numerical methods for kohn-sham density functional theory · pdf file density functional...
Post on 04-Jul-2020
0 views
Embed Size (px)
TRANSCRIPT
Numerical Methods for Kohn-Sham Density Functional Theory
Jianfeng Lu (้ฒๅ้)
Duke University jianfeng@math.duke.edu
January 2019, Banff Workshop on โOptimal Transport Methods in Density Functional Theoryโ
Reference Lin Lin, L., and Lexing Ying, Numerical Methods for Kohn-Sham Density Functional Theory, Acta Numerica, 2019 (under review)
Electronic structure theory
We consider the electronic structure, which is given by the many-body electronic Schrรถdinger equation
(โ 1 2
๐
โ ๐=1
ฮ๐ฅ๐ + ๐
โ ๐=1
๐ext(๐ฅ๐) + โ 1โค๐
Electronic structure theory
We consider the electronic structure, which is given by the many-body electronic Schrรถdinger equation
(โ 1 2
๐
โ ๐=1
ฮ๐ฅ๐ + ๐
โ ๐=1
๐ext(๐ฅ๐) + โ 1โค๐
Solving electronic Schrรถdinger equations: โข Tight-binding approximations (LCAO) โข Density functional theory
Orbital-free DFT Kohn-Sham DFT
โข Wavefunction methods Hartree-Fock Mรธller-Plesset perturbation theory Configuration interaction Coupled cluster Multi-configuration self-consistent field Neural network ansatz
โข GW approximation; Bethe-Salpeter equation โข Quantum Monte Carlo (VMC, DMC, etc.) โข Density matrix renormalization group (DMRG) / tensor networks โข ...
Solving electronic Schrรถdinger equations: โข Tight-binding approximations (LCAO) โข Density functional theory
Orbital-free DFT Kohn-Sham DFT
10 of 18 most cited papers in physics [Perdew 2010] More than 50, 000 citations on Google scholar
Figure: DFT papers count [Burke 2012].
Density functional theory [Hohenberg-Kohn 1964, Kohn-Sham 1965]: View energy as a functional of the one-body electron density ๐ โถ โ3 โ โโฅ0:
๐(๐ฅ) = ๐ โซ|ฮจ| 2(๐ฅ, ๐ฅ2, โฏ , ๐ฅ๐ ) d๐ฅ2 โฏ d๐ฅ๐ .
Levy-Lieb variational principle [Levy 1979, Lieb 1983]:
๐ธ0 = infฮจ โจฮจ, ๐ปฮจโฉ = inf๐ infฮจ,ฮจโฆ๐โจฮจ, ๐ปฮจโฉ = inf๐ ๐ธ(๐).
The energy functional has the form
๐ธ(๐) = ๐๐ (๐) + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc(๐)
๐๐ (๐): Kinetic energy of non-interacting electrons; ๐ธxc(๐): Exchange-correlation energy, which encodes the many-body interaction between electrons (chemistry).
Density functional theory [Hohenberg-Kohn 1964, Kohn-Sham 1965]: View energy as a functional of the one-body electron density ๐ โถ โ3 โ โโฅ0:
๐(๐ฅ) = ๐ โซ|ฮจ| 2(๐ฅ, ๐ฅ2, โฏ , ๐ฅ๐ ) d๐ฅ2 โฏ d๐ฅ๐ .
Levy-Lieb variational principle [Levy 1979, Lieb 1983]:
๐ธ0 = infฮจ โจฮจ, ๐ปฮจโฉ = inf๐ infฮจ,ฮจโฆ๐โจฮจ, ๐ปฮจโฉ
= inf ๐
๐ธ(๐).
The energy functional has the form
๐ธ(๐) = ๐๐ (๐) + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc(๐)
๐๐ (๐): Kinetic energy of non-interacting electrons; ๐ธxc(๐): Exchange-correlation energy, which encodes the many-body interaction between electrons (chemistry).
Density functional theory [Hohenberg-Kohn 1964, Kohn-Sham 1965]: View energy as a functional of the one-body electron density ๐ โถ โ3 โ โโฅ0:
๐(๐ฅ) = ๐ โซ|ฮจ| 2(๐ฅ, ๐ฅ2, โฏ , ๐ฅ๐ ) d๐ฅ2 โฏ d๐ฅ๐ .
Levy-Lieb variational principle [Levy 1979, Lieb 1983]:
๐ธ0 = infฮจ โจฮจ, ๐ปฮจโฉ = inf๐ infฮจ,ฮจโฆ๐โจฮจ, ๐ปฮจโฉ = inf๐ ๐ธ(๐).
The energy functional has the form
๐ธ(๐) = ๐๐ (๐) + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc(๐)
๐๐ (๐): Kinetic energy of non-interacting electrons; ๐ธxc(๐): Exchange-correlation energy, which encodes the many-body interaction between electrons (chemistry).
Density functional theory [Hohenberg-Kohn 1964, Kohn-Sham 1965]: View energy as a functional of the one-body electron density ๐ โถ โ3 โ โโฅ0:
๐(๐ฅ) = ๐ โซ|ฮจ| 2(๐ฅ, ๐ฅ2, โฏ , ๐ฅ๐ ) d๐ฅ2 โฏ d๐ฅ๐ .
Levy-Lieb variational principle [Levy 1979, Lieb 1983]:
๐ธ0 = infฮจ โจฮจ, ๐ปฮจโฉ = inf๐ infฮจ,ฮจโฆ๐โจฮจ, ๐ปฮจโฉ = inf๐ ๐ธ(๐).
The energy functional has the form
๐ธ(๐) = ๐๐ (๐) + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc(๐)
๐๐ (๐): Kinetic energy of non-interacting electrons; ๐ธxc(๐): Exchange-correlation energy, which encodes the many-body interaction between electrons (chemistry).
Kohn-Sham density functional theory Kohn-Sham density functional theory introduces one-particle orbitals to better approximate the kinetic and exchange-correlation energies.
It is today the most widely used electronic structure theory, which achieves the best compromise between accuracy and cost.
The energy functional is minimized for ๐ orbitals {๐๐} โ ๐ป1(โ3).
๐ธKS({๐๐}) = ๐
โ ๐=1
1 2 โซ|โ๐๐|
2 + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc(๐)
where (we consider โspin-lessโ electrons through the talk)
๐(๐ฅ) = ๐
โ ๐=1
|๐๐|2(๐ฅ).
Note that ๐ธKS can be still viewed as a functional of ๐, implicitly.
Kohn-Sham density functional theory
๐ธKS({๐๐}) = ๐
โ ๐=1
1 2 โซ|โ๐๐|
2 + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc
The exchange-correlation functionals counts for the corrections from the many-body interactions between electrons:
โข Semi-local exchange-correlation functionals Local density approximation: ๐ธxc = โซ ๐xc(๐(๐ฅ)) Generalized gradient approximation:
๐ธxc = โซ ๐xc(๐(๐ฅ), 1 2 |โโ๐(๐ฅ)|
2)
โข Nonlocal exchange-correlation functionals
Kohn-Sham density functional theory
๐ธKS({๐๐}) = ๐
โ ๐=1
1 2 โซ|โ๐๐|
2 + โซ ๐๐ext + 1 2 โฌ
๐(๐ฅ)๐(๐ฆ) |๐ฅ โ ๐ฆ| + ๐ธxc
โข Nonlocal exchange-correlation functionals e.g., exact exchange + RPA correlation, ๐ธxc = ๐ธ๐ฅ + ๐ธ๐:
๐ธ๐ฅ = โ 1 2
๐
โ ๐,๐=1 โฌ
๐โ๐ (๐ฅ)๐๐(๐ฅ)๐๐(๐ฆ)๐โ๐ (๐ฆ) |๐ฅ โ ๐ฆ| d๐ฅ d๐ฆ;
๐ธ๐ = 1
2๐ โซ โ
0 tr[ln(1 โ ๐0(๐๐)๐) + ๐0(๐๐)๐] d๐,
with ๐ the Coulomb operator and ๐0 Kohn-Sham polarizability operator:
๐0(๐ฅ, ๐ฆ, ๐๐) = 2 occ
โ ๐
unocc
โ ๐
๐โ๐ (๐ฅ)๐๐(๐ฅ)๐โ๐ (๐ฆ)๐๐(๐ฆ) ๐๐ โ ๐๐ โ ๐๐
.
Kohn-Sham density functional theory has a similar structure as a mean field type theory (at least for semilocal xc): The electrons interact through an effective potential. The electron density is given by an effective Hamiltonian:
๐ปeff(๐)๐๐ = ๐๐๐๐, ๐(๐ฅ) = occ
โ ๐
|๐๐|2(๐ฅ);
where the first ๐ orbitals are occupied (aufbau principle). The effective Hamiltonian captures the interactions of electrons:
๐ปeff(๐) = โ 1 2ฮ + ๐eff(๐);
๐eff(๐) = ๐๐(๐) + ๐xc(๐).
Note that this is a nonlinear eigenvalue problem. We can view it as a fixed-point equation for the density ๐:
๐ = ๐นKS(๐).
Kohn-Sham map Kohn-Sham fixed-point equation
๐ = ๐นKS(๐),
where ๐นKS is known as the Kohn-Sham map, defined through the eigenvalue problem associated with ๐ปeff(๐). Given an effective Hamiltonian ๐ปeff, we ask for its low-lying eigenspace: the range of the spectral projection
๐ = ๐(โโ,๐๐น ](๐ปeff),
thus ๐ is given as the diagonal of the kernel of the operator ๐ .
It is often more advantageous to represent ๐ in terms of Greenโs functions (๐ โ ๐ปeff)โ1, so to turn the eigenvalue problem into solving equations. Let ๐ be a contour around the occupied spectrum, we have
๐ = ๐(โโ,๐๐น ](๐ปeff) = 1
2๐๐ค โฎ๐ (๐ โ ๐ปeff)โ1 d๐.
Kohn-Sham map Kohn-Sham fixed-point equation
๐ = ๐นKS(๐),
where ๐นKS is known as the Kohn-Sham map, defined through the eigenvalue problem associated with ๐ปeff(๐). Given an effective Hamiltonian ๐ปeff, we ask for its low-lying eigenspace: the range of the spectral projection
๐ = ๐(โโ,๐๐น ](๐ปeff),
thus ๐ is given as the diagonal of the kernel of the operator ๐ . It is often more advantageous to represent ๐ in terms of Greenโs functions (๐ โ ๐ปeff)โ1, so to turn the eigenvalue problem into solving equations. Let ๐ be a contour around the occupied spectrum, we have
๐ = ๐(โโ,๐๐น ](๐ปeff) = 1
2๐๐ค โฎ๐ (๐ โ ๐ปeff)โ1 d๐.
Numerical methods
Kohn-Sham fixed-point equation
๐ = ๐นKS(๐).
Usually solved numerically based on self-consistent field (SCF) iteration (alternative methods, such as di