ohm module 1 introduction and overview mms 2011

Upload: yeswandh-bharath

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    1/73

    Dr.B.Yogameena

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    2/73

    D6GB Multimedia Systems

    Faculty: Dr.B.Yogameena ([email protected])

    Outline for today

    Highlevel introduction to multimedia

    systems

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    3/73

    To discuss

    Course Introduction

    MultimediaDefinitions

    Multimedia - Applications Multimedia Data

    Hypermedia

    Digital Technology

    http://../Ohm_D6BG_Multimedia%20Systems%20course%20plan_2011.dochttp://../Ohm_D6BG_Multimedia%20Systems%20course%20plan_2011.doc
  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    4/73

    Text Books:

    1. Ze-Nian Li and Mark S. Drew, Fundamentals ofMultimedia, Pearson Prentice Hall, October 2003.

    2. K. Rammohanarao, Z. S. Bolzkovic and D. A. Milanovic,Multimedia Communication Systems, Prentice Hall, May2002.

    3. Yao Wang, Joern Ostermann, and Ya-Qin Zhang, Video

    Processing and Communications, Prentice Hall, 2002. 4. Fred Halsall, Multimedia Communications:Applications, Networks, Protocols and Standards,Addison-Wesley, 2001.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    5/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    6/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    7/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    8/73

    Multimedia- ApplicationsMultimedia plays major role in following areas

    Instruction

    Business

    Advertisements

    Training materials

    Presentations

    Customer support services

    Entertainment Interactive Games

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    9/73

    Multimedia- Applications

    Enabling Technology

    Accessibility to web based materials

    Teaching-learning disabled children & adults

    Fine Arts & Humanities

    Museum tours

    Art exhibitions Presentations of literature

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    10/73

    Multimedia- Applications

    In Medicine

    Source:

    Cardiac Imaging,

    YALE centre for

    advanced cardiacimaging

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    11/73

    Multimedia- Applications

    In training

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    12/73

    Multimedia- Applications

    Public awareness

    campaign

    SourceInteractive Multimedia Project

    Department of food science&

    nutrition, Colorado State Univ

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    13/73

    Example Multimedia Applications Video teleconferencing, distributed lectures, telemedicine,

    tele symphony White board, collaborative document editing

    Augmented reality DVDs, digital movies, VOIP telephony (Vonage, Skype) Networked games Video on demand (from cable TV, satellite etc.), IPTV

    (AT&T U-verse)

    Can you think of more applications?

    YouTube.com, founded in Feb 2005 Every minute, 10 hours of video is uploaded

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    14/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    15/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    16/73

    Definition: Multimedia Multimedia means the computer information/data

    being transferred over the network which is composedof one or more modality where every type ofinformation/data can be represented, stored,transmitted and processed digitally to enrich itscontent and enhance communication.

    Systems operating on multiple modalities: text, audio,images, drawings, animation, video etc.

    Sychronizing multiple modalities is important and hard

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    17/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    18/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    19/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    20/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    21/73

    Multimedia Information System

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    22/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    23/73

    Data Types in MM system

    Text Data

    ASCII stands for American Standard Code for InformationInterchange. Computers can only understand numbers, so an

    ASCII code is the numerical representation of a character.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    24/73

    Text DataThis included both unformatted text, comprisingstrings of characters from a limited character

    set, and formatted text strings as used for the

    structuring, access and presentation ofelectronic documents.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    25/73

    Text Data

    Figure 2.1 ASCII table and description (copyright: www.asciitable.com)

    T D

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    26/73

    Text Data

    ASCII uses 7 bits to represent a character. As a result only 127characters are defined as standard ASCII characters. Characters 128-

    255 are called extended ASCII characters.

    Figure 2.2 Extended ASCII codes (copyright: www.asciitable.com)

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    27/73

    Text Data

    EBCDIC

    EBCDIC (Extended Binary Coded Decimal InterchangeCode) is a character set used on early IBM computers.

    EBCDIC was first introduced in 1965, it was the new

    character-coding scheme came with IBM System 360 series.

    EBCDIC uses 8 bits to represent a character.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    28/73

    Text Data

    UNICODE

    The Unicode character uses 16 bits to represent acharacter, thus more than 65000 characters can be

    represented. While 65000 characters are sufficient for

    encoding most of the many thousands of characters

    used in major languages of the world.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    29/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    30/73

    Sound Data

    Sound Data

    A typical compact disc can hold up to 74 minutes of 16 bit,44.1 kHz audio that is uncompressedabout 650 megabytes.

    S d D t

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    31/73

    Sound Data

    Table shows how the size of a file is affected by the sampling rate and

    bit length. The file is a one-minute sound clip, recorded and saved in

    various forms in the Microsoft Windows WAV file format.

    Quality Sampling Rate Resolution File Size

    CD 44 kHz 16 bit Stereo 10.3 MB

    44 kHz 8 bit Stereo 5.18 MB

    FM Radio 22 kHz 16 bit Stereo 5.18 MB

    22 kHz 8 bit Stereo 2.59 MB

    AM Radio 11 kHz 16 bit Stereo 2.59 MB

    11 kHz 8 bit Stereo 1.29 MB

    Table 2.1 Variation of file size and sampling rate (60 seconds audio clip in MS WAV format)

    I D t

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    32/73

    Image Data

    Image Data

    Images, or pictures, are two-dimensional arrays of datacalled bitmaps, with each element is called pixel.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    33/73

    Image Data

    UnitsDpi - Dots Per Inch

    Bit Depth - The number of bits used to hold a pixel. Also

    called color depth and pixel depth, the bit depth determines

    the number of colors that can be displayed at one time.

    Color Depth Number of Colors4 bits 168 bits 25616 bits 65,53624 bits 16,777,216

    Table Color Depths

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    34/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    35/73

    Video Data

    Video Data

    Video, or moving images, is a sequence of images.

    To create a sense of continuity, video must be played at a

    rate of at least 25 frames per second (fps).

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    36/73

    Video Data

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    37/73

    MultimediaHardware Peripherals Input devices

    Output devices

    Storage devices

    Communication devices

    _Modems

    _Network Interfaces

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    38/73

    Input Devices

    Keyboards And Mice Scanners And Digital cameras

    MIDI Keyboards

    Touch screens Trackballs Tablets

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    39/73

    Continue

    Voice recognition systems

    Infrared remotes

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    40/73

    Continue

    Magnetic Card Encoders And Readers

    Video cameras

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    41/73

    Output Devices

    Monitors Speakers

    VR helmet and VR immersive display

    Video Devices

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    42/73

    Storage Device

    Syquest drives

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    43/73

    Continue

    CD-ROM Drives

    Magneto-optical drives Laserdisc Player

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    44/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    45/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    46/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    47/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    48/73

    To discuss

    Course Introduction

    MultimediaDefinitions

    Multimedia - Applications

    Multimedia Data

    Hypermedia

    Digital Technology

    http://../Ohm_D6BG_Multimedia%20Systems%20course%20plan_2011.dochttp://../Ohm_D6BG_Multimedia%20Systems%20course%20plan_2011.doc
  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    49/73

    Hypermedia and MultimediaAhypertext system: meant to be read nonlinearly, by

    following links that point to other parts of thedocument, or to other documents

    HyperMedia: not constrained to be text-based, caninclude other media, e.g., graphics, images, andespecially the continuous media sound and video.

    The World Wide Web (WWW) the best example of apopular hypermedia application.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    50/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    51/73

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    52/73

    Digital Image Formation

    f(x,y) = reflectance(x,y) * illumination(x,y)Reflectance in [0,1], illumination in [0,inf]

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    53/73

    Sampling and Quantization

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    54/73

    Sampling and Quantization

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    55/73

    Same Pixel Size, different Sizes

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    56/73

    Same Size, Different Pixel Sizes

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    57/73

    Quantization False Contouring

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    58/73

    Original 8-bit image,

    256 gray levels

    Quantized to 6 bits ,

    64 gray levels

    Quantized to 3 bits ,

    8 gray levels

    Quantized to 1 bits ,

    2 gray levels

    Quantization-False Contouring

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    59/73

    Varying Gray Level Resolution

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    60/73

    Problem: Limited bandwidth

    Need for compressionAudio

    CD quality: 44100 samples per seconds with 16 bits persample, stereo sound

    44100*16*2 = 1.411 Mbps For a 3-minute song: 1.441 * 180 = 254 Mb = 31.75 MB

    Video For 320*240 images with 24-bit colors

    320*240*24 = 230KB/image 15 frames/sec: 15*230KB = 3.456MB

    3 minutes of video: 3.456*180 = 622MB

    Di t C i T f

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    61/73

    Discrete Cosine Transform

    DCT converts the information from spatialdomain tofrequency domain

    Consider an unsorted list of 12 numbers

    between 0 and 3 -> (2, 3, 1, 2, 2, 0, 1, 1, 0, 1, 0,0). Consider a transformation of the listinvolving two steps

    sort the list

    Count the frequency of occurrence of each of thenumbers

    (4,4,3,1 ) spatial info lost, captured freq. info

    Discrete Cosine Transform (DCT)

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    62/73

    Discrete Cosine Transform (DCT)

    This is DCT

    DCT is an orthogonal transformm so its inverse

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    63/73

    g f

    kernel is the same as forward kernel

    This is inverse

    DCT

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    64/73

    Properties of DCT: real,

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    65/73

    100

    1

    00

    1

    001

    bygiven,matrixaltridiagonsymmetricthe

    oforseigen vecttheareDCTtheofvectorsbasis3.The

    2-MEPG1,-MPEGJPEG,

    codingtransformcompactionenergyexcellent.2

    .orthogonalandrealisDCT1.The

    DCTtheofProperties

    1

    c

    c

    Q

    Q

    tCCCC

    Properties of DCT: real,orthogonal, energy-

    compacting,eigenvector-based

    The 64 (8 X 8) DCT Basis

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    66/73

    The 64 (8 X 8) DCT Basis

    Functions

    Each 8x8 block can

    be looked at as a

    weighted sum of

    these basis functions.

    The process of 2D

    DCT is also theprocess of finding

    those weights.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    67/73

    DCT: Why does it do this? DCT takes advantage of redundancies in the data bygrouping pixels with similar frequencies together Higher frequencies = lower number

    Lower frequencies = higher number If lossy compression is acceptable, then each data unit

    can then be divided by quantization coefficient (QC)

    Zig Zag Scan

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    68/73

    Zig Zag Scan

    ..

    8X8

    1X64

    To group low frequency coefficients intop of the vector

    Maps 8 x 8 to a 1 x 64 vector.

    DCT ( )

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    69/73

    DCT (cont)

    DPCM on DC Components

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    70/73

    DPCM on DC Components

    The DC component value in each 8x8 block is largeand varies across blocks, but is often close to that inthe previous block.

    Differential Pulse Code Modulation (DPCM): Encodethe difference between the current and previous 8x8block.

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    71/73

    RLE on AC Components

    The 1x64 vectors have a lot of zeros in them, moreso towards the end of the vector

    Encode a series of 0s as a (skip,value) pair, where

    skip is the number of zeros and value is the nextnon-zero component Send (0,0) as end-of-block value

    8X8 block of pixel values takenfrom original image

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    72/73

    using 415 (the DC coefficient)

    and rounding to the nearest

    DCT

    Subtracting -128

    quantization

    (16 is the value of the firstpixel from quantization

  • 8/3/2019 Ohm Module 1 Introduction and Overview MMS 2011

    73/73

    263 0 3 2 6 2 4 1 4 1 1 5 1 2 1 1 1 2 0 0 0 0 0

    1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    Zig-zag scan

    26 3 0 3 2 6 2 4 1 4 1 1 5 1 2 1 1 1 2 0 0 0 0

    0 1 1 EOB

    Huffman

    coding