentiallyfloodedmineareas(Figures4and5).

TheeffectivenessoftheMDEMandPDEMmodelswastestedbycomparingthemodeloutputfor472minesintheSewellcoalseamlocatedinsouthernWestVirginiawiththeresultsofthevisualstructurecontour/croplineexaminationofthesameundergroundmines(McCollochetal.,2011).Thevisualstructurecontour/croplineexaminationisthemosteffectivemethodofidentifyingdrainagepositionandpotentialextentoffloodinginmines.TheMDEMprovedineffectiveinpredictingminepositionwithrespecttodrainageandpotentialextentofmineflooding.ThePDEMisafairpredictivetool,butitismosteffectiveinidentifyingpotentialfloodingbelowdrainage.ThedetailsofthiscomparisonarepresentedinAppendixA.

Mine Pool Evaluation Process

• Establishwhichareashavestructurecontourandcoalcroplinecoveragessothatthepositionofeachunderground mine with regard to major drainage (above, near, or below), which allows the potential for eachminetobepartiallyortotallyfilledwithgroundwater

• Evaluatepositionandlikelihoodoffloodingformineslocatedinareaswhichhaveadequatecoverages • Visuallyexamineeachminepolygonbyseamandassignattributesaccordingtominepooltype,position

with respect to drainage, availability of structure contour, availability of cropline, and potential extent of partialflooding

GIS Attribute Tables

Tofacilitatedataanalysesandmapgeneration,sixfieldswereaddedtotheCBMPGISattributetablesofthe69coalbedsthathavebeenminedbyundergroundmethods:

• Minepooltypebasedonextentofpotentialflooding:0=undetermined;1=flooded;2=notflooded;and3=partiallyflooded

▪ Undeterminedrepresentsundergroundmineslocatedinareaswithnostructurecontourand cropline coverages

▪ Floodedrepresentsundergroundminesthatarelocatedbelowdrainage,andthesemineshavethe potentialtobetotallyfilledwithgroundwater

▪ Notfloodedrepresentsminesthatareprobablyfreedraining ▪ Partiallyfloodedrepresentsundergroundminesthathaveaconfigurationthatwouldpermitthe accumulationofgroundwaterinspecificareasthatcanrangefromverysmalltoverylarge andthesedeterminationsarequalitativeratherthanquantitative • Positionwithrespecttodrainage(0=undetermined;A=above;N=near;andB=below ▪ Undeterminedrepresentsundergroundmineslocatedinareaswithnostructurecontourand cropline coverages • Availabilityofstructurecontour(1=Yes;2=No) • Availabilityofcroplinedata(1=Yes;2=No) • Potentialextentoffloodingforpartiallyfloodedundergroundminesbasedonqualitativeratherthan

quantitative ▪ 1=verysmallpotentiallyfloodedarea(s) ▪ 2=smallpotentiallyfloodedarea(s) ▪ 3=intermediatepotentiallyfloodedarea(s) ▪ 4=largepotentiallyfloodedarea(s) ▪ 5=verylargepotentiallyfloodedarea(s) • Commentfield

Page 16: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

4

Mine Pool Volumetric Calculation Method

TheCBMPTotalBedThicknessrasterlayer(totbed)isa10meterGRIDlayerthatwasthebasisforverticalvoidmeasureestimates.ThislayerisproducedusinganInverseDistanceWeightedalgorithmthatinterpolatesgridvaluesbetweenactualcoalbedthicknessdataasdescribedbyWoodetal.(1983).CBMP’sminefootprintlayerwas the base used to determine the area covered by each mine void.

ArcMap™’sSpatialAnalystextensionZonalStatisticstoolwasemployedto“sum”each10metercellwithin a given mine polygon to calculate the total volume of the mine void. These data were output into a .dbf table (zonalstat).

The following mathematical formulas were used:

• ConversionoftheZonalStatisticresultfrominches/meterstocubicfeet:((SUM/12)*32.808399)*32.808399

• Conversionofcubicfeettoacrefeet:cubic_ft/43560

• Conversionofcubicfeettogallons:cubic_ft*7.48051948

• Storagegallonswerecalculatedashalfoftheestimatedvoidgallons:(cubic_ft*7.48051948)*0.5

• Theaveragethicknessofthecellsintersectedbytheminefootprintpolygonwerecalculatedbytakingthesum of the cell values divided by the count of cell selected.

Deliverables

Thedeliverablesincluded:afinalWestVirginiaMinePoolAtlasreportinelectronicformat;GISgeodatabasesofWVGES’sCBMPseamandminingcoverages;andGISmaptemplates.Thisreportincludes:general description of major coal beds within each formation; the distribution of potential totally and partially floodedminesineachcoalbedbyminefootprintareaandpositionwithrespecttodrainage;estimatedvolumeofgroundwatercontainedineachminepool;afive-mapseriesforeachofthe19majorcoalbedsidentifiedbythis study consisting of a structure contour map, an isopach map, a seam overview map, a map showing extent ofpotentialtotalflooding,andamapshowingextentofpartialflooding;andoverviewtablesforminorcoalbedshavingpotentialminevoidflooding.

Deliverable Data Layers Description

thickness_measures_location(points)—XYcoordinatesofcoalmeasurelocation thickness_measures_area(polygon)—3milebufferofmeasurelocationusedtodetermine“mapped”area ofthecoalbedasdescribedinUSGSCircular891(Woodetal.,1983) structure(line)—coalelevation40’contours outcrop(polygon)—originalcoalresourceareaascurrentlymapped mines(polygon)—undergroundminefootprints •Apcard(poly_ID) •MineName •CompanyName •StatePermit# •WVGESComment •SeamCodes •StratigraphicOrder •Acres mine_pool(polygon)—undergroundmineandzonalstatisticstablesconcatenated idwTotalBed(raster)—totalbedthicknessininches10meterGRID zonalstat(table)—volumetriccalculationresults •Apcard(polyID) •Count—countofcellsintersectedbymine •Area—totalsquaremetersofintersectedcells •Sum—totalofcellthicknessesininches •VoidCubicFoot •VoidAcreFoot •VoidGallons •StorageGallons •Avgthk—averagethicknessofcellsintersectedbythepolygon

Page 17: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

5

Structure of the Report

Followingevaluation,19majorseamswereidentifiedforinclusioninthemapsectionofthereport.Thesearecoalbedsinwhichundergroundminesoccurthathavefootprintsequaltoorgreaterthan500acresinareaandarenearorbelowdrainage.Anareaof500acreswaschosenasthelowerlimitforinclusioninthisreportfortworeasons:itwouldprovideadequatepotentialstoragetoaccommodatealargevolumeofgroundwater;andthemine polygons printed on the map would be large enough to show annotation by attribute. Maps and statistics for each major mine pool presented in this report are limited to the coal and mining information available from the WVGES’sCBMPduringtheperiodofthisstudy.

TheAtlascontains:

• Ageneraldescriptionofprincipalcoalbedswithinthegrouporformation • Stratigraphiccolumnsshowingthepositionofthemainnamedcoalbedswithineachformationorgroup • Tableshowingthedistributionofpotentialtotallyandpartiallyfloodedminesineachseambymine

footprint area and position with respect to drainage • Mapsofcoalbedsthatminesinwhichpotentialpartialand/ortotalfloodingispresentinminesexceeding

in500acresinarea. ▪ Structurecontourofthebaseofeachcoalbed ▪ Isopach(totalcoalbedthicknesses) ▪ Seamoverview ▪ Extentofpotentialtotalflooding ▪ Extentofpotentialpartialflooding • Overviewtablesforseamsinwhichpotentialpartialand/ortotalfloodingispresentinminesthatareless

than500acresinarea

REGIONAL EVALUATION

Dataforseamswerereportedbyformationinstratigraphicorderfromyoungesttooldest.AstratigraphicchartofPennsylvaniancoal-bearingstrataisshowninFigure6a.StratigraphiccolumnsofPennsylvaniangeologicunitsinFigures6b–fshowthestratigraphicpositionofnamedcoalbedswithineachformationorgroup.Thecoalbednamesshowninthesefiguresarecolorcoded:thoseinbluedenotemajorseamsinwhichpotentialtotallyandpartiallyfloodedundergroundminesexceeding500acresinareaarepresent;thoseinorangecorrespondtoothermineableseamsinWestVirginia;andthoseinblackrepresentunminedcoalbeds.

StudydatahavebeencompiledandsummarizedinTables1through7.Namesofmajorcoalbedscontainingminesthathavesignificantgroundwaterpotentialandexceed500acresinareaareshowninboldfacethroughoutthetextandinTables1through7.StatisticaldataaboutpotentialtotallyfloodedminesandpotentiallypartiallyfloodedminesarepresentedinTables1and2,respectively.Table3hasinformationaboutpotentialtotallyandpartiallyfloodedminesbypositionwithrespecttodrainageandbyminearea.Tables4through7provideinformationaboutpotentialextentofpartialfloodinginaboveandneardrainageminesbyminefootprintarea.AppendixBpresentsinformationaboutthe99potentialtotallyfloodedundergroundminesthatexceed500acresinarea.Informationabout532potentiallypartiallyfloodedundergroundmineshavingareasgreaterthan500acresispresentedinAppendixC.Overviewsof53coalbedsthatdidnotmeetthedrainagepositionandareacriteriaforinclusioninthemapatlasarepresentedinAppendixD.

Thepercentageofestimatedmaximumstorageinmilliongallons(MMGal)ofpotentiallytotallyandpartiallyfloodedundergroundminesofselectedseamsisshowninFigures7a–c,respectively.

Elevationsofthebaseofcoalbedscommonlyserveasthebasisfordefiningfoldsandfaultsincoal-bearingrockworldwide.Figure8showsthelocationofmajorstructuralfeaturesintheState.

Page 18: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

6

Coal Bed Analyses by Formation/Group

Dunkard Group

ThemainlyUpperPennsylvanianDunkardGroup(Figures6a,b)contains14namedcoalbeds.Noneofthese coals have been mined by underground methods, and therefore, are excluded from further discussion.

Monongahela Group

TheUpperPennsylvanianMonongahelaGroup(Figures6a,b)includesninenamedcoalbedsofwhichfour,theWaynesburg,Sewickley,RedstoneandPittsburgh, have been mined by underground methods. Coal beds that have the potential to contain large volumes of groundwater in mine voids are the Pittsburgh and Sewickley coals.

Waynesburg:ThefourundergroundminesinthisseamarelocatedinMonongaliaCounty.Allfourminesarelocatedabovedrainageandarepotentiallypartiallyfloodedbygroundwater.Thesemineshavelimitedpotentialfor supplying water resources due to their small size and location above drainage.

Sewickley: This coal bed generally dips to the northwest in the area in which it is mined, and the minimum elevationofthiscoalislocatedintheNinevehSynclineinWetzelandMarshallcounties(Figure9a).TheisopachmapindicatestheSewickleybed(Figure9b)rangesfrom0to144inchesinthickness,withthethickestcoallocated in central Marion County. In areas where underground mining has occurred, this bed generally ranges in thicknessfrom36to96inches.

Seventy-sixundergroundSewickleyminesarelocatedinMarionandMonongaliacounties.Fifty-threeminesareabovedrainage,13areneardrainage,andtenarebelowdrainage(Figure9c).Nobelowdrainageminesgreaterthan500acresinareacurrentlyoccurinthisseam(Figure9d).Sixneardrainageminesexceeding500acresinareahavepotentialpartialflooding(Figure9e).Averagebedthicknessesoftheseminesrangefrom59.00to75.00inches.MapsandstatisticalinformationaboutpotentialgroundwaterfloodingofminesinthisseamareshowninFigures9c–e.

ThepresenceofsignificantgroundwaterresourcesinundergroundSewickleyminesmaybeaffectedbyunderground mining in the stratigraphically lower Pittsburgh coal.

PotentiallypartiallyfloodedundergroundminesintheSewickleyprovide100percentoftheestimated22,809.16milliongallons(MMGal)ofpotentialstorage,andtheseSewickleyminescontain1.65percentoftotalpotentialstorageand2.23percentofpotentialpartialstorageinundergroundminesofmajorcoals(Figures7a,c).

Redstone:ThisseamhasbeenminedbyundergroundmethodsinBarbour,Harrison,Lewis,Mason,Monongalia,andUpshurcounties.Ofthe218undergroundminesinthisseam,207arelocatedabovedrainage,fiveminesare located near drainage, and six mines are located below drainage. These mines have limited potential to store significantvolumesofgroundwater.

Pittsburgh:Theelevationofthebaseofthiscoaldefinesaseriesofsouth-southwesttonorth-northeasttrendinganticlinesandsynclinesinnorthernWestVirginia,andthelowestelevationsofthePittsburgharefoundintheNineveh,Burchfield,andRobinsonsynclines(Figures8and10a).

ThePittsburghbedrangesinthicknessfrom0tomorethan144inches,anditgenerallyexceeds48inchesinthicknessinmanyareas(Figure10b).AlthoughFigure10bshowstotalcoalbedthicknessesofgreaterthan144inchesinseveralsmallareasofeasternGilmerCounty,morerecentstudyindicatesthisinformationiserroneous.Inareaswhereundergroundmininghasoccurred,thethicknessofthisbedgenerallyrangesfrom:72to120inchesinnorth-centralWestVirginia;48to84inchesinthenorthernpanhandleofWestVirginia;and36to84inchesinthe western part of the state.

ThiscoalhasbeenextensivelyminedbyundergroundmethodsinBarbour,Braxton,Brooke,Gilmer,Hancock,Harrison,Kanawha,Lewis,Marion,Marshall,Mason,Monongalia,Ohio,Preston,Putnam,Taylor,Upshur,andWetzelcounties.ThePittsburghhasalimitedoccurrenceinMineralCountyintheState’seasternpanhandle where it has been removed through several generations of underground and surface mines. Mine polygonsof806mineswereexamined,and683minesareabovedrainage,79areneardrainage,and44arebelowdrainage(Figure10c).Twenty-twobelowdrainageminesandoneneardrainagemineexceed500acresinarea

Page 19: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

7

andarepotentiallytotallyflooded(Figure10d).Theaveragebedthicknessesoftheseminesrangefrom56.00to98.42inches.Thirty-oneneardrainageminesexceed500acresinareaandhavepotentialpartialflooding(Figure10e).Theaveragecoalbedthicknessesoftheseminesrangefrom49.00to101.63inches.MapsandstatisticalinformationaboutpotentialgroundwaterfloodingofminesinthePittsburgharepresentedinFigures10c–e.

PotentiallypartiallyandtotallyfloodedundergroundminesinthePittsburghcoalprovideanestimated423,453.52MMGalofpotentialstorage;andthepotentiallypartiallyfloodedundergroundPittsburghminescontain51.87percentofthispotentialstorage.PotentialstorageinundergroundPittsburghminesaccountsfor30.60percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).ThepercentageofpotentialstorageinpotentiallytotallyandpartiallyfloodedundergroundPittsburghminesrepresents56.52and21.47percent,respectively,ofthetotalcombinedpotentialstorageofminesinmajorcoalbeds(Figures7b,c).

Conemaugh Group

TheUpperPennsylvanianConemaughGroup(Figures6a,c)includes22namedcoalbeds.Threeofthesecoals,theElkLick,Bakerstown and Mahoning, have been mined by underground methods. The Bakerstown coal istheonlyConemaughGroupbedwithsignificantpotentialtocontainlargevolumesofgroundwaterinmine.

ElkLick: ThisseamhasbeenminedbyundergroundmethodsinGrant,Lewis,Mineral,andUpshurcounties,and18minesarepresentinthisseam.All18minesarelocatedabovedrainage.Theminesinthisseamaregenerallysmall in area and occur above local streams, offering limited potential for supplying water resources.

Bakerstown:Elevationsofthebaseofthiscoaldefineaseriesofsouth-southwesttonorth-northeasttrendinganticlinesandsynclinesinthewesternpartoftheeasternpanhandleandnorth-centralareasofWestVirginia(Figure11a).MostundergroundBakerstownminesarelocatedinPreston,Barbour,Tucker,andGrantcountieswhereithasbeenpreservedfromerosionintheLigonier,Belington,Kingwood,andNorthPotomacsynclines(Figures8and11a).ThetotalbedthicknessoftheBakerstowngenerallyrangesfrom24to84inches,andthethickestpartofthecoalbedislocatedinnorthernTuckerCounty(Figure11b).

Sixty-sevenminesarelocatedabovedrainage,and52oftheseminesarepotentiallypartiallyfloodedbygroundwater(Figures11c,e).Mostoftheseminesaresmallandhavelimitedpotentialforsupplyingwaterresources.Nominesarelocatedbelowdrainage(Figure11d).OneneardrainageminelocatedinTuckerCountyexceeds500acresinareaandispotentiallypartiallyflooded(Figure11e).Theaveragebedthicknessforthismineis70.00inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures11c–e.

Potentialfloodingofundergroundminesinthisseammaybeaffectedbyundergroundmininginthestratigraphicallylowercoalssuchas:theUpperFreeportinnortheasternTucker,northwesternGrant,andwesternPrestoncounties;andtheMiddleKittanninginwesternPrestonCounty.

PotentiallypartiallyfloodedundergroundBakerstownminesprovideanestimated4,600.06MMGaloftotalpotentialstorage,andtheseminesaccountfor0.33percentoftotalpotentialgroundwaterstorageand0.45percentofpotentialpartialstorageinundergroundminesofmajorseams(Figures7a–c).

Mahoning:ThefiveundergroundminesinthisseamarelocatedinMineralCounty,andallfiveminesareabovedrainage. These mines have limited potential to provide water supplies because of their small size and position above drainage.

Allegheny Formation

TheMiddlePennsylvanianAlleghenyFormation(Figures6a,d)includes14namedcoalbeds;ninewhichhave been mined by underground methods. The seams that have the greatest potential for containing large volumes of groundwater in mine voids are the Upper Freeport and Middle KittanningcoalsinnorthernWestVirginiaandthe Number 5 BlockcoalinsouthernWestVirginia.

Upper Freeport:Thiscoalbedhasbeenfoldedintoaseriesofsouth-southwesttonorth-northeasttrendinganticlinesandsynclinesinthewesternpartoftheeasternpanhandleandinnorth-centralWestVirginia(Figures8and12a).ErosionalremnantsoftheUpperFreeportoccuralongtheChestnutRidge,Preston,andBlackwater

Page 20: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

8

anticlines. Most underground mines in this coal are located in Preston, Barbour, and Tucker counties, preserved in theLigonier,Kingwood,MountCarmel,andNorthPotomacsynclines.InsoutheasternMarion,centralUpshur,andnorthernBarbourcounties,bedrockgenerallydipstothenorthwest(Figure12a).AvailabledataindicatetheUpperFreeportrangesinthicknessfrom24to144inches(Figure12b).Thethickestpartofthecoalbedislocatedin eastern Preston County.

Analysisofthe285undergroundminesintheUpperFreeport(Figure12c)showthat237minesarelocatedabove drainage, ten are located near drainage, three are located below drainage, and 35 are located in areas with no structurecontourandcroplinecoverages(Figure12c).OnebelowdrainagemineinsouthwesternPrestonCountyexceeds500acresinarea(Figure12d).Averagebedthicknessofthismineis49.00inches.Onehundredninety-twoabovedrainageand11neardrainageminesarepotentiallypartiallyflooded(Figure12e).Intermediatetoverylargeareasoftenabovedrainageminesthatexceed500acresinareaarepotentiallyflooded.Sevenpotentiallypartiallyfloodedneardrainageminesexceed500acresinarea.Theaveragebedthicknessesoftheseminesrangefrom51.00to97.24inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures12c–e.

GroundwaterfloodinginafewnearandbelowdrainageminesinPrestonCountymaybeaffectedbyundergroundmininginthestratigraphicallylowerMiddleKittanningandLowerFreeportcoalbeds.Currently,potentialforgroundwaterfloodinghasnotbeendeterminedforundergroundUpperFreeportminesinBarbourandUpshurcounties.AfewoftheseminesarelocatedaboveundergroundmininginthestratigraphicallylowerMiddleKittanningandLowerFreeportcoals.

PotentiallypartiallyandtotallyfloodedundergroundminesintheUpperFreeportcoalprovideanestimated45,708.19MMGaloftotalpotentialstorage.Estimatedpotentialpartialstorageis97.42perentofpotentialtotalstorageinthesemines.Totalpotentialstorageinthiscoalbedrepresents3.30percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).EstimatedstorageinpotentialtotallyandpartiallyfloodedUpperFreeportminesrepresent0.33percentand4.35percentstorage,respectively,ofmajorseams(Figures7b,c).

Middle Kittanning:Thiscoalbedhasbeenfoldedintoaseriesofsouth-southwesttonorth-northeasttrendinganticlinesandsynclinesinnorth-centralWestVirginia(Figure13a).ErosionalremnantsoftheMiddleKittanningoccuralongtheChestnutRidgeAnticline(Figure13a).Intheareaswherebedthicknessdataareavailable,thiscoalbedgenerallyrangesinthicknessfrom0tomorethan144inches(Figure13b).InsouthwesternPrestonCounty,undergroundminesinthiscoalarelocatedintheLigonierSynclinewherethecoalbedgenerallyrangesinthicknessfrom24to108inches(Figures8and13a–b).Elsewhere,bedthicknessinminedareasrangesfrom24to72inchesinBarbourandTaylorcountiesandfrom48to72inchesinMarionCounty.

Ofthe43undergroundminesinthisseam,22areinareaswherestructurecontourand/orcroplinedataareavailable.Elevenminesarelocatedabovedrainage,sixminesareneardrainageand,fiveminesarebelowdrainage(Figure13c).Thebelowdrainageminesarepotentiallytotallyfloodedbygroundwater(Figure13d);twooftheseminesexceed500acresinareaandhaveaveragebedthicknessesof51.00and74.50inches.Tenabovedrainageandsixneardrainageminesarepotentiallypartiallyflooded(Figure13e).Threeneardrainageminesexceed500acresinareaandhaveaveragebedthicknessesthatrangefrom46.00to58.98inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures13c–e.

Currently,potentialforgroundwaterfloodingcannotbedeterminedforundergroundMiddleKittanningminesinBarbourandUpshurcountiesastheCBMPproductsarenotcomplete.AfewminesinthisseamareaboveundergroundmininginthestratigraphicallylowerClarioncoalbedinpartsofnorth-centralBarbourCountyandtheLowerKittanninginpartsofcentralUpshurCounty.

PotentiallypartiallyandtotallyfloodedundergroundminesintheMiddleKittanningprovideanestimated15,669.16MMGaloftotalpotentialstorage(Figure7a).EstimatedstorageinpotentiallytotallyfloodedMiddleKittanningminesis50.72percent.PotentialstorageinMiddleKittanningminesaccountsfor1.13percentoftotalpotentialstorageinundergroundminesofmajorseams.Thiscoalrepresents2.20percentand0.75percentstorageinpotentialtotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Page 21: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

9

No. 5 Block:Thiscoalbedhasbeenfoldedintoseveralsouthwest-northeasttrendinganticlinesandsynclines(Figures8and14a).ErosionalremnantsoftheNo.5Blockarepreservedalongthesouthwest-northeasttrendingWarfieldAnticlineinsouthwesternWestVirginia(Figure14a).SoutheastandnorthwestoftheWarfieldAnticline,manyundergroundminesinthiscoalarelocatedintheHandleySynclineandtwounnamedsynclinesinWayneandLincolncounties.Thethicknessofthisbedrangesfrom0tomorethan132inches,andthethickestcoalisfoundinNicholasCounty(Figure14b).Bedthicknessinareasofundergroundmininggenerallyrangesfrom24tomorethan132inches(Figure14b).

TheNo.5BlockhasbeenminedbyundergroundmethodsinsouthwesternandcentralWestVirginia.Minepolygonsforthe429undergroundminesinthisseamwereexamined,and416oftheseminesarelocatedabovedrainageand13neardrainage(Figure14c).

Nopotentialtotallyfloodedundergroundminesarepresentinthiscoalbed(Figure14d).Threehundredforty-oneoftheabovedrainageminesand12oftheneardrainageminesarepotentiallypartiallyflooded.Onepotentiallypartiallyfloodedneardrainagemine,whichislocatedineasternLincolnCounty,exceeds500acresinarea(Figure14e).Averagebedthicknessinthismineis69.00inches.AdditionalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures14c–e.

PotentialgroundwaterfloodingofabovedrainageundergroundminesinthiscoalintheHandleySynclinemaybeaffectedbyundergroundminingofstratigraphicallylowercoalsassignedtotheunderlyingKanawhaFormation.InnorthernNicholas,southernBraxton,andwesternWebstercounties,undergroundminingintheStocktonlowersplit2,Coalburg,andWinifredecoalsmayaffectgroundwaterfloodinginafewNo.5Blockmines.

PotentiallypartiallyfloodedundergroundminesintheNo.5Blockcoalprovideanestimated19,562.68MMGaloftotalpotentialstorage,andtheseminesaccountfor1.41percentoftotalpotentialgroundwaterstorageand1.91percentofpotentialpartialstorageinundergroundminesofmajorseams(Figures7a,c).

Kanawha Formation

TheLowertoMiddlePennsylvanianKanawhaFormation(Figures6a,e)includes42namedcoalbeds,and31 have been mined by underground methods. The seven seams having the greatest potential to have mine voids containing large volumes of groundwater are the Stockton, Coalburg, Peerless, Number 2 Gas, Powellton, Lower Powellton, and Eaglecoals.Ninehundredthirty-fourmineshavebeenidentifiedinlowerKanawhaFormationcoalbedsinsouthernWestVirginia(Figure6e),theMiddleWarEagle,BensCreek,LowerWarEagle,GlenalumTunnel,Gilbert,andDouglas.Forthemostpart,theseminesaresmallinarea,occurabovedrainage,andcontain limited potential water supplies.

Stockton:Severalsouthwest-northeasttrendinganticlinesandsynclinesaredefinedbythestructurecontourofthebaseofthiscoal(Figures8and15a).ErosionalremnantsoftheStocktonarepreservedalongthesouthwest-northeasttrendingWarfieldAnticlineinsouthwesternWestVirginia(Figure15a).ManyundergroundminesinthisbedarelocatedtothesoutheastoftheWarfieldAnticlineintheHandleySynclineandafewarelocatedonthenorthwestlimboftheWarfieldAnticline(Figure15a).TheStocktonrangesfrom0tomorethan144inchesinbedthickness,anditobtainsitsthickestdevelopmentinsouth-centralLoganCounty(Figure15b).Whereithasbeenundergroundmined,theStocktongenerallyrangesfrom24to144inchesthick(Figure15b).

ThiscoalhasbeenminedbyundergroundmethodsinsouthwesternandcentralWestVirginia.Ofthe160minesinthisseam,157arelocatedabovedrainageandthreearelocatedneardrainage(Figure15c).Nominesarelocatedbelowdrainage,andnominesarepotentiallytotallyflooded(Figure15d).Onehundredthirty-twooftheabovedrainageminesandthreeneardrainageminesarepotentiallypartiallyflooded(Figure15e).Onepotentiallypartiallyfloodedneardrainagemine,whichislocatedineasternKanawhaCounty,exceeds500acresinarea.Atthislocation,averagebedthicknessis64.00inches.Althoughpotentialfloodingisgenerallylimitedtosmallareasinmanyofthesmallermines,intermediatetolargeareasofseverallargerminescouldbeflooded.AdditionalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures15c–e.

Page 22: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

10

PotentialfloodingparticularlyinaboveandneardrainageStocktonminesintheHandleySynclinemaybeaffectedbymanyundergroundminesinstratigraphicallylowercoalsbedsassignedtotheKanawhaformation(Figure6e).InpartsofwesternBoone,southernBraxton,andnorthernNicholascounties,undergroundminingintheCoalburgwilllikelyaffectpotentialfloodinginStocktonmines.

PotentiallypartiallyfloodedundergroundminesintheStocktoncoalprovideanestimated29,161.59MMGaloftotalpotentialstorage,andtheseminesaccountfor2.11percentoftotalpotentialgroundwaterstorageand2.85percentofpotentialpartialstorageinundergroundminesofmajorseams(Figures7a,c).

Coalburg:Severalsouthwest-northeasttrendinganticlinesandsynclinesaredefinedbythestructurecontourofthebaseofthiscoal(Figures8and16a).ErosionalremnantsoftheCoalburgoccuralongthesouthwest-northeasttrendingWarfieldAnticlineinsouthwesternWestVirginia(Figure16a).Thebedrangesinthicknessfrom0tomorethan144inches,reachingamaximumthicknessinnorthernMingoCounty(Figure16b).Availablebedthicknessdatainareasofundergroundmininggenerallyrangefrom24tomorethan144inches(Figure16b).

UndergroundminesintheCoalburgoccuracrossmostofsouthernWestVirginia(Figure16c).Dataanalysiswascompletedforthe298minesforthisseam;287minesarelocatedabovedrainage,tenminesareneardrainage,andonemineisbelowdrainage(Figure16c).Oneneardrainagemineandonebelowdrainageminearepotentiallytotallyflooded.Twohundredsixty-fiveoftheabovedrainageminesandnineoftheneardrainageminesarepotentiallypartiallyflooded.

Mostpotentialtotallyorpartiallyfloodedbelowandneardrainageminesthatexceed500acresinareaarelocatedineasternWayneandwesternLincolncounties(Figure16d,e).Onepotentiallytotallyfloodedbelowdrainagemineexceeds500acresinarea.Theaveragebedthicknessofthismineis66.57inches(Figure16d).Twopotentiallypartiallyfloodedneardrainageminesaregreaterthan500acresinarea,andtheaveragebedthicknessesoftheseminesare58.00and62.00inches.Visualanalysisindicatesthatlargeareasoftheseminesarepotentiallyflooded(Figure16e).AdditionalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures16c–e.

PotentialgroundwaterfloodingofundergroundCoalburgminesmaybeaffectedinsomeareasbyundergroundminingofstratigraphicallylowercoalsfromtheEagletotheWinifredeintheHandleySyncline;theWinifredeandSewellcoalsinwesternWebsterCounty;andtheWinifredeandEagleontheeastlimboftheMannMountainAnticlineinwesternNicholasCounty.

PotentiallypartiallyandtotallyfloodedundergroundminesintheCoalburgcoalprovideanestimated68,114.13MMGalofpotentialstorage;88.44percentofthisestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor4.92percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents2.18percentand5.89percentstorageinpotentialtotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Winifrede:ThiscoalhasbeenwidelyminedbyundergroundmethodsinBoone,Fayette,Kanawha,Logan,Mingo,Nicholas,Raleigh,Webster,andWyomingcounties.Minepolygonsforthe283minesinthisseamwereexamined,and281minesarelocatedabovedrainageandtwominesareneardrainage.Thetwoneardrainageminesarelessthan500acreasinarea.Twohundredforty-fouroftheabovedrainageminesandthetwoneardrainageminesarepotentiallypartiallyflooded.Thetwoneardrainageminesarelessthan500acresinarea.Althoughpotentialfloodingwouldbelimitedtosmallareasinmostofthesemines,intermediatetolargeareasofseveralofthelargerminescouldbeflooded.

Peerless: Thiscoalgenerallydipstothenorthwestexceptinthevicinityofthesouthwest-northeasttrendingfoldsincludingtheWarfieldAnticlineandtheHandleySynclineandthenorth-northwesttrendingMannMountainAnticline(Figures8and17a).ThePeerlesscropsoutonhillsidesalongtheaxisoftheWarfieldAnticline.ManyundergroundminesinthiscoalarelocatedsoutheastoftheWarfieldAnticline,andmostoftheseminesarelocatedabovedrainage.Ranginginthicknessfrom0tomorethan132inches,thiscoalisthickestinsouthernLoganCounty(Figure17b).Availablebedthicknessdatainareasofundergroundmininggenerallyrangefrom24to132inches(Figure17b).

UndergroundmininginthisseamispresentinsouthernandcentralWestVirginia(Figure17c)ThePeerlessoftenmergeswiththeunderlyingNo.2Gascoalwhichcomplicatesanalysis.Minepolygonsfor284mineswereexamined,and229minesarelocatedabovedrainage,12neardrainage,fivebelowdrainage,and38inareaswherecroplineandstructurecontourmapshavenotbeencompleted(Figure17c).Threeminesabovedrainage,three

Page 23: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

11

minesneardrainage,andfiveminesbelowdrainagearepotentiallytotallyflooded(Figure17d).Threepotentiallytotallyfloodedbelowdrainageminesexceed500acresinarea.Theaveragebedthicknessesoftheseminesrangefrom23.00to49.00inches.Twohundredtwoaboveandnineneardrainageminesarepotentiallypartiallyflooded.Onepotentiallypartiallyfloodedneardrainagemineexceed500acresinarea,andithasanaveragebedthicknessof38.00inches.Visualanalysisindicatesthatintermediatetoverylargeareasofseverallargeabovedrainageminesmaybeflooded(Figure17e).AdditionalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures17c–e.

PotentialgroundwaterfloodingofundergroundPeerlessminesmaybeaffectedinsomeareasbyundergroundminingofstratigraphicallylowercoalsincluding:theNo.2Gas,Powellton,LowerPowellton,andEagleinpartsofsouthernLoganandMingocountiesandtheNo.2Gas,Powellton,LowerPowellton,Eagle,andLittleEagleinpartsofeasternmostBoone,southernmostKanawha,westernFayette,andnorthwesternRaleighcounties.

PotentiallypartiallyandtotallyfloodedundergroundminesinthePeerlesscoalprovideanestimated53,219.45MMGalofpotentialstorage;97.16percentofthisestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor3.85percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents0.42percentand5.05percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

No. 2 Gas:Thiscoalgenerallydipstothenorthwestexceptinthevicinityofthesouthwest-northeasttrendingfoldsincludingtheWarfieldAnticlineandtheHandleySynclineandthenorth-northwesttrendingMannMountainAnticline(Figures8and18a).TheNo.2GascropsoutonhillsidesalongtheaxisoftheWarfieldAnticline.Asnotedabove,theNo.2GasandPeerlessbedsoftenmergeandareminedconcurrently.ManyundergroundminesinthiscoalarelocatedintheHandleySyncline,andmostoftheseminesarelocatednearorbelowdrainage.Ranginginthicknessfrom0tomorethan144inches,thiscoalisthickestinnorthernWyoming,westernRaleigh,andsouthernBoonecounties(Figure18b).Bedthicknessinareasofundergroundmininggenerallyrangesfrom24to132inches(Figure18b).

ThisseamhasbeenminedextensivelyacrosssouthernWestVirginia(Figure18c),ofteninconjunctionwiththesuperjacentPeerlesswhenthetwobedsmerge.Theexaminationofminepolygonsforthe565undergroundminesinthisseamindicates506minesarelocatedabovedrainage,39neardrainage,and15belowdrainage(Figure18c).Sixminesaboveorneardrainageand15minesbelowdrainagearepotentiallytotallyflooded(Figure18d).InMingo,Logan,Boone,andKanawhacounties,twonearandeightbelowdrainagemines,whichexceed500acresinarea,arepotentiallytotallyflooded.Theaveragebedthicknessesoftheseminesrangefrom42.08to76.00inches.Visualanalysissuggests460mineslocatedaboveorneardrainagearepotentiallypartiallyflooded(Figure18e).Twenty-threepotentiallypartiallyfloodedneardrainageminesexceed500acresinarea.Theaveragebedthicknessesoftheseminesrangefrom19.00to77.93inches.Althoughpotentialfloodingwouldbelimitedtosmallareasinmostofabovedrainagemines,intermediatetolargeareasofseverallargeminescouldbeflooded.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures18c–e.

PotentialgroundwaterfloodingofNumber2Gasminesmaybeaffectedinsomeareasbyundergroundminingofstratigraphicallylowercoalsincluding:theEagle,Powellton,andLowerPowelltoninpartsofLogan,Mingo,Wyoming,Boone,andMcDowellcounties;theLower2Gas,Eaglelowersplit1,LittleFireCreekinsouthernmostLoganCounty;theEagle,EagleA,andBensCreekinnorthwesternRaleighCounty;andthePowellton,Eagle,andLittleEagleinwesternFayetteandNicholascounties.

PotentiallypartiallyandtotallyfloodedundergroundminesintheNo.2Gascoalprovideanestimated163,753.70MMGalofpotentialstorage;89.78percentofestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor11.84percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents4.64percentand14.37percentstorageinpotentialtotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Powellton: Thiscoalgenerallydipstothenorthwestexceptinthevicinityofthesouthwest-northeasttrending foldsincludingtheWarfieldAnticlineandtheHandleySynclineandthenorth-northwesttrendingMannMountainAnticline(Figures8and19a).ThePowelltoncropsoutonhillsidesalongtheaxisoftheWarfieldAnticline.ManyundergroundminesinthiscoalarelocatedintheHandleySyncline,andmostoftheseminesarelocatedbeloworneardrainage.Bedthicknessofthiscoalrangesfrom0tomorethan120inches(Figure19b).Thethickestpartofthe coal bed is in southeastern Mingo County. In areas of underground mining, this bed thickness generally ranges from24to96inches.

Page 24: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

12

ThisseamhasbeenminedwidelyacrosssouthernWestVirginia(Figure19c).Minepolygonsforthe321minesinthisseamhavebeenexamined,and305minesarelocatedabovedrainage,sevenneardrainage,sixbelowdrainage, and three are not determined. One near drainage mine and the six below drainage mines are potentially totallyflooded,andalloftheseminesexceed500acresinarea(Figures19c,d).Averagebedthicknessesoftheseminesrangefrom46.00to69.00inches.Twohundredsixty-oneaboveandsixneardrainageminesarepotentiallypartiallyflooded.Largetoverylargeareasoftwopotentiallypartiallyfloodedneardrainagemines,whichexceed500acresinarea,maybeflooded(Figure19e).Averagebedthicknessesofthesetwominesare39.00and42.00inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures19c–e.

PotentialgroundwaterfloodingofPowelltonminesmaybeaffectedinsomeareasbyundergroundminingofstratigraphicallylowercoalsincluding:theLowerPowellton,Eagle,andEaglelowersplit1inpartsofMingo,Logan,Boone,andwesternKanawhacounties;andtheLowerPowellton,Eagle,LittleEagle,BensCreek,andGlenalumTunnelinnorthwesternRaleigh,westernFayette,andsouthernKanawhacounties.

PotentiallypartiallyandtotallyfloodedundergroundminesinthePowelltoncoalprovideanestimated36,180.12MMGalofpotentialstorage;and67.89percentofestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor2.61percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents3.22percentand2.40percentstorageinpotentialtotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Lower Powellton: Thiscoalgenerallydipstothenorthwestexceptinthevicinityofthesouthwest-northeasttrendingfoldsincludingtheWarfieldAnticlineandtheHandleySynclineandthenorth-northwesttrendingMannMountainAnticline(Figures8and20a).TheLowerPowelltoncropsoutalongtheflanksoftheWarfieldAnticline.Ranginginthicknessfrom0tomorethan132inches,thisbedisthickestinsoutheasternLoganandnorthwesternWyomingcounties(Figure20b).Bedthicknessinareasofundergroundmininggenerallyrangesfrom24to84inches(Figure20b).

ThiscoalhasbeenminedwidelyacrosssouthernWestVirginia(Figure20c).Examinationofthe119minepolygonsforthisseamshows112minesarelocatedabovedrainage,fiveneardrainage,andtwobelowdrainage(Figure20c).Oneabovedrainageandtwobelowdrainageminesarepotentiallytotallyflooded(Figure20d).Twopotentiallytotallyfloodedbelowdrainageminesthataregreaterthan500acresinareaarelocatedinMingoCounty.Theaveragebedthicknessesoftheseminesare29.84and41.00inches.Visualanalysissuggests103mineslocatedaboveorneardrainagearepotentiallypartiallyflooded(Figure20e).Althoughpotentialfloodingwould be limited to small areas in most of these mines, large areas of two near drainage mines in Mingo County thatexceed500acresinareacouldbeflooded.Theaveragebedthicknessesofthesetwominesare34.00and46.00inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures20c–e.

PotentialgroundwaterfloodingofLowerPowelltonminesmaybeaffectedinsomeareasbyundergroundminingofstratigraphicallylowercoalssuchas:theEagleinpartsofFayette,Kanawha,Logan,Mingo,Raleigh,andWyomingcounties;theLittleFireCreekinsoutheasternLoganCounty;andtheEaglelowersplit1,MiddleWarEagle,andBensCreekinnorthwesternWyomingCounty.

PotentiallypartiallyandtotallyfloodedundergroundminesintheLowerPowelltoncoalprovideanestimated10,062.01MMGalofpotentialstorage;87.71percentofestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor0.73percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents0.34percentand0.86percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Eagle:Dipdirectionofthiscoalisgenerallytothenorthwestexceptinthevicinityofthesouthwest-northeasttrendingfolds(Figures8and21a).TheEaglecropsoutonhillsidesalongtheflanksoftheWarfieldAnticline.ManyundergroundminesinthiscoalarelocatedinsynclinesnorthwestandsoutheastoftheWarfieldAnticline,andmostoftheseminesarelocatedbeloworneardrainage.Thisbedrangesfrom0tomorethan132inchesinthickness,anditisthickestinsouthernBooneCounty(Figure21b).Bedthicknessinareasofundergroundmininggenerallyrangesfrom24to96inches(Figure21b).

ThisseamhasbeenminedwidelyacrosssouthernWestVirginia(Figure21c).Minepolygonsforthe494minesinthisseamhavebeenexamined,and414minesareabovedrainage,46neardrainage,16belowdrainage,and18areundetermined(Figure21c).Fourminesabovedrainage,fiveminesneardrainage,and16minesbelowdrainagearepotentiallytotallyflooded(Figure21d).Elevenbelowdrainageandtwoneardrainage

Page 25: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

13

minesexceeding500acresinareaarepotentiallytotallyflooded.Therangeofaveragebedthicknessesoftheseminesrangefrom33.31to62.00inches.Threehundredsixty-threeaboveandneardrainageminesarepotentiallypartiallyflooded,andvisualanalysissuggestslargeareasof22oftheseminescouldbeflooded(Figure21e).Fifteenneardrainagemines,whicharepotentiallypartiallyflooded,aregreaterthan500acresinareaandtheaveragebedthicknessesrangefrom30.00to75.00inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures21c–e.

PotentialgroundwaterfloodingofEagleminesmaybeaffectedinlimitedareasbyundergroundminingofstratigraphicallylowercoalbedssuchas:theLittleEagle,GlenalumTunnel,BensCreek,andBeckleyinpartsofwesternFayetteandnorthwesternRaleighcounties;theEaglelowersplit1andBensCreekinnorthwesternWyomingCounty;andtheMiddleWarEagleandLowerWarEagleinpartsofsoutheasternMingoandnorthwesternMcDowellcounties.

PotentiallypartiallyandtotallyfloodedundergroundminesintheEaglecoalprovideanestimated105,126.15MMGalofpotentialstorage;and77.64percentofestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor7.60percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents6.52percentand7.98percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

New River Formation

TheLowerPennsylvanianNewRiverFormation(Figures6a,f)includes20namedcoalbeds,and14havebeen mined by underground methods. The Sewell and Beckley seams have the greatest potential for containing totallyorpartiallyfloodedminevoids.Minesintheothercoalbedstendtobesmall,aregenerallyabovedrainage,andthereforecontainlimitedpotentialforstoringsignificantvolumesofgroundwater.

Sewell:Thiscoalbedgenerallydipstothenorthwestexceptinthevicinityofthesouthwest-northeasttrendingPinevilleandMullensanticlines,thenorth-northwest-south-southeasttrendingMannMountainAnticline,andthesouth-southwest-north-northeasttrendingWebsterSpringsAnticline(Figures8and22a).Bedthicknessrangesfrom0tomorethan120inches,andthethickestpartofthiscoalbedisinnorth-centralRaleighCounty(Figure22b).Availablebedthicknessdatainareasofundergroundmininggenerallyrangefrom24to84inches(Figure22b).

ThisseamhasbeenminedbyundergroundmethodsinMcDowell,Wyoming,Raleigh,Fayette,Nicholas,Greenbrier,andWebstercounties.ThelargeminesintheSewell,especiallytheonesbelowdrainage,offerhighpotential for supplying water resources. The down dip areas of some of the large mines located near or above drainagealsohavepotentialforsupplyingwaterresources.Ofthe599minesinthisseam,415arelocatedinareaswherestructurecontourandcroplinedataareavailable.Threehundredsixty-eightoftheseminesareabovedrainage,31neardrainage,and16belowdrainage(Figure22c).Oneneardrainagemineand16belowdrainageminesarepotentiallytotallyflooded(Figure22d);and240abovedrainageminesand28neardrainageminesarepotentiallypartiallyflooded(Figure22e).Twelvepotentiallytotallyfloodedbelowdrainageminesexceed500acresinareaandaveragebedthicknesses37.00to57.00inches.Thirteenpotentiallypartiallyfloodedneardrainageminesexceed500acresinarea,andaveragebedthicknessesfortheseminesrangefrom27.00to57.00inches.Largeareasofseveralabovedrainageminesexceeding500acresinareamaybeflooded.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures22c–e.

PotentialgroundwaterfloodingofundergroundSewellminesmaybeaffectedbyundergroundminingofstratigraphicallylowercoalbedsincluding:theBeckleyinpartsofRaleighandNicholascounties;theWelch,Beckley,FireCreek,andPocahontas3inpartsofcentralMcDowellCounty;theBeckleyandPocahontas3inpartsofeasternWyomingCounty;andtheFireCreekinpartsofeasternFayette,westernGreenbrier,andsoutheasternWebstercounties.

PotentiallypartiallyandtotallyfloodedundergroundminesintheSewellcoalprovideanestimated70,722.33MMGalofpotentialstorage;and71.73percentofestimatedstorageisinpotentiallypartiallyfloodedmines. This potential storage accounts for 5.11 percent of total potential storage in underground mines of major seams(Figure7a).Thiscoalrepresents5.54percentand4.96percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Page 26: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

14

Beckley:Thiscoalgenerallydipstowardthenorthwest(Figure23a).Coalbedthicknessrangesfrom0tomorethan144inches,andthiscoalbedisthickestinwesternRaleighCounty,northernWyomingCounty,andcentralMcDowellCounty(Figure23b).Inareaswhereundergroundmininghastakenplace,bedthicknessgenerallyrangesfrom24to84inches(Figure23b).

UndergroundminesintheBeckleyarelocatedinRaleigh,Wyoming,McDowell,Mercer,andGreenbriercounties(Figure23c).Ofthe271minesinthisseam,112arelocatedinareaswherecroplinedataarecurrentlyavailable.Ninety-sixofthese112minesarelocatedabovedrainage,tenneardrainage,andsixbelowdrainage.Thesixbelowdrainagemines,whicharelocatedinRaleighCounty,arepotentiallytotallyflooded;andfiveexceed500acresinarea(Figure23d).Averagebedthicknessesfortheseminesrangefrom49.00to70.75inches.Seventy-sevenabovedrainageminesandtenneardrainageminesarepotentiallypartiallyflooded.Fourpotentiallypartiallyfloodedneardrainageminesaregreaterthan500acresinarea;oneislocatedinnorth-centralRaleighCountyandthreeareinsouthernMcDowellCounty(Figure23e).Averagebedthicknessesfortheseminesrangefrom35.00to54.00inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures23c–e.

PotentialgroundwaterfloodingofundergroundBeckleyminesmaybeaffectedbyundergroundminingofstratigraphicallylowercoalbedsincluding:theFireCreekandPocahontasNos.7,6uppersplit1,6,4and3inpartsofRaleighCounty;theFireCreekandPocahontasNos.6,4,and3inpartsofeasternWyomingCounty;theFireCreek,LittleFireCreekandPocahontasNos.6,4,and3inpartsofMcDowellCounty;andtheFireCreekand Pocahontas No. 3 in westernmost Mercer County.

PotentiallypartiallyandtotallyfloodedBeckleyseamundergroundminesprovideanestimated25,975.14MMGalofpotentialstorage;51.88percentofestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor1.88percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents3.47percentand1.32percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

FireCreek:UndergroundminesinthisseamarelocatedinMcDowell,Mercer,Wyoming,Raleigh,Fayette,Greenbrier,Pocahontas,andWebstercounties.Ofthe459minesinthisseam,411arelocatedinareascurrentlywithoutcompletedstructurecontourandcroplinemaps.Fourhundredtenoftheseminesareabovedrainage,noneneardrainage,andonebelowdrainage.Thebelowdrainagemineislessthan500acresinarea.Theseminesaremostly small and have limited potential to store large volumes of groundwater.

Pocahontas Formation

TheLowerPennsylvanianPocahontasFormation(Figures6a,f)includes12namedcoalbedsofwhicheighthavebeenminedbyundergroundmethods.Theseamshavingthegreatestpotentialfortotallyandpartiallyfloodedmine voids are the Pocahontas No. 2, Pocahontas No. 3, Pocahontas No. 4, and Pocahontas No. 6.

PocahontasNo.6uppersplit1:UndergroundminingofthisseamhastakenplaceinWyoming,Raleigh,andMercercounties.Ofthese65mines,45minesarelocatedinareasinwhichCBMPmappinghasbeencompleted.Forty-fourofthese45minesarelocatedabovedrainage,andonemineislocatedneardrainage.Twenty-threeabovedrainageminesandone115.09-acreneardrainageminearepotentiallypartiallyfilledbygroundwater.

Pocahontas No. 6: Thiscoalgenerallydipstothenorthwest;however,thesouthwest-northeasttrendingMullensandPinevilleanticlinesinWyomingCountyandtheBoggsKnobAnticlineandanunnamedsynclinelocallyaffectdipdirectionineasternmostFayetteCounty(Figures8and24a).WheredataareavailableinpartsofFayette,Raleigh,andWyomingcounties,rangesfrom0tomorethan96inches(Figure24b).Intheareaswhereundergroundmininghasoccurred,thiscoalbedisgenerally24to72inchesthick(Figure24b).

The262undergroundminesinthisseamarelocatedinsouthernWestVirginia(Figure24c).Forty-onemines are located in areas where no structure contour and cropline coverages are currently available. One hundred ninety-nineminesarelocatedabovedrainage,16neardrainage,andfourbelowdrainage(Figure24c).Thefourbelowdrainageminesandtwosmallabovedrainageminesarepotentiallytotallyfloodedbygroundwater(Figure24d),andoneoftheseminesexceeds500acresinarea.Theaveragebedthicknessofthismineis31.00inches.Onehundredtwelveabovedrainageminesand16neardrainageminesarepotentiallypartiallyfloodedbygroundwater(Figure24e).Eightofthepotentiallypartiallyfloodedneardrainageminesaregreaterthan500acresinareaandaveragebedthicknessesoftheseminesrangefrom27.00to37.00inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures24c–e.

Page 27: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

15

AreallyextensiveundergroundminesinthestratigraphicallylowerPocahontasNo.3coalmayaffectgroundwaterfloodinginPocahontasNo.6undergroundminesinsouthernRaleigh,westernMercer,easternWyoming,easternMcDowell,andnorthernSummerscounties.

PotentiallypartiallyandtotallyfloodedundergroundminesinthePocahontasNo.6provideanestimated19,883.69MMGalofpotentialstorage;and94.32percentofestimatedstorageisinpotentiallypartiallyfloodedmines. This potential storage accounts for 1.44 percent of total potential storage in underground mines of major seams(Figure7a).Thiscoalrepresents0.31percentand1.83percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

PocahontasNo.5:ThiscoalhasbeenminedbyundergroundmethodsinMcDowell,Mercer,andRaleighcounties.Ofthe26minesinthisseam,25arelocatedinareasinwhichstructurecontourandcroplinedataarecurrentlyavailable.Allundergroundminesinthisseamarealocatedabovedrainage,and15ofthemarepotentiallypartiallyfloodedbygroundwater.ThedowndipareasoffouroftheseminesarepartlylocatedinVirginiawherepotentialfloodingismorelikelytooccur.

Pocahontas No. 4: Thiscoalgenerallydipstothenorthwest;however,thesouthwest-northeasttrendingPineville,Mullens,andDryForkanticlineslocallyaffectdipdirectioninareasofRaleigh,Wyoming,andMcDowellcounties(Figure25a).ErosionalremnantsofthePocahontasNo.4occuralongthesouthwest-northeasttrendingDryForkAnticlineinsoutheasternMcDowellCounty.Availabledataindicatebedthicknessrangesfrom0tomorethan144inches,andthethickestpartofthecoalbedisinsoutheasternMcDowellCountywhereithasbeenminedbasicallytoexhaustion.Intheareaswhereundergroundmininghasoccurred,thiscoalbedisgenerally24to108inchesthick(Figure25b).

UndergroundmininginthisseamhastakenplaceinMcDowellandWyomingcounties(Figure25c).Ofthe58minesinthisseam,55arelocatedinareaswherestructurecontourandcroplinedatahavebeencompleted.Thirty-nineminesarelocatedabovedrainage,nineneardrainage,andsevenbelowdrainage(Figure25c).Sevenbelowdrainageminesarepotentiallytotallyflooded,andsixofthesearegreaterthan500acresinarea(Figure25d).Thesesixmineshaveaveragebedthicknessesrangingfrom28.50to67.47inches.Thirty-oneoftheabovedrainageminesand9oftheneardrainageminesarepotentiallypartiallyflooded(Figure25e).Fourpotentiallypartiallyfloodedneardrainageminesexceed500acresinarea,andlargetoverylargeareasoftheseminescouldbeflooded.Theaveragebedthicknessesofthesefourminesrangefrom45.28to78.27inches.StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures25c–e.

InpartsofcentralandsoutheasternMcDowellCountyandeasternWyomingCounty,groundwaterfloodingof underground mines in the Pocahontas No. 4 will likely be affected in areas where underground mines in the PocahontasNo.3arepresentlessthat100feetbelow.

PotentiallypartiallyandtotallyfloodedundergroundminesinthePocahontasNo.4coalprovideanestimated50.432.56MMGalofpotentialstorage;and64.42percentofestimatedstorageisinpotentiallypartiallyfloodedmines.Thispotentialstorageaccountsfor3.64percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents4.98percentand3.18percentstorageinpotentiallytotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Pocahontas No. 3:Thiscoalgenerallydipstothenorthwest;however,thesouthwest-northeasttrendingPineville,Mullens,andDryForkanticlineslocallyaffectdipdirectioninareasofRaleigh,Wyoming,andMcDowellcounties(Figure26a).ErosionalremnantsofthePocahontasNo.3occuralongthesouthwest-northeasttrendingDryForkAnticlineinsoutheasternMcDowellCounty.IsopachmapsforthePocahontasNo.3werenotavailableatthetimeofthiswriting.However,dataindicatethatthePocahontasNo.3rangesinthicknessfrom0tomorethan120inches.

ThisseamhasbeenminedextensivelybyundergroundmethodsinWyoming,McDowell,Raleigh,Mercer,andSummerscounties(Figure26c).Ofthe299minesinthisseam,280arelocatedinareasinwhichstructurecontour maps are currently available; however, cropline data are available for the areas in which these mines arelocated.Twohundredthirty-twooftheseminesarelocatedabovedrainage,35neardrainage,and13belowdrainage(Figure26c).Inareaswherestructurecontourcoveragesareavailable,visualanalysisindicates13belowdrainageminesarepotentiallytotallyflooded(Figure26d)and178abovedrainageminesand33neardrainageminesarepotentiallypartiallyfilledbygroundwater(Figure26e).Twelvepotentiallytotallyfloodedminesexceed500acresinarea,andaveragebedthicknessesoftheseminesrangefrom35.00to67.00inches.Twenty-twopotentiallypartiallyfloodedneardrainageminesexceed500acresinarea,andaveragebedthicknessesoftheseminesrangefrom38.08to80.58inches.StatisticalinformationaboutpotentialgroundwaterfloodedinthisseamispresentedinFigures26c-e.

Page 28: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

16

PotentiallypartiallyandtotallyfloodedundergroundminesinthePocahontasNo.3coalprovideanestimated161,086.42MMGalofpotentialstorage80.14percentofestimatedstorageisinpotentiallyfloodedmines.Thispotentialstorageaccountsfor11.64percentoftotalpotentialstorageinundergroundminesofmajorseams(Figure7a).Thiscoalrepresents8.87percentand12.62percentstorageinpotentialtotallyandpartiallyfloodedmines,respectively,ofmajorseams(Figures7b,c).

Pocahontas No. 2: Thiscoalbeddipstothenorthwest(Figure27a).Wheredataareavailable,thisbedisgenerally24to36inchesthick(Figure27b),anditisthickestinsouthernRaleighCounty.Inareaswhereundergroundmininghastakenplace,bedthicknessgenerallyrangesfrom24tomorethan36inches(Figure23b).

The15undergroundminesinthisseamarelocatedinMcDowell,Mercer,andRaleighcounties(Figure27c).Fourteenminesarelocatedabovedrainage,andonemineislocatedneardrainage(Figure27c).Nopotentiallytotallyfloodedbelowdrainageminesarepresentinthiscoalbed(Figure27d).Sixofthese14abovedrainagemineshaveverysmalltosmallareasthatarepotentiallypartiallyfilledbygroundwater.Largeareasofthepotentiallypartiallyfloodedneardrainagemine,whichexceeds500acresinarea,islocatedinsouthernRaleighCounty.Theaveragecoalbedthicknessofthismineis31.00inches(Figure27e).StatisticalinformationaboutpotentialgroundwaterfloodinginthisseamispresentedinFigures27c–e.

PotentiallypartiallyfloodedundergroundminesinthePocahontasNo.2coalprovideanestimated947.09MMGaloftotalpotentialstorage,andtheseminesaccountfor0.09percentoftotalpotentialgroundwaterstorageand2.85percentofpotentialpartialstorageinundergroundminesofmajorseams(Figures7a–c).

DISCUSSION

Inthisstudy8,907ofthe9,539minepolygonsexaminedrepresentedabovedrainageundergroundmines.Thepotentialfortotalorpartialfloodingintheseminesislesscertainthanitisfornearandbelowdrainagemines.Theseabovedrainageminesareincoalbedsthatcropoutonhillsidesandhilltops.Perchedaquifersabovelocaldrainagehaveamorelimitedarealextentthantheunconfinedandconfinedaquifersassociatedwithnearandbelowdrainagemines.Thedegreeofcertaintyaboutextentofpotentialfloodingofminevoidsisgreatestinbelowdrainage mines and least in above drainage mines.

Althoughbelowandneardrainagemineshaveagreaterpotentialforflooding,storageinabovedrainageminesshouldnotbeoverlooked.Statewidepublicwatersupplydatawasanalyzedaspartofthisstudytodeterminewhichwatersourceswereassociatedwithundergroundmines.Twenty-sevenpublicwatersupplies,whicharelocatedinBoone,Kanawha,Logan,Mingo,Fayette,Greenbrier,McDowell,Raleigh,andWyomingcounties,wereidentifiedasbeingassociatedwithundergroundminesintheseninecoalbeds:Stockton;Winifrede;FireClay;No.2Gas;Sewell;Beckley;FireCreek;PocahontasNo.4;andPocahontasNo.6.Tenofthesepublicwatersuppliesarespringsformedwhereoldworkscropoutand17arewellsdrilledintooldmines.Twenty-twoarelocatedabovedrainageandfourarelocatedneardrainage,mostlyinpotentialpartiallyfloodedmines;andoneis located below drainage.

AnimportantfindingofthisstudyistherecognitionthattotalestimatedpotentialstorageinthePittsburghminepoolssurpassesthatofminepoolsineachoftheothermajorcoalbedsincludingtheNo.2Gas,PocahontasNo.3,Eagle,andSewell.Thisfactisduetothewidearealextentofthiscoalbed,itspositionwithrespecttomajor drainage, and its greater average thickness.

This study addressed the potential for large volumes of groundwater storage in underground mines based on minevoidvolume.Determiningtheactualextentofgroundwaterfloodinginspecificundergroundminesrequiresmoreindepthstudies.RecentstudiesoftheextentofminepoolfloodingiintheMonongahelaBasin,whicharebasedonwater-levelmeasurementswithinspecificminesofthePittsburghcoalbedinnorthernWestVirginiaandsouthwesternPennsylvania(ZiemkiewiscandVandivort,2004,Ziemkiewiscetal.,2004,andDonovan,2004a,2004b),haveprovidedinsightintotheformationofminepools.Ziemkiewiscetal.(2004)notedthattheamountofhydraulic connection between adjacent mines was affected by barrier pillar geometry and thickness and the leakage ratethroughbarrierpillars.Donovan(2004a)reportedinstancesinwhichgroundwaterpumpingininactiveorclosed mines adjacent to an active mine was used to control mine pool elevations to minimize leakage into the activemine.Theassumptionthatallinactivebelowdrainageminesarefloodedcanbemisleading.Donovan(2004b,p.38)notedthattheValleyCamp1mine,whichisabelowdrainagemineinthePittsburghcoalinBrookeCounty,“...hasbeenclosedforover20years,thefactthatthemineisdryindicatesthatthereisverylittleinflowtothis mine ....”

Page 29: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

17

Multipleseamminingmayalsoaffectgroundwaterfloodinginundergroundmines.IntheMonongahelaBasinminefloodingstudy,Donovan(2004a,p.98)reportedthat“verticalinfiltrationtoundergroundminesofthePittsburghcoalseamisinfluencedbythreeprincipalfactors:(a)depth,(b)thepresenceorabsenceofoverlyingSewickleymining,and(c)statusofflooding.”UndergroundminingofmultiplecoalbedshasoccurredinmanyareasoftheState.Forexample,undergroundminesarepresentin14KanawhaFormationcoalbedsintheHandleySynclineinsouthwesternWestVirginia,andminesinmultipleseamsoverlapinseveralareas.Manyoftheundergroundminesinthisareacouldbetotallyorpartiallyflooded,butfracturingofoverburdeninoverlappingminesmayaffectpotentialflooding,especiallyinminesoftheuppercoalbeds.Thehydrologicinteractionbetween mines in more than one seam is beyond the scope of this project, and actual determination of mine floodingshouldbeinvestigatedonacasebycasebasis.

CONCLUSIONS

ThetotalpotentialstorageinthePittsburghseamsurpassesthatofothermajorseamssuchastheNumber2Gas,PocahontasNo.3,Eagle,andSewell.Themainreasonsarethewidelateralextentofthisseamanditsgreateraverage thickness.

MuchoftheundergroundminingintheWestVirginiahasoccurredabovedrainage.Theexaminationof9,539minepolygonsofminingin69seamsdetermined8,907minesareabovedrainage;325areneardrainage,178arebelowdrainage,and129arecurrentlyundetermined.

Ninety-nineminesin14majorseamsarepotentiallytotallyfloodedandaregenerallylocatedbelowdrainage. These mines are located in these seams in the following counties:

▪ PittsburghseaminOhio,Marshall,Monongalia,Marion,andHarrisoncounties ▪ UpperFreeportseaminPrestonCounty ▪ MiddleKittanningseaminPrestonandBarbourcounties ▪ CoalburgseaminWayneandLincolncounties ▪ PeerlessseaminKanawha,Nicholas,andMingocounties ▪ No.2GasseaminLogan,Mingo,Boone,andKanawhacounties ▪ PowelltonseaminBoone,Logan,andMingocounties ▪ LowerPowelltonseaminMingoCounty ▪ EagleseaminNicholas,Fayette,Kanawha,Boone,Logan,andMingocounties ▪ SewellseaminNicholas,Fayette,Raleigh,andWyomingcounties ▪ BeckleyseaminFayette,Raleigh,andWyomingcounties ▪ PocahontasNo.6seaminRaleighCounty ▪ PocahontasNo.4seaminMcDowellCounty ▪ PocahontasNo.3seaminWyoming,McDowell,andRaleighcounties

Potentialpartialfloodingwaspresentin532mines;147minesarelocatedneardrainageand385areabovedrainage.Nineteenseamscontainpotentiallypartiallyfloodedmines;theseseamsincludethe14listedabovethatalsohavepotentiallytotallyfloodedmines.Potentialpartiallyfloodedminespresentinthefiveotherseamsarelocated in these counties:

▪ SewickleyseaminMonongaliaandMarioncounties ▪ BakerstownseaminPreston,Grant,andTuckercounties ▪ No.5BlockseaminBraxton,Nicholas,Clay,Kanawha,Boone,Lincoln,Mingo,andWaynecounties ▪ StocktonseaminBraxton,Nicholas,Kanawha,Boone,Logan,Lincoln,andMingocounties. ▪ PocahontasNo.2seaminRaleighCounty.

Althougheffortsaremadetousebestavailabledataandlocateminesasaccuratelyaspossible,minelocationsshouldbeconsideredapproximate.Theactualextentofminingmaybeunknownbecausefinalminemaps at the time of mine closures are not always available and not all underground mining has been documented by minemaps.Thequalityofminesmapsishighlyvariableintheamountofdetailandinformationpresented.Someof the newer mine maps are available in digital form; however, many older mine maps have been photographically reduced from dimensionally unstable paper copies. Photographic reduction also introduced distortion due to lens geometry.Also,coalcorrelationsmaychangewithadditionalinformation.Activeminesarenotdifferentiatedfrom recently closed mines in the CBMP database.

Page 30: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

18

Theextentofpotentialminefloodingisdependentonseveralfactors,includingmineorientation,locationsofmineentries,proximitytootherundergroundmines,anddirectionofgroundwaterflow.Groundwaterpumpingtoenableundergroundminingcanaffectwaterlevelsinadjacentundergroundmines.Minefloodinginoneseamalso may be affected by underground mining in stratigraphically lower coals. In general, once pumping ceases, the minesbegintoflood.

Theresultsofthisstudyshouldbeconsidereda“snapshot”ratherthanafinishedproduct.NewminescontinuallyopeninWestVirginiaandinadjoiningstatesneartheState’sborders.Inaddition,newlyobtainedminingcoveragesarebeingconstantlyupdatedintheCBMPGISasnewinformationbecomesavailable.Allofthesefactorsreinforcetheneedfordetailedsite-specificstudiestodeterminetheactualpresenceofadequatewaterresources.

REFERENCES

Donovan,Joseph,2004a,IntegratedModeling,inZiemkiewicz,Paul,andVandivort,Tamara,WV173PhaseIIIEPARegionIIIMinePoolProject:WestVirginiaWaterResearchInstitute,p.41-100,http://wvwri.nrcce.wvu.edu/programs/mbmpp/publications/FinalReport_PhaseIII.pdf(accessedFebruary23,2012).

Donovan,Joseph,2004b,Fieldcharacterization/mappingstudies,inZiemkiewicz,Paul,Donovan,Joseph,Stiles,James,Leavitt,Bruce,andVandivort,Tamara,WV173PhaseIVEPARegionIIIMinePoolProject:WestVirginiaWaterResearchInstitute,p.8-48,http://wvwri.nrcce.wvu.edu/programs/mbmpp/publications/FinalReport_PhaseIV.pdf(accessedFebruary27,2012).

McColloch,J.S.,Binns,R.D.,Jr.,Blake,B.M.,Jr.,andMcColloch,G.H.,Jr.,2011,WestVirginiaMinePoolAtlas

Project—AWorkinProgress:http://ngmdb.usgs.gov/Info/dmt/DMT11presentations.html(accessedMarch29,2012).

Morris,A.J.,Donovan,J.J.,andThies,J.E.,2008,ReconnaissanceSpatialAnalysisoftheHydrogeologyofClosedUndergroundCoalMines:EnvironmentalGeosciences,v.15,no.4,p.183-197.

SoutheastRegionalClimateCenter(SERRC),2011,WestVirginiaStateAveragedPrecipitationData:http://www.sercc.com/climateinfo_files/monthly/West%20Virginia_prcp.html(accessedOctober20,2011).

WestVirginiaDepartmentofEnvironmentalProtection(WVDEP),2008,AnnualReporttotheJointLegislativeOversightCommissiononStateWaterResources:ImplementationProgressWestVirginiaWaterResourcesProtectionandManagementAct:WestVirginiaDepartmentofEnvironmentalProtection,DivisionofWaterandWasteManagement,WaterUseSection,p.22.

WestVirginiaGeologicalandEconomicSurvey(WVGES),2010a,WestVirginiaCoalBedMapping:http://ims.wvgs.wvnet.edu/All_Coal/viewer.htm(accessedMay20,2011).

———2011,WestVirginiaMineMapRepository:http://downloads.wvgs.wvnet.edu/minemaps/(accessedMay20,2011).

Wood,G.H.,Jr.,Kehn,T.M.,Carter,M.D.,andCulbertson,W.C.,1983,CoalresourceclassificationsystemoftheU.S.GeologicalSurvey:U.S.GeologicalSurveyCircular891,65p.

Ziemkiewicz,Paul,andVandivort,Tamara,2004,WV173PhaseIIIEPARegionIIIMinePoolProject:WestVirginiaWaterResearchInstitute,144p.,http://wvwri.nrcce.wvu.edu/programs/mbmpp/publications/FinalReport_PhaseIII.pdf(accessedFebruary23,2012).

Ziemkiewicz,Paul,Donovan,Joseph,Stiles,James,Leavitt,Bruce,andVandivort,Tamara,2004,WV173PhaseIVEPARegionIIIMinePoolProject:WestVirginiaWaterResearchInstitute,395p.,http://wvwri.nrcce.wvu.edu/programs/mbmpp/publications/FinalReport_PhaseIV.pdf(accessedFebruary27,2012).

Page 31: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

19

MINE POOL ATLAS

FIGURES

Page 32: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

20

Figure 1. Status of coal bed mapping by the WVGES CBMP as of June 30, 2011 (B.M. Blake, unpub. data, 2011)

Page 33: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

21

Figure 2. Footprints of all documented underground mines in West Virginia coal seams delineate areas of potential mine pools (WVGES, 2010).

Page 34: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

22

Figure 3. Watershed model output shows predicted direction of groundwater flow through mine voids in the Sewell coal bed on the Fayetteville 7.5-minute topographic quadrangle and surrounding area. The blue watershed area represents water flow from mines contributing to surface water flow. Red arrows show flow direction. This model was run for all coal beds having available input data to aid in determining extent of potential flooding in underground mines.

Page 35: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

23

Figure 4. Major Drainage–Mining Above/Below Drainage (MABD) model output shows areas of the Sewell coal bed that lie above and below major drainage on the Fayetteville 7.5-minute topographic quadrangle and surrounding area. This model, which was developed to determine mine position with respect to drainage based on perennial stream elevations, generated a Major Drainage Elevation Model (MDEM) by assigning USGS 7.5-minute quadrangle elevations to points selected from the National Hydrography Dataset (NHD) that are located within digitized perennial stream polygons.

Page 36: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

24

Figure 5. Perennial Drainage –Mining Above/Below Drainage model output shows areas of the Sewell coal bed that lie above and below perennial drainage on the Fayetteville 7.5-minute topographic quadrangle and surrounding area. This model, which was developed to determine mine position with respect to drainage based on perennial stream elevations, generated a Perennial Drainage Elevation Model (PDEM) by assigning USGS 7.5-minute quadrangle elevations to points selected from the National Hydrography Dataset (NHD) that are located along digitized perennial stream lines.

Page 37: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

25

Figure 6b

Figure 6c

Figure 6. Stratigraphic chart and columns of the Pennsylvania coal-bearing strata in West Virginia: (a) stratigraphic chart shows age and stratigraphic position of groups/formations; (b) stratigraphic column of the Dunkard and Monongahela Groups; (c) stratigraphic column of the Conemaugh Group; (d) stratigraphic column of the Allegheny Formation; (e) stratigraphic column of the Kanawha Formation; and (f) stratigraphic column of the New River and Pocahontas Formations. The names of the 19 major seams identified in this report, mineable coal beds, and named unmined coal beds are shown in blue, orange, and black, respectively.

Figure 6a

Page 38: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

26

Figure 6d

Figure 6e

Figure 6f

Page 39: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

27

Figure 7a

Page 40: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

28

Figure 7b

Page 41: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

29

Figure 7c

Page 42: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

30

Figure 8

Page 43: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

31

Figure 9a

Page 44: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

32

Figure 9b

Page 45: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

33

Figure 9c

Page 46: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

34

Figure 9d

Page 47: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

35

Figure 9e

Page 48: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

36

Figure 10a

Page 49: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

37

Figure 10b

Page 50: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

38

Figure 10c

Page 51: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

39

Figure 10d

Page 52: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

40

Figure 10e

Page 53: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

41

Figure 11a

Page 54: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

42

Figure 11b

Page 55: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

43

Figure 11c

Page 56: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

44

Figure 11d

Page 57: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

45

Figure 11e

Page 58: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

46

Figure 12a

Page 59: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

47

Figure 12b

Page 60: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

48

Figure 12c

Page 61: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

49

Figure 12d

Page 62: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

50

Figure 12e

Page 63: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

51

Figure 13a

Page 64: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

52

Figure 13b

Page 65: NRDC Document Bank: wat 15043001c · volume, was designed to facilitate prospecting for large volumes of water by using available Coal Bed Mapping Program (CBMP) products to identify

53

Figure 13c