on building valid space-time covariance modelsmateu/space-time-geostats.pdf- p. 1/68 on building...

68
- p. 1/68 On building valid space-time covariance models Jorge Mateu joint work with E. Porcu Department of Mathematics Universitat Jaume I, Castellón (Spain) Avignon, 13-14 October 2005

Upload: others

Post on 22-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • - p. 1/68

    On building valid space-time covariance models

    Jorge Mateu

    joint work with E. Porcu

    Department of MathematicsUniversitat Jaume I, Castellón (Spain)

    Avignon, 13-14 October 2005

  • Summary

    Summary of the seminar

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 2/68

    Summary of the seminar

    1 Some history of spatio-temporal modelling

    2 Background on spatio-temporal geostatistics

    (2.1) Spatio-temporal covariance functions, (2.2) Separability and Full Symmetry, (2.3) Full Symmetry and Zonal

    Anisotropy, (2.4) Mixed forms, (2.5) Some concepts on Copulas.

    3 The DAGUM class for spatial (and ST) modelling

    4 Building valid ST covariance models: Theoretical results

    (4.1) A new class of anisotropic space time covariances, (4.2) Mixed Forms, (4.3) New families of spectral densities.

    5 Building valid ST covariance models: Copulas

    (5.1) Stationary covariance functions through: Mixtures of copulas, Completely monotone functions and Copulas,

    (5.2) Nonstationary covariance functions and complete monotonicity, (5.3) Archimedean anisotropic covariance

    functions, (5.4) The Bernstein class.

    6 Application: Indian Ocean wind speed data

    7 Conclusions and further developments

  • Summary

    1 Some history ofspatio-temporal modelling

    1.1 Some history of STM

    1.2 Some history of STM

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 3/68

    1.1 Some history of STM

    1989-1994 Separable Spatio-temporal Covariance Functions• Rohuani and Hall (1989)• Sampson and Guttorp (1992)• Dimitrakopoulos and Luo (1994)

    1994-2005 Stationary Nonseparable Covariance Functions• Jones and Zhang (1997)• Cressie and Huang (1999)• Kyriakidis and Journel (1999)• Christakos (2000)• Gneiting (2002)• Ma (2002; 2003a; 2003b)• Stein (2003)• Fernández-Casal (2003)• Kolovos et al (2004)• Stein (2005)

  • Summary

    1 Some history ofspatio-temporal modelling

    1.1 Some history of STM

    1.2 Some history of STM

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 4/68

    1.2 Some history of STM

    2000-2005 Nonstationary Nonseparable Spatio-temporal CovarianceFunctions• Christakos (2000)• Fuentes and Smith (2001)• Hristopoulos and Christakos (2001)• Ma (2002)• Fuentes (2002)

    1999-2005 Stationary Nonseparable Anisotropic Spatio-temporalCovariance Functions• Shapiro and Botha (1999)• Fernández-Casal (2003)• Stein (2005)

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 5/68

    2.1 (I) ST covariance functions

    • Spatio-temporal Random Fields:

    Z(s, t) = m(s, t) + δ(s, t), s ∈

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 6/68

    2.1 (II) ST covariance functions

    • Recall...

    1. Covariance Functions are Positive Definite, as stated inBochner’s Theorem (1949).

    2. In the Isotropic Case, the Fourier transform can beexpressed as an integral of Bessel Functions (HankelTransform).

    3. Variogram associated to Intrinsically Stationary RF areconditionally definite negative.

    4. If dealing with an SRF, the properties and relationshipsbetween covariance and variogram are preserved.

    • For instance, C(h, u) = C(0, 0) − γ(h, u)

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 7/68

    2.2 Separability and Full Symmetry

    1 Separability:

    C(h, u) =C(h, 0)C(0, u)

    C(0, 0)

    2 Full Symmetry:

    C(h, u) = C(−h, u) = C(h,−u) = C(−h,−u),

    for every (h, u) ∈ Rd × R.

    3 Relations: separable covariances are also fully symmetric,while viceversa is not necessarily true.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 8/68

    2.3 Full Symmetry and Zonal Anisotropy

    n The great majority of contributions in literature regardscovariance models which are fully symmetric and isotropic.

    n Unfortunately we do not dispose of such a large literaturefor the problem of zonal anisotropy, which is at least asimportant as the problem of full symmetry.

    n Thus, there is a big need for models which are zonallyanisotropic in the spatial component.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 9/68

    2.4 Mixed Forms

    n We are interested in removing some undesirable features of thepreviously proposed models, particularly following Stein’s remarkabout Gneiting’s approach and about some tensorial productcovariance models.

    n Specifically, Stein (2003) observes that models of the typeexp(− |s| − |t|), obtained with a tensorial product of twoexponential covariance functions on space and time, are notdifferentiable at the origin and denote a lack of differentiabilityalong certain axis, which in turn implies discontinuities of theautocorrelation function away from the origin.

    n Furthermore, Stein (2003), while emphasizing the need forspatio-temporal covariance functions which are sufficientlysmooth away from the origin, observes that Gneiting’s approachleads to some undesirable features, such as the fact thatwhatever the lack of smoothness of C(s, 0) for s near zero, it willbe shared by C(s, t) for t 6= 0 and s near zero, since C(s, t) isjust a rescaling of C(s, 0).

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 10/68

    2.5 (I) Some concepts on Copulas

    • Why Copulas?

    1 Modern literature emphasize the need for new models ofnonseparable covariance functions for spatial temporalphenomena

    2 It would be very interesting to find some Link Functions allowingto build up nonseparable permissible closed forms starting fromthe margins, i.e. the spatial and the temporal covariance. ThisLink Functions should include the case of separability

    3 The advantages of such construction would be considerable(estimation and inference)

    4 We believe Copulas can be a good candidate in order to satisfythis purpose.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 11/68

    2.5 (II) Some concepts on Copulas

    • Copulas: Literature

    [1] Introduction: Nelsen (1999); Joe (1987)

    [2] Archimedean Copulas: Genest and McKay (1986a,b); Genest(1987)

    [3] Inferencial procedures for Archimedean Copulas: Genest andRivest (1993)

    [4] Analysis of serial dependence (time series): Ferguson et al.(2000); Genest et al. (2002)

    [5] Asymptotics for empirical copula process: Genest andRémillard (2004); Fermanian et al. (2002)

    [6] Environmental Data: Drouet and Monbet (2004) for pollution inthe Atlantic Ocean; Favre et al. (2004) for a multivariatehydrological frequency analysis

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 12/68

    2.5 (III) Some concepts on Copulas

    • Copulas: Introduction

    . Copulas have been largely used in several statistical contexts forthe study of dependence of two random variables and modelling ofrisk assessment in financial markets

    . A desirable feature of copulas is given by the fact that the marginalstructures can be modelled separately and interaction between tworandom variables can further be modelled with copulas in order toimplement a bivariate structure

    . Algorithms for choosing an appropriate copula for the interactionbetween two random variables can be found in Melchiori (2003).

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 13/68

    2.5 (IV) Some concepts on Copulas

    • Copulas: Definitions

    Let I be the interval [0, 1] and let I2 be the cartesian productI × I ⊆

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 14/68

    2.5 (V) Some concepts on Copulas

    • Copulas: Important Theorems

    Theorem (Sklar, 1959)

    Let X, Y be random variables with distribution functions FX(x) andGY (y) respectively, and with joint distribution function HX,Y (x, y).Then, there exists a copula K(., .) such that ∀(x, y) ∈

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 15/68

    2.5 (VI) Some concepts on Copulas

    • Archimedean Copulas

    Theorem

    Let ϕ be a continuous strictly decreasing function from I2 to [0,∞]such that ϕ(1) = 0 and let ϕ−1 be the inverse of ϕ. Then, thefunction

    K(u, v) = ϕ−1 {ϕ(u) + ϕ(v)} (1)

    is a copula if and only if ϕ is convex.

    Remarks:

    1 The class given in equation (1) is called Archimedean Class

    2 Depending on the choice of the convex function ϕ, some known classes can be obtained as particular cases. Forexample, the families of Clayton, Gumbel or Frank are particular cases of the Archimedean class

    3 The function ϕ is said to be the generator of the Archimedean copula

    4 In this work we only refer to functions admitting proper inverse ϕ−1 .

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    2.1 (I) ST covariance functions

    2.1 (II) ST covariance functions2.2 Separability and FullSymmetry2.3 Full Symmetry and ZonalAnisotropy

    2.4 Mixed Forms2.5 (I) Some concepts onCopulas2.5 (II) Some concepts onCopulas2.5 (III) Some concepts onCopulas2.5 (IV) Some concepts onCopulas2.5 (V) Some concepts onCopulas2.5 (VI) Some concepts onCopulas2.5 (VII) Some concepts onCopulas

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions- p. 16/68

    2.5 (VII) Some concepts on Copulas

    • Multivariate Archimedean Copulas

    Theorem (Kimberling, 1974)

    Let ϕ be a continuous strictly decreasing function from [0, 1] to[0,∞] such that ϕ(0) = ∞ and ϕ(1) = 0. Denote with ϕ−1 theinverse of ϕ. The function

    Kψ(u1, ..., un) = ϕ−1(ϕ(u1) + ...+ ϕ(un)) (2)

    is a copula, for n ≥ 2, if and only if ϕ−1 is completely monotone on[0,∞).

    How to choose the generating Function?

    1 The generating function can be choosen through some measure of concordance, such as the Kendall’s Tau, theSpearman’s Rho and the Blest correlation coefficient (Genest and MacKay, 1987).

    2 Archimedean copulas have an explicit relation with the Kendall’s τ . It can be shown that

    τK = 1 + 4∫ 1

    0

    ϕ(t)

    ϕ′(t)dt

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    3.1 Dagum: Introduction

    3.2 Dagum: Instruments

    3.3 Dagum: Solution!

    3.4 Dagum: Remarks!

    3.5 Dagum: Other Remarks!

    3.6 Dagum: Final Remarks!

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 17/68

    3.1 Dagum: Introduction

    • The Dagum survival function (Zenga and Zini, 2001) has beenused in various economical applications:

    ψ(t) =

    1, if t = 0(

    1 − 1(1+λt−θ)ε

    )

    , if t > 0

    • This function has some desirable properties of differentiability atthe origin and a good level of smoothing away from the origin. Thisfacts motivates our research.

    • Our aim is to use ψ() as a radial function and inspect the range ofparameters allowing for its permissibility

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    3.1 Dagum: Introduction

    3.2 Dagum: Instruments

    3.3 Dagum: Solution!

    3.4 Dagum: Remarks!

    3.5 Dagum: Other Remarks!

    3.6 Dagum: Final Remarks!

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 18/68

    3.2 Dagum: Instruments

    • How to show the positive definiteness of ψ(.)? The direct answercan be found with the so-called Hankel transforms, which areintegral of mixtures of Bessel functions of the second kind• This calculus is often impossible (Gneiting, 2001)...... and unfortunately this was the case.

    • If the direct calculus of the Hankel transform is not possible, then itis necessary to recur to sufficient conditions, such as:

    1 Christakos sufficient conditions

    2 Criteria of Pólya type

    3 Gneiting’s criteria as extension of [2]

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    3.1 Dagum: Introduction

    3.2 Dagum: Instruments

    3.3 Dagum: Solution!

    3.4 Dagum: Remarks!

    3.5 Dagum: Other Remarks!

    3.6 Dagum: Final Remarks!

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 19/68

    3.3 Dagum: Solution!

    • Using the criteria [3], we are able to state the following result:

    TheoremConsider the function h 7→ ψ(‖h‖) where ψ(.) is defined as above. Ifθ < (7 − ε)/(1 + 5ε) and ε < 7, then ψ(‖h‖) is positive definite(indeed a permissible covariance function) in

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    3.1 Dagum: Introduction

    3.2 Dagum: Instruments

    3.3 Dagum: Solution!

    3.4 Dagum: Remarks!

    3.5 Dagum: Other Remarks!

    3.6 Dagum: Final Remarks!

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 20/68

    3.4 Dagum: Remarks!

    1 As we deal with standard Gaussian weakly stationary isotropicRandom Fields, the corresponding variogram admits the formγ(.) = 1 − ψ(.)

    2 The so obtained covariance function C(h) = ψ(‖h‖), is L1 andL2-integrable respectively under the conditions θ < d andθ < d/2 for d = 1, 2, 3 (dimension of the spatial domain)

    3 In order to obtain spatio-temporal covariance and variogramstructures, we consider the following two alternatives:• A separable structure, obtained with the tensorial product ofC(h) = ψ(‖h‖) and C(u) = ψ(|u|), so that

    C1(h, u) = ψ(‖h‖)ψ(|u|) = 1 − γ(h) − γ(u) + γ(h)γ(u)

    • A nonseparable structure, obtained as a convex sum of C(h)and C(u), thus

    C2(h, u) = ϑψ(‖h‖) + (1 − ϑ)ψ(|u|),

    where ϑ ∈ [0, 1].

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    3.1 Dagum: Introduction

    3.2 Dagum: Instruments

    3.3 Dagum: Solution!

    3.4 Dagum: Remarks!

    3.5 Dagum: Other Remarks!

    3.6 Dagum: Final Remarks!

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 21/68

    3.5 Dagum: Other Remarks!

    1 It is interesting to note that the spatial variogramγ(h) = 1 − ψ(‖h‖) never reaches the sill, but its practical range(i.e. the quantile of order p, 0 ≤ p ≤ 1) can be easily calculatedfrom the expression

    xp =

    (

    p−1/ε − 1

    λ

    )−1/θ

    2 Observe that the structure C2(., .) is somehow similar to theso-called Product-sum model of De Cesare et al. (2001), even ifthey do not impose any restriction on the parameters of thelinear combination (they only need to be positive). On the otherhand, Ma (2003) proposed a linear combination of the sametype as our C2(., .), imposing a larger range for ϑ, which can benegative under some conditions. In this case Ma (2003) theoremcan not be applied, as it is easy to show that C2(., .) is notcompletely monotone.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    3.1 Dagum: Introduction

    3.2 Dagum: Instruments

    3.3 Dagum: Solution!

    3.4 Dagum: Remarks!

    3.5 Dagum: Other Remarks!

    3.6 Dagum: Final Remarks!

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 22/68

    3.6 Dagum: Final Remarks!

    3 The non-differentiability of the spatio-temporal structure C2(., .) isnot surprising, as we are working with linear combinations. But,neither are the structures proposed by De Iaco et al. (2001) andMa (2003).

    4 It is trivial to show that the covariance function C1(., .) is L1 andL2-integrable under the same conditions considered in thespatial case. Observe that the integrability condition is notsatisfied for C2(., .). In fact a function defined on

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 23/68

    4.1 (I) A new class of Anisotropic ST Cov.

    Our strategy is to create opportune partitions of the spatiallag vector h ∈ Rd in the following way.If d = (d1, d2, . . . , dn) and h ∈ Rd we can always write

    h = (h1,h2, . . . ,hn) ∈ Rd1 × Rd2 × · · · × Rdn

    so that

    (i) C(h) = C(k) for any h,k ∈ Rd if and only if ‖hi‖ = ‖ki‖ forall i = 1, 2, . . . , n.

    (ii) The resulting covariance admits the representation

    C(h) = C(‖h1‖, . . . , ‖hn‖)

    =∫∞

    0. . .∫∞

    0

    ∏ni=1 Ωdi(‖hi‖ri)dF (r1, . . . , rn)

    with Ωd(t) = Γ(d/2)(

    2t

    )

    J(d−2)/2(t), Jd(.) the Bessel functionof the first kind of order d.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 24/68

    4.1 (II) A new class of Anisotropic ST Cov.

    Theorem Let ψ1, ψ2 be either:

    (i) Bernstein functions or(ii) Intrinsically stationary variograms (ψ ≡ γ).

    Let L be the bivariate Laplace transform of a nonnegativerandom vector (X1, X2) with distribution function F . Then

    C(h1,h2,h3,h4) =σ2

    ψ1(‖h1‖2)d32 ψ2(‖h2‖2)

    d42

    L(

    ‖h3‖2

    ψ1(‖h1‖2), ‖h4‖

    2

    ψ2(‖h2‖2)

    )

    is a covariance function in Rd1 × Rd2 × Rd3 × Rd4 .

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 25/68

    4.1 (III) A new class of Anisotropic ST Cov.

    RemarkThe previous theorem represents the generalization ofTheorem 2 in Gneiting (2002) and has been presented in thesimplest and general form. Starting from previous result it iseasy to obtain a large variety of closed forms.

    Corollary: SPACE TIME ZONALLY ANISOTROPICCOVARIANCESLet ψ1, ψ2 be either Bernstein functions, variograms orincreasing and concave functions on [0,∞). Then,

    C(h1, h2, h3, u) =σ2

    ψ1(|h1|2)1/2ψ2(|u|2)1/2L(

    |h2|2

    ψ1(|h1|2), |h3|

    2

    ψ2(|u|2)

    )

    with hi, u ∈ R, i = 1, 2, 3, is a stationary nonseparable spacetime covariance function with spatially anisotropiccomponents, defined on R3 × R.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 26/68

    4.1 (IV) A new class of Anisotropic ST Cov.

    Example

    Consider the bivariate Laplace transform

    L(θ1, θ2) =1−e−θ1−θ2θ1+θ2

    ,

    for θ1 6= 0 or θ2 6= 0, and where L(0, 0) = 1.

    Applying previous Corollary, we easily obtain

    C(h, u) =

    (

    1 − e−

    |h2|2ψ1(|h1|2)

    −|h3|2

    ψ2(|u|2)

    )

    × ψ1(|h1|2)1/2ψ2(|u|

    2)1/2

    |h2|2ψ2(|u|2)+|h3|2ψ1(|h1|2)

    where h = (h1, h2, h3) ∈ R3 and u ∈ R.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 27/68

    4.2 (I) Mixed Forms

    Result 1. Let ϕ(t) be a completely monotone function (t ≥ 0) andlet ψ(t) be a positive function whose derivative is completelymonotone. Then

    C(h,u) =σ2

    ψ(‖h‖2)l/2ϕ

    (

    ‖u‖2

    ψ(‖h‖2)

    )

    , (h,u) ∈ Rd × Rl (3)

    is a space-time covariance function.

    Result 2. Let C1(h, u), C2(h, u), (h, u) ∈ Rd × R be validnonseparable spatio-temporal covariance functions and b > 0. Thenboth C1(h, u) + C2(h, u) and bC1(h, u) are valid spatio-temporalcovariance functions in Rd × R.

    Result 3. Let C1(h, u), C2(h, u), (h, u) ∈ Rd × R be validspatio-temporal covariance functions. Then their tensorial productC1(h, u) ·C2(h, u) is still a valid spatio-temporal covariance function.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 28/68

    4.2 (II) Mixed Forms

    Result 4. (Mixed Forms). Let C1(h, u), C2(h, u), (h, u) ∈ Rd×Rbe valid spatio-temporal covariance functions. Let C3(h), C4(u) berespectively valid spatial and temporal covariance functions. Then

    C(h, u) = Ci(h, u) + C3(h) + C4(u), i = 1, 2 (4)

    C(h, u) = C1(h, u)C2(h, u) + C3(h) + C4(u) (5)

    C(h, u) = C1(h, u) + C2(h, u) + C3(h) + C4(u) (6)

    C(h, u) = (λ12C1(h, u)C2(h, u) + λ3C3(h) + λ4C4(u))ξ (7)

    and

    C(h, u) = (λ1C1(h, u) + λ2C2(h, u) + λ3C3(h) + λ4C4(u))ξ (8)

    are valid spatio-temporal covariance functions with constantsλ12, λi, i = 1, ..., 4 nonnegative weights and the external smoothingparameter ξ a natural number.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 29/68

    4.2 (III) Mixed Forms

    It is interesting to note that following Gneiting, above expressionswould take the forms

    C(h, u) =σ2

    ψ(‖h‖2)l/2ϕi

    |u|2

    ψ(‖h‖2)

    + ϕ3

    (

    ‖h‖2)

    + ϕ4

    (

    |u|2)

    , i = 1, 2

    C(h, u) =σ2

    ψ2(‖h‖2)l/2ψ1(|u|2)d/2ϕ1

    ‖h‖2

    ψ1(|u|2)

    ϕ2

    |u|2

    ψ2(‖h‖2)

    + ϕ3

    (

    ‖h‖2)

    + ϕ4

    (

    |u|2)

    C(h, u) =σ2

    ψ1(|u|2)d/2ϕ1

    ‖h‖2

    ψ1(|u|2)

    +σ2

    ψ2(‖h‖2)l/2ϕ2

    |u|2

    ψ2(‖h‖2)

    +

    ϕ3

    (

    ‖h‖2)

    + ϕ4

    (

    |u|2)

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 30/68

    4.2 (IV) Mixed Forms

    C(h, u) = (λ12σ2

    ψ2(‖h‖2)l/2ψ1(|u|2)d/2ϕ1

    ‖h‖2

    ψ1(|u|2)

    ϕ2

    |u|2

    ψ2(‖h‖2)

    +λ3ϕ3

    (

    ‖h‖2)

    + λ4ϕ4

    (

    |u|2)

    C(h, u) = (λ1σ2

    ψ1(|u|2)d/2ϕ1

    ‖h‖2

    ψ1(|u|2)

    + λ2σ2

    ψ2(‖h‖2)l/2ϕ2

    |u|2

    ψ2(‖h‖2)

    λ3ϕ3

    (

    ‖h‖2)

    + λ4ϕ4

    (

    |u|2)

    where ϕi (t) , t ≥ 0, i = 1, ..., 4 are completely monotonefunctions and ψj(t), t ≥ 0, j = 1, 2 are positive functions withcompletely monotone derivative.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 31/68

    4.2 (V) Mixed Forms: An Example

    C1(h, u) =k

    Bυβ/2+εu,h

    (a1a2 ‖h‖ |u|)υ

    ×

    a2‖h‖(

    a1|u|2α1+1)β/2

    a1|u|(

    a2‖h‖2α2+1)β/2

    , (h, u) ∈ 0 global smoothing parameters.

    k = σ4

    22(υ−1)(Γ(υ))2

    Bu,h =(

    1 + a1 |u|2α1 + a2 ‖h‖2α2 + a1a2 |u|2α1 ‖h‖2α2)

    Kν (.) : Modified Bessel Function of the second kind of orden ν

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 32/68

    4.2 (VI) Mixed Forms: An Example

    C1(h, u) C2(h, u)

    −2 −1 0 1 2

    −2−1

    01

    2

    −2 −1 0 1 2

    −2−1

    01

    2

    x

    y

    z

    x

    y

    v

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 33/68

    4.2 (VII) Mixed Forms: An Example

    C1(h, u) C2(h, u)

    0.0 0.5 1.0 1.5 2.0 2.5

    −2−1

    01

    2

    0.0 0.5 1.0 1.5 2.0 2.5

    −2−1

    01

    2

    x

    y

    z

    x

    y

    v

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 34/68

    4.3 (I) New families of spectral densities

    The aim of this proposal is to build families of spectral densitieswhose associated covariance function is differentiable at theorigin

    Starting from Stein (2005), we find new families of spectraldensities associated to spatial temporal processes whoseinverse Fourier transform is differentiable at the origin

    • Define a spectral density obtained as tensorial product of twospectral densities, in the following way. Consider

    f1, f2 : R→ R

    spectral density functions.

    • Define the function f(., .) as:

    f(w, τ) = f1(α1|τ |a + β1||w||b)f2(α2|τ |a + β2||w||b)

    w ∈ R2, τ ∈ R and α1, α2, β1, β2, a, b nonnegative parameters.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 35/68

    4.3 (II) New families of spectral densities

    NOTATION:Consider a spectral density defined over 0, andwhere C is the autocovariance function associated to f .

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 36/68

    4.3 (III) New families of spectral densities

    Theorem:For j = 1, 2, 3, suppose ∂

    l

    ∂ωljg1 and ∂

    l

    ∂ωljg2 exist and are

    integrable for l ≤ k and that |ω|n ∂l

    ∂ωljg1 and |ω|

    n ∂l

    ∂ωljg2 are

    integrable. Then for x 6= 0, DmC exists form = (m1,m2,m3) : m1 +m2 +m3 ≤ n.

    Remark:B The above theorems indicate the criteria to follow in orderto choose spectral densities whose associated covariance isdifferentiable at the origin.B It is over our scope to obtain an analytic expression of thecovariance.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results4.1 (I) A new class ofAnisotropic ST Cov.4.1 (II) A new class ofAnisotropic ST Cov.4.1 (III) A new class ofAnisotropic ST Cov.4.1 (IV) A new class ofAnisotropic ST Cov.

    4.2 (I) Mixed Forms

    4.2 (II) Mixed Forms

    4.2 (III) Mixed Forms

    4.2 (IV) Mixed Forms4.2 (V) Mixed Forms: AnExample4.2 (VI) Mixed Forms: AnExample4.2 (VII) Mixed Forms: AnExample4.3 (I) New families of spectraldensities4.3 (II) New families of spectraldensities4.3 (III) New families of spectraldensities4.3 (IV) New families of spectraldensities

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    - p. 37/68

    4.3 (IV) New families of spectral densities

    An example

    0246

    8

    100 24 6

    8 100.05

    0.10

    0.15

    0.20

    0 2 4 6 8 10

    02

    46

    810

    0246

    8

    100 24 6

    8 100.05

    0.10

    0.15

    0.20

    0 2 4 6 8 10

    02

    46

    810

    vtau

    0246

    8

    100 24 6

    8 100.02

    0.04

    0.06

    0 2 4 6 8 10

    02

    46

    810

    f(w, τ) = φ1φ2(α21 + α

    211|τ|

    2)−ν1−

    d12 (α22 + (β

    221||w||

    2))−ν2−

    d22

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 38/68

    5.1 (I) Stat. STCF: Mixtures of copulas

    Theorem

    Let γs(h) and γt(u) be spatial and temporal valid variograms,respectively, with h ∈

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 39/68

    5.1 (II) Stat. STCF: Mixtures of copulas

    An Example

    Consider the family B11 in Joe (1997, p.148)

    K(v, w) = δmin {v, w} + (1 − δ)vw,

    where δ ∈ [0, 1], so that it can be seen as a convex sum of two

    elementary copulas. Applying previous theorem, we obtain thefollowing nonseparable stationary structure

    Cs,t(h, u) = δ

    (

    1 − e−γs(h)−γt(u))

    γs(h) + γt(u)+ (1 − δ)

    (

    1 − e−γs(h)) (

    1 − e−γt(u))

    γs(h)γt(u)

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 40/68

    5.1 (III) Stat. STCF: Mixtures of copulas

    An Example (continues)

    Note that setting δ = 1, and

    γ(x) = |x|α,

    with x real, 0 ≤ α ≤ 2, we obtain as a particular case the Ma familyproposed in Ma (2003b, Example 3, page 103).In this case the spatial margin becomes

    Cs(h, 0) =

    1 if h = 0

    ‖h‖−α(

    1 − e−‖h‖α)

    elsewhere

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 41/68

    5.1 (IV) Stat. STCF: CMF and copulas

    Theorem

    Let ϕ(t) be a completely monotone function with t > 0. Let γs(h)and γt(u) be spatial and temporal valid variograms, respectively,with h ∈

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 42/68

    5.1 (V) Stat. STCF: CMF and copulas

    Example

    Consider now the completely monotone function in Gneiting (2002)

    ϕ(t) =[

    ect1/2

    + e−ct1/2]−ν

    , (9)

    where c, ν are positive parameters and t > 0. Writing c = 1, withoutloss of generality, we obtain that the second derivative admits theexpression

    ϕ(2)

    (t) =

    14ν

    {

    (ν + 1) 1t

    (

    e2√t + e−2

    √t − 2

    )

    + t−3/2(

    e2√t − e−2

    √t)}

    [(

    e√t + e−

    √t)]ν+2

    +

    −t−1/2(

    e√t + e−

    √t)2

    [(

    e√t + e−

    √t)]ν+2

    which also admits a finite limit at the origin, whatever the value of νis.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 43/68

    5.1 (VI) Stat. STCF: CMF and copulas

    Example (Cont.)

    Applying point (iii) in previous theorem, it is possible to obtain thefollowing nonseparable covariance function:

    Cs,t(h, u) =

    14ν

    (ν + 1)(

    ‖h‖2 + |u|2)−1

    e2

    ‖h‖2+|u|2+ e

    −2√

    ‖h‖2+|u|2 − 2

    +

    (

    ‖h‖2 + |u|2)−3/2

    e2

    ‖h‖2+|u|2 − e−2√

    ‖h‖2+|u|2

    −(

    ‖h‖2 + |u|2)−1/2

    e

    ‖h‖2+|u|2+ e

    −√

    ‖h‖2+|u|2

    2

    e

    ‖h‖2+|u|2+ e

    −√

    ‖h‖2+|u|2

    ν+2

    (10)

    L1 and L2 integrable for any value of ν

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 44/68

    5.1 (VII) Stat. STCF: CMF and copulas

    Example (Cont.)

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 45/68

    5.2 (I) Nonstationary STCF and CM

    Theorem

    Let γ(s, t) be an intrinsically stationary variogram such thatγ(0, 0) = 0. Let ϕ(t), t > 0, be a completely monotone function.

    Then

    ϕ(Ψ(s1, s2, t1, t2))

    with

    Ψ(s1, s2, t1, t2) = 1/2 {γ(2s1, 2t1) + γ(2s2, 2t2)}

    −{γ(s1 + s2, t1 + t2) − γ(s1 − s2, t1 − t2)}

    is a valid nonstationary covariance function on

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 46/68

    5.2 (II) Nonstationary STCF and CM

    Theorem

    Under the same conditions of the previous theorem, we have that

    ϕ(Ψ∗(s1, s2, t1, t2))

    with

    Ψ∗(s1, s2, t1, t2) = 1 + 1/2 {γ(2s1, 2t1) + γ(2s2, 2t2)}

    {

    1 + γ(s1 + s2, t1 + t2)1 + γ(s1 − s2, t1 − t2)

    }

    is a valid nonstationary covariance in

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 47/68

    5.3 (I) Archimedean anisotropic STCF

    Theorem

    Assume that ψ(x) is a completely monotone function on [0,∞). IfC1(x), . . . , Cd(x), CT (x) are stationary covariance functions on thereal line, and the functions ψ−1(CT (x)), ψ−1(Ck(x)), k = 1, . . . , d,are continuous, increasing and concave on [0,∞), then

    C(s; t) = ψ

    {

    d∑

    k=1

    ψ−1(Ck(|sk|)) + ψ−1(CT (|t|))

    }

    , s ∈

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 48/68

    5.3 (II) Archimedean anisotropic STCF

    A simple example

    Consider the completely monotone function

    ψ(x) = (1 + x)−1/θ1 , s > 0

    with θ1 positive parameter, whose inverse is ψ−1(x) = x−θ1 − 1.Also consider the covariance functions:

    Ck(x) = (1 + |x|)−1/θk , k = 1, ..., d

    CT (x) = (1 + |x|)−1/θT

    It is easy to verify that ψ−1 ◦Ci(x) = (1 + x)θ1/θi − 1, i = 1, ..., d, iscontinuous, increasing and concave iff θ1 < θi. Then, we obtain:

    C(x, t) =

    [

    d∑

    k=1

    (1 + |sk|)ρi + (1 + |t|)ρT − d

    ]−1/θ1

    is a valid nonseparable stationary isotropic spatio-temporalcovariance function, with ρi = θ1/θi, i = 1, ..., d, and ρT = θ1/θT .

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 49/68

    5.3 (III) Archimedean anisotropic STCF

    h1

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    h2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Gam

    ma(h1,h2)

    0.0

    0.2

    0.4

    0.6

    0.8

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 50/68

    5.3 (IV) Archimedean anisotropic STCF

    Remark:

    1 The criteria allows to build nonseparable spatial temporalcovariance functions which are not necessarily Lp norms.

    2 This class can be used for spatial-anisotropic temporal-isotropicphenomena.

    3 The function ψ is a link function allowing to build a nonseparablestructure starting from the temporal and spatial margins.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 51/68

    5.3 (V) Archimedean anisotropic STCF

    Theorem

    Let C1(x), . . . C3(x), CT (x) be stationary covariance functions onthe real line, such that both are completely monotone. Let ψ1, ψ2above defined such that:• ψ−11 ◦ ψ2

    • ψ−12 ◦ Ci(x), i = 1, 2, 3• ψ−11 ◦ CT (x)

    are positive functions with completely monotonic derivative. Then

    C(s, t) = ψ1

    [

    ψ−11 ◦ ψ2

    (

    3∑

    i=1

    ψ−12 (Ci(si))

    )

    + ψ−11 (C(t))

    ]

    is a stationary isotropic spatio-temporal covariance function.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 52/68

    5.3 (VI) Archimedean anisotropic STCF

    Theorem

    Let C1(x), . . . C3(x), CT (x) be stationary covariance functions onthe real line, such that both are completely monotonic. Let ψi,i = 1, ..., 3 above defined such that :• ψ−11 ◦ ψ2, ψ

    −12 ◦ ψ3

    • ψ−13 ◦ Ci(x), i = 1, 2• ψ−12 ◦ C3(x)

    • ψ−11 ◦ CT (x)

    are positive functions with completely monotonic derivative. Then

    C(x, t) = ψ1

    ψ−11 ◦ ψ2

    ψ−12 ◦ ψ3

    2∑

    i=1

    ψ−13 (Ci(si))

    + ψ−12 (C3(s3))

    + ψ−11 (CT (t))

    is a stationary anisotropic spatio-temporal covariance function.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 53/68

    5.3 (VII) Archimedean anisotropic STCF

    An example

    Consider the completely monotone functions

    ψi(x) = (1 + x)−1/θi , s > 0, i = 1, 2

    with θi positive parameters, whose inverse is ψ−1i (x) = x−θi − 1.

    Also consider the covariance functions:

    Ck(x) = (1 + |x|)−1/θk , k = 1, ..., 3

    CT (x) = (1 + |x|)−1/θT

    It is easy to verify that conditions of previous theorem are satisfiediff θ1 < θ2, θ1 < θT and θ2 < θk, k = 1, ..., 3. Under this constraint,applying previous theorem we obtain:

    C(x, t) =

    [

    (

    3∑

    k=1

    (1 + |sk|)ρk − 2)ρ2 + (1 + |t|)ρT − 1

    ]−1/θ1

    is a valid nonseparable stationary isotropic spatio-temporalcovariance function, with ρ1 = θ1/θ2, ρk = θ2/θk, i = 1, ..., d, andρT = θ1/θT .

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 54/68

    5.3 (VIII) Archimedean anisotropic STCF

    h2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    u

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Gam

    ma(h2,u)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 55/68

    5.4 (I) STCF: The Bernstein class

    Open Problems

    1 Great majority of contributions in space-time covariance regardsspatially isotropic covariance functions.

    2 Thus, there is a big need of more models which are zonallyanisotropic in the spatial component and not necessarilyLp-norms.

    Recall a positive function ψ(.) defined on the positive real line iscalled a Bernstein function if its first derivative is completelymonotone, viz.

    (−1)k−1ψ(t)(k) ≥ 0,

    for any positive integer k and t > 0.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 56/68

    5.4 (II) STCF: The Bernstein class

    Theorem

    Let L(., .) be a bivariate Laplace transform of a nonnegative randomvector (X1, X2). Let ψi(.), i = 1, ..., d and ψT (.) be positiveBernstein functions defined on the positive real line. Then, ford = 1, 2, ...

    C(h, u) = L(∑di=1 ψi(|h|i), ψT (|u|))

    is a stationary nonseparable spatio-temporal covariance function in

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas5.1 (I) Stat. STCF: Mixtures ofcopulas5.1 (II) Stat. STCF: Mixtures ofcopulas5.1 (III) Stat. STCF: Mixtures ofcopulas5.1 (IV) Stat. STCF: CMF andcopulas5.1 (V) Stat. STCF: CMF andcopulas5.1 (VI) Stat. STCF: CMF andcopulas5.1 (VII) Stat. STCF: CMF andcopulas5.2 (I) Nonstationary STCF andCM5.2 (II) Nonstationary STCF andCM5.3 (I) Archimedean anisotropicSTCF5.3 (II) Archimedean anisotropicSTCF5.3 (III) Archimedeananisotropic STCF5.3 (IV) Archimedeananisotropic STCF5.3 (V) Archimedeananisotropic STCF5.3 (VI) Archimedeananisotropic STCF5.3 (VII) Archimedeananisotropic STCF5.3 (VIII) Archimedeananisotropic STCF5.4 (I) STCF: The Bernsteinclass5.4 (II) STCF: The Bernsteinclass5.4 (III) STCF: The Bernsteinclass

    6 Applications

    7 Conclusions

    - p. 57/68

    5.4 (III) STCF: The Bernstein class

    An example

    Let L(θ1, θ2) be the Laplace transform for the Frechet-Hoeffdinglower bound of bivariate copulas, whose equation is

    L(θ1, θ2) =exp(−θ1)−exp(−θ2)

    θ1−θ2

    Now, consider the following Bernstein functions

    ψ1(t) = (a1tα1 + 1)β

    ψ2(t) =(a2t

    α2+b)b(a2t

    α2+1)

    ψT (t) = tρ,

    where a1, a2 are positive scale parameters, α1, α2 ∈ (0, 1], β ∈ [0, 1]b > 1 and ρ ∈ [0, 1).

    Then,

    C(h1,h2, u) =exp

    (

    −(a1‖h1‖α1+1)β−a2‖h2‖α2+bb(a2‖h2‖α2+1)

    )

    −exp(−|u|ρ)

    (a1‖h1‖α1+1)β+a2‖h2‖α2+bb(a2‖h2‖α2+1)

    −|u|ρ

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 58/68

    6.1 Application: Wind Speed Data

    . data regard wind speed (mt/sec)

    . Zone: Western Pacific Ocean, between Australia e NewGuinea (145◦E-175◦E, 14◦N-16◦N).

    . Data sampled on a regular grid (17 × 17 nods, at 210 kmdistance).

    . Data are obtained every 6 hours.

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 59/68

    6.2 Presentation of Data

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 60/68

    6.3 (I) Variogram Nonparametric Estimation

    . Local Linear Estimator:

    N−1∑

    i=1

    N∑

    j=i+1

    (

    Z(si, ti) − Z(sj , tj))2 − (β0, β10, β01)

    1∥

    ∥si − sj∥

    ∥ − r∣

    ∣ti − tj

    ∣− u

    2

    ·

    KH

    ∥si − sj∥

    ∥ − r∣

    ∣ti − tj

    ∣− u

    .KH (v) =1

    |H|K(

    H−1v)

    .K (·): bidimensional kernel

    . H = h2S

    S = Cov({

    (∥

    ∥si − sj

    ∥,∣

    ∣ti − tj

    ∣)′; 1 ≤ i < j ≤ N

    })

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 61/68

    6.3 (II) Variogram Nonparametric Estimation

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 62/68

    6.4 Estimation via WLS

    . Link Function:

    i,j ωi,j(θ)(

    ∧γ(hi, uj) − γ(hi, uj | θ)

    )2

    . Weights:

    ωi,j(θ) =|N(ri,uj)|γ(hi,uj |θ)

    2

    . Algorithm: Levemberg-Marquandt

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 63/68

    6.5 (I) Comparison amongst four Models

    . Exponential Separable Model (SVEXPS)

    . Model corresponding to example 2 of Cressie and Huang(SVCH2) having equation :

    γ(h, u | θ) = c0 + σ2

    [

    1 −1

    (au+ 1)2exp

    (

    −b2 ‖h‖2

    au+ 1

    )]

    . Model corresponding to example 4 of Cressie and Huang(SVCH4) having equation :

    γ(h, u | θ) = c0 + σ2

    [

    1 −au+ 1

    [

    (au+ 1)2 + b2 ‖h‖2](d+1)/2

    ]

    . Mixed Forms (Porcu) having equation:

    C(h, u | υ = 1/2) ∝k

    Bεu,hexp

    (

    −a1 |u|

    (

    a2 ‖h‖2α2 + 1

    )β/2−

    a2 ‖h‖(

    a1 |u|2α1 + 1

    )β/2

    )

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 64/68

    6.5 (II) Comparison among four Models

    Porcu SVEXPS

    SVCH2 SVCH4

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 65/68

    6.6 (I) Parameters Estimation: diagnostics

    Model Nugget Sill MQP

    Porcu 0.0864 13.6402 0.0004

    SVEXPS 0.4018 13.7093 0.0033

    SVCH2 0.4581 1.7021 0.0036

    SVCH4: 0.7958 12.7849 0.0029

    . MQP = 1∑i,j nij

    i,j nij(

    γ̂(ri,uj)

    γ̄(ri,uj)− 1)2

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 66/68

    6.6 (II) Cross-validation: Diagnostics

    Model MES EQM EQMA

    Porcu0.00777 0.17863 0.40501

    SVEXPS 0.00656 0.31348 0.55903

    SVCH2 0.01788 0.35235 0.42639

    SVCH4 0.01369 0.19856 0.38807

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications6.1 Application: Wind SpeedData

    6.2 Presentation of Data6.3 (I) VariogramNonparametric Estimation6.3 (II) VariogramNonparametric Estimation

    6.4 Estimation via WLS6.5 (I) Comparison amongstfour Models6.5 (II) Comparison among fourModels6.6 (I) Parameters Estimation:diagnostics6.6 (II) Cross-validation:Diagnostics

    6.7 Movies

    7 Conclusions

    - p. 67/68

    6.7 Movies

  • Summary

    1 Some history ofspatio-temporal modelling

    2 Background onspatio-temporal geostatistics

    3 The DAGUM class for spatial(and ST) modelling

    4 Building valid ST covariancemodels: Theoretical results

    5 Building valid ST covariancemodels: Copulas

    6 Applications

    7 Conclusions

    7 Conclusions

    - p. 68/68

    7 Conclusions

    There is a real and motivating need of good statisticalmodels...

    Here we have presented several options: Mixed forms,Spectral densities, Dagum covariances, Copulas-basedcovariances.

    Each model is driven by data so that there is no model thatbest fits to all the data, each model serves to eachparticular situation.

    Bookmark for section 0Summary of the seminar

    Bookmark for section 11.1 Some history of STM1.2 Some history of STM

    Bookmark for section 22.1 (I) ST covariance functions2.1 (II) ST covariance functions2.2 Separability and Full Symmetry2.3 Full Symmetry and Zonal Anisotropy2.4 Mixed Forms2.5 (I) Some concepts on Copulas2.5 (II) Some concepts on Copulas2.5 (III) Some concepts on Copulas2.5 (IV) Some concepts on Copulas2.5 (V) Some concepts on Copulas2.5 (VI) Some concepts on Copulas2.5 (VII) Some concepts on Copulas

    Bookmark for section 33.1 Da