numerical approximations for nonlinear stochastic partial ... · stochastic partial differential...

177
Numerical approximations for nonlinear stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University of Amsterdam, the Netherlands), Arnaud Debussche (ENS Rennes, France), Giuseppe Da Prato (Scuola Normale Superiore di Pisa, Italy), Martin Hairer (University of Warwick, UK), Mario Hefter (University of Kaiserslautern, Germany), Martin Hutzenthaler (University of Duisburg-Essen, Germany), Ladislas Jacobe de Naurois (ETH Zurich, Switzerland), Thomas Müller-Gronbach (University of Passau, Germany), Ryan Kurniawan (ETH Zurich, Switzerland), Michael Röckner (Bielefeld University, Germany), Timo Welti (ETH Zurich, Switzerland), and Larisa Yaroslavtseva (University of Passau, Germany) Workshop on Numerics for Stochastic Partial Differential Equations and their Applications, Linz, Austria

Upload: others

Post on 13-Jul-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Numerical approximations for nonlinearstochastic partial differential equations

Arnulf Jentzen (ETH Zurich, Switzerland)Joint works with

Sonja Cox (University of Amsterdam, the Netherlands),Arnaud Debussche (ENS Rennes, France),

Giuseppe Da Prato (Scuola Normale Superiore di Pisa, Italy),Martin Hairer (University of Warwick, UK),

Mario Hefter (University of Kaiserslautern, Germany),Martin Hutzenthaler (University of Duisburg-Essen, Germany),

Ladislas Jacobe de Naurois (ETH Zurich, Switzerland),Thomas Müller-Gronbach (University of Passau, Germany),

Ryan Kurniawan (ETH Zurich, Switzerland),Michael Röckner (Bielefeld University, Germany),

Timo Welti (ETH Zurich, Switzerland), andLarisa Yaroslavtseva (University of Passau, Germany)

Workshop on Numerics for Stochastic Partial DifferentialEquations and their Applications, Linz, Austria

Monday, 10 December 2016

Page 2: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Some examples of SDEs

Page 3: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Heston model Consider α, γ ∈ R, β, δ, X(1)0 , X

(2)0 > 0, ρ ∈ [−1, 1] and

∂∂t X

(1)t = α X

(1)t +

√X

(2)t X

(1)t

∂∂t W

(1)t

∂∂t X

(2)t = δ − γX

(2)t + β

√X

(2)t

(ρ ∂∂t W

(1)t +

√1− ρ2 ∂

∂t W(2)t

)for t ∈ [0, T ], where (Wt)t∈[0,T ] = ((W

(1)t ,W

(2)t ))t∈[0,T ] is a two-dim. BM.

Nonlinear stochastic heat equation (Parabolic Anderson model)

∂∂t Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], where (Wt)t∈[0,T ] is acylindrical IdL2((0,1);R)-Wiener process and b : R→ R is regular.Nonlinear stochastic Wave equation (Hyperbolic Anderson model)

∂2

∂t2 Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].Stochastic Burgers equation

∂∂t Xt(x) = ∂2

∂x2 Xt(x)− Xt(x) · ∂∂x Xt(x) + ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].

Page 4: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Heston model Consider α, γ ∈ R, β, δ, X(1)0 , X

(2)0 > 0, ρ ∈ [−1, 1] and

∂∂t X

(1)t = α X

(1)t +

√X

(2)t X

(1)t

∂∂t W

(1)t

∂∂t X

(2)t = δ − γX

(2)t + β

√X

(2)t

(ρ ∂∂t W

(1)t +

√1− ρ2 ∂

∂t W(2)t

)for t ∈ [0, T ], where (Wt)t∈[0,T ] = ((W

(1)t ,W

(2)t ))t∈[0,T ] is a two-dim. BM.

Nonlinear stochastic heat equation (Parabolic Anderson model)

∂∂t Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], where (Wt)t∈[0,T ] is acylindrical IdL2((0,1);R)-Wiener process and b : R→ R is regular.Nonlinear stochastic Wave equation (Hyperbolic Anderson model)

∂2

∂t2 Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].Stochastic Burgers equation

∂∂t Xt(x) = ∂2

∂x2 Xt(x)− Xt(x) · ∂∂x Xt(x) + ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].

Page 5: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Heston model Consider α, γ ∈ R, β, δ, X(1)0 , X

(2)0 > 0, ρ ∈ [−1, 1] and

∂∂t X

(1)t = α X

(1)t +

√X

(2)t X

(1)t

∂∂t W

(1)t

∂∂t X

(2)t = δ − γX

(2)t + β

√X

(2)t

(ρ ∂∂t W

(1)t +

√1− ρ2 ∂

∂t W(2)t

)for t ∈ [0, T ], where (Wt)t∈[0,T ] = ((W

(1)t ,W

(2)t ))t∈[0,T ] is a two-dim. BM.

Nonlinear stochastic heat equation (Parabolic Anderson model)

∂∂t Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], where (Wt)t∈[0,T ] is acylindrical IdL2((0,1);R)-Wiener process and b : R→ R is regular.Nonlinear stochastic Wave equation (Hyperbolic Anderson model)

∂2

∂t2 Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].Stochastic Burgers equation

∂∂t Xt(x) = ∂2

∂x2 Xt(x)− Xt(x) · ∂∂x Xt(x) + ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].

Page 6: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Heston model Consider α, γ ∈ R, β, δ, X(1)0 , X

(2)0 > 0, ρ ∈ [−1, 1] and

∂∂t X

(1)t = α X

(1)t +

√X

(2)t X

(1)t

∂∂t W

(1)t

∂∂t X

(2)t = δ − γX

(2)t + β

√X

(2)t

(ρ ∂∂t W

(1)t +

√1− ρ2 ∂

∂t W(2)t

)for t ∈ [0, T ], where (Wt)t∈[0,T ] = ((W

(1)t ,W

(2)t ))t∈[0,T ] is a two-dim. BM.

Nonlinear stochastic heat equation (Parabolic Anderson model)

∂∂t Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], where (Wt)t∈[0,T ] is acylindrical IdL2((0,1);R)-Wiener process and b : R→ R is regular.Nonlinear stochastic Wave equation (Hyperbolic Anderson model)

∂2

∂t2 Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].Stochastic Burgers equation

∂∂t Xt(x) = ∂2

∂x2 Xt(x)− Xt(x) · ∂∂x Xt(x) + ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].

Page 7: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Heston model Consider α, γ ∈ R, β, δ, X(1)0 , X

(2)0 > 0, ρ ∈ [−1, 1] and

∂∂t X

(1)t = α X

(1)t +

√X

(2)t X

(1)t

∂∂t W

(1)t

∂∂t X

(2)t = δ − γX

(2)t + β

√X

(2)t

(ρ ∂∂t W

(1)t +

√1− ρ2 ∂

∂t W(2)t

)for t ∈ [0, T ], where (Wt)t∈[0,T ] = ((W

(1)t ,W

(2)t ))t∈[0,T ] is a two-dim. BM.

Nonlinear stochastic heat equation (Parabolic Anderson model)

∂∂t Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], where (Wt)t∈[0,T ] is acylindrical IdL2((0,1);R)-Wiener process and b : R→ R is regular.Nonlinear stochastic Wave equation (Hyperbolic Anderson model)

∂2

∂t2 Xt(x) = ∂2

∂x2 Xt(x) + b(Xt(x)) ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].Stochastic Burgers equation

∂∂t Xt(x) = ∂2

∂x2 Xt(x)− Xt(x) · ∂∂x Xt(x) + ∂∂t Wt(x)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ].

Page 8: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Some difficulties in the numerical approximations of SDEs

Page 9: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 10: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 11: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 12: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 13: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 14: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 15: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 16: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 17: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 18: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 19: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 20: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 21: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 22: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 23: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 24: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hairer, Hutzenthaler & J 2015 AOP)

Let T ∈ (0,∞), d ∈ 4, 5, . . . , ξ ∈ Rd . Then there exist globally boundedµ, σ ∈ C∞(Rd ,Rd ) such that for every probability space (Ω,F ,P), every Brownianmotion W : [0, T ]× Ω→ R, every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every Y N : 0, 1, . . . ,N × Ω→ R4, N ∈ N, with∀N ∈ N, n ∈ 0, 1, . . . ,N − 1 : Y N

0 = X0 and

Y Nn+1 = Y N

n + µ(Y Nn ) T

N + σ(Y Nn )(

W (n+1)TN

−W nTN

)(Euler-Maruyama approximations) we have ∀α ∈ [0,∞) :

limN→∞

(Nα∥∥E[XT

]− E

[Y N

N

]∥∥) =

0 : α = 0

∞ : α > 0.

Page 25: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Plot of∥∥E[XT

]− E

[Y N

N

]∥∥ for T = 2 and N ∈ 21, 22, . . . , 230.

100

102

104

106

108

1010

10−12

10−10

10−8

10−6

10−4

10−2

100

Number N of time discretizations

Ap

pro

xim

atio

n e

rro

r o

f th

e m

ea

n

Approximation error of the mean

A function with order 0

Order line 1/2

Order line 1

Page 26: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 27: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 28: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 29: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 30: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 31: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 32: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 33: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 34: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 35: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 36: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 37: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 38: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Dimension d ≥ 4: J, Müller-Gronbach & Yaroslavtseva 2016 CMS

Weak convergence and d ≥ 4: Müller-Gronbach & Yaroslavtseva 2016 SAA(to appear)

Adaptive approximations and d ≥ 4: Yaroslavtseva 2016

Page 39: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hefter & J 2016)

Let T , δ, β ∈ (0,∞), γ, ξ ∈ [0,∞), let (Ω,F ,P) be a probability space, letW : [0, T ]× Ω→ R be a Brownian motion, let X : [0, T ]× Ω→ R be a solution of

dXt = (δ − γXt) dt + β√

Xt dWt , t ∈ [0, T ], X0 = ξ.

Then there exists a c ∈ (0,∞) such that for all N ∈ N we have

infu : RN→Rmeasurable

E[∣∣XT − u(W T

N,W 2T

N, . . . ,WT )

∣∣] ≥ c · N−min1, 2δβ2 .

Page 40: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hefter & J 2016)

Let T , δ, β ∈ (0,∞), γ, ξ ∈ [0,∞), let (Ω,F ,P) be a probability space, letW : [0, T ]× Ω→ R be a Brownian motion, let X : [0, T ]× Ω→ R be a solution of

dXt = (δ − γXt) dt + β√

Xt dWt , t ∈ [0, T ], X0 = ξ.

Then there exists a c ∈ (0,∞) such that for all N ∈ N we have

infu : RN→Rmeasurable

E[∣∣XT − u(W T

N,W 2T

N, . . . ,WT )

∣∣] ≥ c · N−min1, 2δβ2 .

Page 41: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hefter & J 2016)

Let T , δ, β ∈ (0,∞), γ, ξ ∈ [0,∞), let (Ω,F ,P) be a probability space, letW : [0, T ]× Ω→ R be a Brownian motion, let X : [0, T ]× Ω→ R be a solution of

dXt = (δ − γXt) dt + β√

Xt dWt , t ∈ [0, T ], X0 = ξ.

Then there exists a c ∈ (0,∞) such that for all N ∈ N we have

infu : RN→Rmeasurable

E[∣∣XT − u(W T

N,W 2T

N, . . . ,WT )

∣∣] ≥ c · N−min1, 2δβ2 .

Page 42: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hefter & J 2016)

Let T , δ, β ∈ (0,∞), γ, ξ ∈ [0,∞), let (Ω,F ,P) be a probability space, letW : [0, T ]× Ω→ R be a Brownian motion, let X : [0, T ]× Ω→ R be a solution of

dXt = (δ − γXt) dt + β√

Xt dWt , t ∈ [0, T ], X0 = ξ.

Then there exists a c ∈ (0,∞) such that for all N ∈ N we have

infu : RN→Rmeasurable

E[∣∣XT − u(W T

N,W 2T

N, . . . ,WT )

∣∣] ≥ c · N−min1, 2δβ2 .

Page 43: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hefter & J 2016)

Let T , δ, β ∈ (0,∞), γ, ξ ∈ [0,∞), let (Ω,F ,P) be a probability space, letW : [0, T ]× Ω→ R be a Brownian motion, let X : [0, T ]× Ω→ R be a solution of

dXt = (δ − γXt) dt + β√

Xt dWt , t ∈ [0, T ], X0 = ξ.

Then there exists a c ∈ (0,∞) such that for all N ∈ N we have

infu : RN→Rmeasurable

E[∣∣XT − u(W T

N,W 2T

N, . . . ,WT )

∣∣] ≥ c · N−min1, 2δβ2 .

Page 44: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hefter & J 2016)

Let T , δ, β ∈ (0,∞), γ, ξ ∈ [0,∞), let (Ω,F ,P) be a probability space, letW : [0, T ]× Ω→ R be a Brownian motion, let X : [0, T ]× Ω→ R be a solution of

dXt = (δ − γXt) dt + β√

Xt dWt , t ∈ [0, T ], X0 = ξ.

Then there exists a c ∈ (0,∞) such that for all N ∈ N we have

infu : RN→Rmeasurable

E[∣∣XT − u(W T

N,W 2T

N, . . . ,WT )

∣∣] ≥ c · N−min1, 2δβ2 .

Page 45: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

a

0 5 10 15 20 250

20

40

60

80

100

120

absolute

quantity

ofstocksin

theS&P500

2δ/β2 in the Heston model

The S&P 500 (the Standard & Poor’s 500) is a stock market index.In Hutzenthaler, J & Noll 2016 we calibrate 498 stocks from the S&P 500 within theHeston model: 359 stocks satisfy 2δ

β2 ≤ 25, 162 stocks (≈ 32%) satisfy 2δβ2 < 1.

More than 100 stocks (= 20%) satisfy 2δβ2 ≤ 1

10 .

Page 46: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

a

0 5 10 15 20 250

20

40

60

80

100

120

absolute

quantity

ofstocksin

theS&P500

2δ/β2 in the Heston model

The S&P 500 (the Standard & Poor’s 500) is a stock market index.In Hutzenthaler, J & Noll 2016 we calibrate 498 stocks from the S&P 500 within theHeston model: 359 stocks satisfy 2δ

β2 ≤ 25, 162 stocks (≈ 32%) satisfy 2δβ2 < 1.

More than 100 stocks (= 20%) satisfy 2δβ2 ≤ 1

10 .

Page 47: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

a

0 5 10 15 20 250

20

40

60

80

100

120

absolute

quantity

ofstocksin

theS&P500

2δ/β2 in the Heston model

The S&P 500 (the Standard & Poor’s 500) is a stock market index.In Hutzenthaler, J & Noll 2016 we calibrate 498 stocks from the S&P 500 within theHeston model: 359 stocks satisfy 2δ

β2 ≤ 25, 162 stocks (≈ 32%) satisfy 2δβ2 < 1.

More than 100 stocks (= 20%) satisfy 2δβ2 ≤ 1

10 .

Page 48: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

a

0 5 10 15 20 250

20

40

60

80

100

120

absolute

quantity

ofstocksin

theS&P500

2δ/β2 in the Heston model

The S&P 500 (the Standard & Poor’s 500) is a stock market index.In Hutzenthaler, J & Noll 2016 we calibrate 498 stocks from the S&P 500 within theHeston model: 359 stocks satisfy 2δ

β2 ≤ 25, 162 stocks (≈ 32%) satisfy 2δβ2 < 1.

More than 100 stocks (= 20%) satisfy 2δβ2 ≤ 1

10 .

Page 49: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

a

0 5 10 15 20 250

20

40

60

80

100

120

absolute

quantity

ofstocksin

theS&P500

2δ/β2 in the Heston model

The S&P 500 (the Standard & Poor’s 500) is a stock market index.In Hutzenthaler, J & Noll 2016 we calibrate 498 stocks from the S&P 500 within theHeston model: 359 stocks satisfy 2δ

β2 ≤ 25, 162 stocks (≈ 32%) satisfy 2δβ2 < 1.

More than 100 stocks (= 20%) satisfy 2δβ2 ≤ 1

10 .

Page 50: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Convergence results

Page 51: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Weak convergence results for SPDEs in the literature, e.g.,Hausenblas 2003 Progr. Probab.

Shardlow 2003 BIT

De Bouard & Debussche 2006 Appl. Math. Optim.

Debussche & Printemps 2007 arXiv (2009 Math. Comp.)Debussche 2008 arXiv (2011 Math. Comp.)Geissert, Kovacs & Larsson 2009 BIT

Lindner & Schilling 2009 arXiv (2013 Potential Anal.)Hausenblas 2011 J. Comput. Appl. Math.

Dörsek 2011 arXiv (2012 SIAM J. Numer. Anal.)Dörsek 2011 PhD thesis, TU Wien

Kovacs, Larsson & Lindgren 2012 BIT

Kovacs, Larsson & Lindgren 2012 arXiv (2013 BIT)Wang & Gan 2012 J. Math. Anal. Appl.

Bréhier 2012 arXiv (2014 Potential Anal.)Kruse 2012 PhD thesis, Bielefeld University (2014 Lecture Notes in Mathematics)Lindgren 2012 PhD thesis, Chalmers University of Technology and University of Gothenburg

Andersson & Larsson 2012 arXiv

Andersson, Kruse & Larsson 2013 arXiv ( 2016 SPDEs: Anal. and Comp.)Bréhier & Kopec 2013 arXiv

Wang 2013 arXiv . . .

use for Xt (x) = ∂2

∂x2 Xt (x) + b(Xt (x))Wt (x) or Xt (x) = ∂2

∂x2 Xt (x) + b(Xt (x))Wt (x) that b

is constant.

Page 52: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Weak convergence results for SPDEs in the literature, e.g.,Hausenblas 2003 Progr. Probab.

Shardlow 2003 BIT

De Bouard & Debussche 2006 Appl. Math. Optim.

Debussche & Printemps 2007 arXiv (2009 Math. Comp.)Debussche 2008 arXiv (2011 Math. Comp.)Geissert, Kovacs & Larsson 2009 BIT

Lindner & Schilling 2009 arXiv (2013 Potential Anal.)Hausenblas 2011 J. Comput. Appl. Math.

Dörsek 2011 arXiv (2012 SIAM J. Numer. Anal.)Dörsek 2011 PhD thesis, TU Wien

Kovacs, Larsson & Lindgren 2012 BIT

Kovacs, Larsson & Lindgren 2012 arXiv (2013 BIT)Wang & Gan 2012 J. Math. Anal. Appl.

Bréhier 2012 arXiv (2014 Potential Anal.)Kruse 2012 PhD thesis, Bielefeld University (2014 Lecture Notes in Mathematics)Lindgren 2012 PhD thesis, Chalmers University of Technology and University of Gothenburg

Andersson & Larsson 2012 arXiv

Andersson, Kruse & Larsson 2013 arXiv ( 2016 SPDEs: Anal. and Comp.)Bréhier & Kopec 2013 arXiv

Wang 2013 arXiv . . .

use for Xt (x) = ∂2

∂x2 Xt (x) + b(Xt (x))Wt (x) or Xt (x) = ∂2

∂x2 Xt (x) + b(Xt (x))Wt (x) that b

is constant.

Page 53: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Weak convergence results for SPDEs in the literature, e.g.,Hausenblas 2003 Progr. Probab.

Shardlow 2003 BIT

De Bouard & Debussche 2006 Appl. Math. Optim.

Debussche & Printemps 2007 arXiv (2009 Math. Comp.)Debussche 2008 arXiv (2011 Math. Comp.)Geissert, Kovacs & Larsson 2009 BIT

Lindner & Schilling 2009 arXiv (2013 Potential Anal.)Hausenblas 2011 J. Comput. Appl. Math.

Dörsek 2011 arXiv (2012 SIAM J. Numer. Anal.)Dörsek 2011 PhD thesis, TU Wien

Kovacs, Larsson & Lindgren 2012 BIT

Kovacs, Larsson & Lindgren 2012 arXiv (2013 BIT)Wang & Gan 2012 J. Math. Anal. Appl.

Bréhier 2012 arXiv (2014 Potential Anal.)Kruse 2012 PhD thesis, Bielefeld University (2014 Lecture Notes in Mathematics)Lindgren 2012 PhD thesis, Chalmers University of Technology and University of Gothenburg

Andersson & Larsson 2012 arXiv

Andersson, Kruse & Larsson 2013 arXiv ( 2016 SPDEs: Anal. and Comp.)Bréhier & Kopec 2013 arXiv

Wang 2013 arXiv . . .

use for Xt (x) = ∂2

∂x2 Xt (x) + b(Xt (x))Wt (x) or Xt (x) = ∂2

∂x2 Xt (x) + b(Xt (x))Wt (x) that b

is constant.

Page 54: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 55: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 56: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 57: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 58: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 59: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 60: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 61: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 62: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 63: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 64: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 65: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 66: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 67: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 68: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Nonlinear stochastic heat equations – Hefter, J, & Kurniawan 2016)

Let T > 0, p ≥ 2, let f , b : R→ R and ϕ : Lp((0, 1);R)→ R be C4 with Lipschitzcontinuous and bounded derivatives, let ξ : (0, 1)→ R be measurable and bounded,let (Ω,F ,P) be a probability space, let (Wt)t∈[0,T ] be an IdL2((0,1);R)-cylindricalWiener process, let X : [0, T ]× Ω→ Lp((0, 1);R) be a continuous mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + f(Xt(x)) + b(Xt(x))Wt(x) (*)

with Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T ], and for every N ∈ N letY N : 0, 1, . . . ,N × Ω→ Lp((0, 1);R) be a time discrete exponential Eulerapproximation for the SPDE (*) with time step size T/N. Then

∀ ε > 0 : ∃C ∈ R : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

N )]∣∣ ≤ C · N(ε−1/2)

∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :(E[‖XT − Y N

N ‖2H

])1/2 ≤ C · N(ε−1/4) .

In the case f ≡ 0, b ≡ 1 : ∀ p ∈ [2,∞) : ∃ϕ ∈ C∞b (Lp((0, 1);R),R) :

∃C > 0 : ∀N ∈ N :∣∣E[ϕ(XT )

]− E

[ϕ(Y N

T )]∣∣ ≥ C · N−1/2.

Similar results for linear-implicit Euler, spatial approximations, and higherdimensions.

Page 69: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 70: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 71: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 72: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 73: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 74: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 75: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 76: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 77: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 78: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 79: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 80: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 81: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 82: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 83: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 84: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Hyperbolic Anderson model; Jacobe de Naurois, J & Welti 2015)

Let H = L2((0, 1);R), ϕ ∈ C2b (H,R), ξ = (ξ0, ξ1) ∈ H1

0 ((0, 1);R)× H,f ∈ C3

b ((0, 1)× R,R), for every n ∈ N let en(·) =√

2 sin(nπ(·)) ∈ H and forevery N ∈ N ∪ ∞ let PN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let

X N : [0, T ]× Ω→ PN(H) be a mild solution of

Xt(x) = ∂2

∂x2 Xt(x) + PN f(x, Xt(x)) + PN Xt(x) Wt(x)

with X0(x) = ξ0(x) and X0(x) = ξ1(x) for t ∈ [0, T ], x ∈ (0, 1). Then∀ ε > 0 : ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N(ε−1).

Rate can essentially not be improved.

Similar results for time discretizations (Cox, J & Welti 2016).

Page 85: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 86: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 87: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 88: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 89: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 90: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 91: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 92: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 93: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 94: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 95: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 96: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 97: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 98: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 99: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 100: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 101: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Stochastic Burgers equation – Debussche, J, & Welti 2016)

Let H = L2((0, 1);R), ξ ∈ H, ϕ ∈ C3b (H,R), κ ∈ R, for every n ∈ N let

en(·) =√

2 sin(nπ(·)) ∈ H, and for every N ∈ N ∪ ∞ letPN(·) =

∑Nn=1 〈en, ·〉H en ∈ L(H) and let X N : [0, T ]× Ω→ PN(H) be a

continuous mild solution of

X Nt (x) = ∂2

∂x2 X Nt (x) + PN

(κ · X N

t (x) · ∂∂x X Nt (x)

)+ PN Wt(x)

with X N0 (x) = (PNξ)(x) for t ∈ [0, T ], x ∈ (0, 1). Then ∃C ≥ 0 : ∀N ∈ N :∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

In the case κ = 0 it holds ∃ϕ ∈ C3b (H,R), c,C ∈ (0,∞) : ∀N ∈ N :

c · N−1 ≤∣∣E[ϕ(X∞T )

]− E

[ϕ(X N

T )]∣∣ ≤ C · N−1.

Page 102: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 103: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 104: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 105: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 106: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 107: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 108: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 109: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 110: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 111: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 112: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Cahn-Hilliard Cook equation driven by a standard Wiener process:

∂∂t Xt(x) =

[− ∂4

x Xt(x) + ∂2x

(Xt(x)3 − Xt(x)

)]dt + ∂

∂t Wt(x)

for x ∈ (0, 1) with Neumann and no-flux boundary conditions and regular initial value.Kovacs, Larsson, Mesforush 2011, in particular, implies∀α ∈ (0, 2), ε > 0 : ∃Cα,ε ≥ 0 : ∀ h > 0 : ∃Ωε,h ⊆ Ω:

P(Ωε,h) ≥ 1− ε and 1Ωε,h supt∈[0,T ]

∥∥Xt − Y ht

∥∥ ≤ Cα,ε hα

(semi strong convergence rate) and hence

limh0

E

[sup

t∈[0,T ]

∥∥Xt − Y ht

∥∥2

]= 0.

Hutzenthaler & J 2014: ∀α ∈ (0, 2), p > 0 : ∃Cα,p ≥ 0 : ∀N ∈ N :∥∥∥∥∥ supt∈[0,T ]

∥∥Xt − Y Nt

∥∥∥∥∥∥∥Lp(Ω;R)

≤ Cα,p N−α.

Page 113: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 114: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 115: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 116: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 117: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 118: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 119: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 120: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 121: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Gerencsér, J, & Salimova 2016)

Let T ∈ (0,∞), d ∈ 2, 3, 4, . . . , ξ ∈ Rd , (aN)N∈N ⊆ R satisfylimN→∞ aN = 0. Then there exist globally bounded µ, σ ∈ C∞(Rd ,Rd ) such thatfor every probability space (Ω,F ,P), every Brownian motion W : [0, T ]× Ω→ R,every solution X : [0, T ]× Ω→ Rd of

dXt = µ(Xt) dt + σ(Xt) dWt , t ∈ [0, T ], X0 = ξ,

and every N ∈ N we have

infs1,...,sN∈[0,T ]

infu : RN→Rd

measurable

E[∥∥XT − u

(Ws1 , . . . ,WsN

)∥∥] ≥ aN .

Remark: ∀α ∈ (0, 12 ), ε > 0 : ∃Cα,ε ≥ 0 : ∀N ∈ N : ∃Ωε,N ⊆ Ω:

P(Ωε,N) ≥ 1− ε and 1Ωε,N supt∈[0,T ]

∥∥Xt − Y Nt

∥∥ ≤ Cα,ε N−α

Gyöngy (1998): ∀α ∈ (0, 12 ) : ∃Cα : Ω→ [0,∞) : ∀N ∈ N :

supt∈[0,T ]

‖Xt − Y Nt ‖ ≤ Cα N−α P-a.s.

Page 122: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Plot of∥∥E[XT

]− E

[Y N

N

]∥∥ for T = 2 and N ∈ 21, 22, . . . , 230.

100

102

104

106

108

1010

10−12

10−10

10−8

10−6

10−4

10−2

100

Number N of time discretizations

Ap

pro

xim

atio

n e

rro

r o

f th

e m

ea

n

Approximation error of the mean

A function with order 0

Order line 1/2

Order line 1

Page 123: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Methods of proof

Page 124: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 125: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 126: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 127: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 128: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 129: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 130: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 131: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 132: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 133: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 134: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 135: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 136: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 137: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 138: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 139: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Corollary (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let V be a separable Hilbert space and let ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 ≤ t .Then it holds P-a.s. that

ϕ(Xt) = ϕ(eA(t−t0)Xt0 ) +

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)F(Xs) ds

+

∫ t

t0

ϕ′(eA(t−s)Xs) eA(t−s)B(Xs) dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(eA(t−s)Xs)(

eA(t−s)B(Xs)u, eA(t−s)B(Xs)u)

ds.

Mild Itô formula shows

E[ϕ(Xt)

]= E

[ϕ(eAt X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)Xs)

(eA(t−s)B(Xs)u, eA(t−s)B(Xs)u

)]ds,

E[ϕ(PN(Xt))

]= E

[ϕ(eAt PN(X0)

]+ 1

2

∑u∈U

t∫0E[ϕ′′(eA(t−s)PN(Xs))

(eA(t−s)PNB(Xs)u, eA(t−s)PNB(Xs)u

)]ds.

Page 140: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 141: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 142: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 143: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 144: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 145: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 146: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 147: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 148: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 149: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 150: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 151: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 152: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 153: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 154: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 155: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 156: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 157: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 158: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 159: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Definition (Mild Itô process; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Consider

a separable Hilbert space H with H ⊆ H continuously and densely,

strongly measurable S : (t1, t2) ∈ [0, T ]2 : t1 < t2 → L(H,H) with

∀ 0 ≤ t1 < t2 < t3 ≤ T : St2,t3 St1,t2 = St1,t3

predictable X : [0, T ]× Ω→ H, Y : [0, T ]× Ω→ H, andZ : [0, T ]× Ω→ HS(U, H) such that for all t ∈ (0, T ] it holds P-a.s. that∫ t

0 ‖Ss,t Ys‖H + ‖Ss,t Zs‖2HS(U,H) ds <∞ and

Xt = S0,t X0 +

∫ t

0Ss,t Ys ds +

∫ t

0Ss,t Zs dWs.

Then X is called a mild Itô process (with evolution family S, mild drift Y , and milddiffusion Z ).

Page 160: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 161: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 162: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 163: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 164: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 165: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 166: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 167: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 168: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 169: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 170: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 171: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 172: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 173: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 174: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 175: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Theorem (Mild Itô formula; Da Prato, J & Röckner 2012 Trans. AMS (to appear))

Let X be a mild Itô process with evolution family S, mild drift Y , and mild diffusion Z .Then for all ϕ ∈ C2(H, V), t0, t ∈ [0, T ] with t0 < t it holds P-a.s. that∫ t

t0

‖ϕ′(Ss,t Xs)Ss,t Ys‖V + ‖ϕ′(Ss,t Xs)Ss,t Zs‖2HS(U,V) ds <∞,

∫ t

t0

‖ϕ′′(Ss,t Xs)‖L(2)(H,V) ‖Ss,t Zs‖2HS(U,H) ds <∞

and

ϕ(Xt) = ϕ(St0,t Xt0 ) +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Ys ds +

∫ t

t0

ϕ′(Ss,t Xs) Ss,t Zs dWs

+1

2

∑u∈U

∫ t

t0

ϕ′′(Ss,t Xs) (Ss,t Zsu, Ss,t Zsu) ds.

Page 176: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Thanks for your attention!

Page 177: Numerical approximations for nonlinear stochastic partial ... · stochastic partial differential equations Arnulf Jentzen (ETH Zurich, Switzerland) Joint works with Sonja Cox (University

Thanks for your attention!