operational monitoring of us croplands with landsat 8 ... · sentinel-2 vs landsat 7 & 8...

38
Operational monitoring of US croplands with Landsat 8: Where do we stand? David M. Johnson Bob Seffrin, Patrick Willis, Avery Sandborn, Rick Mueller July 12, 2017 w/ Landsat Science Team @ EROS

Upload: letruc

Post on 18-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Operational monitoring of US croplands withLandsat 8: Where do we stand?

David M. JohnsonBob Seffrin, Patrick Willis, Avery Sandborn, Rick Mueller

July 12, 2017 w/ Landsat Science Team @ EROS

2

Most popular crop reports from NASS

Annually – end of June

Monthly - noon ~ 10th day

Weekly – 4PM ~ Mondays

A Little Math

640 ac of corn * 174.6 bu/ac * 3.80 $/bu = $424,627.20

A Lot of Math

86,748,000 ac of corn * 174.6 bu/ac * 3.80 $/bu = $57,555,563,040.00

but wait there’s more…

82,736,000 ac of soy * 52.1 bu/ac * 9.80 $/bu = $42,243,346,880.00

and pushing US crop value over $100B

30,222,000 ac winter wheat * 55.3 bu/ac * 5.30 $/bu = $8,857,766,000.00

Publication on publication impacts on markets

7

Land cover mapping - Cropland Data Layer (CDL)

* 2008 – 2016 publically available* 2017 in the works* 2008 and 2009 being reprocessed from 56m to 30m

8

9

2017: June 16 – 22

10

Agricultural areas Landsat 8 Sentinel 2a

DMC Deimos DMC UK2 Resourcesat-2 LISS3

2017: June 16 – 22

Disaster Monitoring Constellation

11

Resourcesat-2

12

Parameter/Instrument LISS-4 LISS-3 AWiFS

Spatial resolution or IFOV ≤ 5.8 m 23.5 m 56 m (nadir)(70 m a swath edge)

Spectral bands (µm) B2: 0.52-0.59, (green)B3: 0.62-0.68, (red)B4: 0.77-0.86 (NIR)

B3-default band for mono

B2: 0.52-0.59, (green)B3: 0.62-0.68, (red)B4: 0.77-0.86, (NIR)B5: 1.55-1.70 (SWIR)

B2: 0.52-0.59, (green)B3: 0.62-0.68, (red)B4: 0.77-0.86, (NIR)B5: 1.55-1.70 (SWIR)

Swath width 70 km in PAN and MS mode 141 km 740 km

Data quantization 10 bit 10 bit (VNIR),10 bit (SWIR)

10 bit

13

GloVis Next & Resourcesat-2 data

Sentinel-2 vs Landsat 7 & 8 spectral bands

14

System Bands SourceDeimos, UK2 1, 2, 3 AirbusLandsat 8 3, 4, 5, 6, 9, 10 USGSSentinel 2a 3, 4, 8, 10, 11, 12 AWSLISS3 2, 3, 4, 5 USGS

NASS Utilization

Classified area vs June enumerated

15

Cover

Type

X Y

Classified

Acres

Enumerated

Acres

Corn 637.0 640.0

Soybean 1.0 0.0

Wheat 0.0 0.0

Alfalfa 0.0 0.0

… … …

… … …

Non-Ag. 2.0 0.0

At three sites

16

Cover

Type

X Y

Classified

Acres

Enumerated

Acres

Corn 637.0 640.0

Soybean 1.0 0.0

Wheat 0.0 0.0

Alfalfa 0.0 0.0

… … …

… … …

Non-Ag. 2.0 0.0

Cover

Type

X Y

Classified

Acres

Enumerated

Acres

Corn 176.0 190.0

Soybean 302.0 290.0

Wheat 0.0 0.0

Alfalfa 3.5 0.0

… … …

… … …

Non-Ag. 158.5 160.0

Cover

Type

X Y

Classified

Acres

Enumerated

Acres

Corn 34.0 21.0

Soybean 177.0 155.0

Wheat 4.5 0.0

Alfalfa 2.5 0.0

… … …

… … …

Non-Ag. 422.0 464.0

10 sites and so forth….

17

Acreage Regression Estimation

18We don’t just “pixel count” from CDL to estimate acreage

19

NASS SAS-based Regression Estimate system

Sentinel-2a study area (gray)

20

30m Sentinel-2a 30m Landsat 8

93.9 93.8

Classification comparison #1

21

10m Sentinel-2a 15m Sentinel-2a

94.2 94.0

Classification comparison #2

22

10 S2 red-edge bands(5,6,7) 10m S2 20m bands (5,6,7,8a, 11, 12)

92.5

93.8

Classification comparison #3

15m L8 (3,4,5,6,8,9,10) - with pan 15m L8 (3,4,5,6,9,10) - without pan

95.3

95.4

Classification comparison #4

30m Sentinel-2a 30m Sentinel-1 Radar

Classification comparison – bonus!

25

30m vs 15m regression analysis - corn

26

30m vs 15m regression analysis - soybeans

27

60m vs 15m regression analysis - corn

28

60m vs 15m regression analysis - soybeans

29

30

A look at the USDA Farm Service Agency’s Common Land Units

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000A

L

AR

AZ

CA

CO CT

DE FL GA IA ID IL IN KS

KY

LA MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH NJ

NM NV

NY

OH

OK

OR

PA RI

SC SD TN TX UT

VA VT

WA

WI

WV

WY

Total Number of CLU Crop Polygons

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%A

L

AR

AZ

CA

CO CT

DE FL GA IA ID IL IN KS

KY

LA MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH NJ

NM NV

NY

OH

OK

OR

PA RI

SC SD TN TX UT

VA VT

WA

WI

WV

WY

% of CLU Crop Polygons that Contain at Least 1 30m Pixel

30m

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%A

L

AR

AZ

CA

CO CT

DE FL GA IA ID IL IN KS

KY

LA MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH NJ

NM NV

NY

OH

OK

OR

PA RI

SC SD TN TX UT

VA VT

WA

WI

WV

WY

% of CLU Crop Polygons that Contain at Least 1 15m Pixel

15m

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%A

L

AR

AZ

CA

CO CT

DE FL GA IA ID IL IN KS

KY

LA MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH NJ

NM NV

NY

OH

OK

OR

PA RI

SC SD TN TX UT

VA VT

WA

WI

WV

WY

% of CLU Crop Polygons that Contain at Least 1 10m Pixel

10m

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%A

L

AR

AZ

CA

CO CT

DE FL GA IA ID IL IN KS

KY

LA MA

MD

ME

MI

MN

MO

MS

MT

NC

ND

NE

NH NJ

NM NV

NY

OH

OK

OR

PA RI

SC SD TN TX UT

VA VT

WA

WI

WV

WY

% of CLU Crop Polygons that Contain at Least 1 x-sized Pixel

250m 375m 500m

% Pixel Containment National Summary

Cropland CLUs

10m 97.9

15m 96.0

30m 88.5

250m 10.9

375m 3.3

500m 1.7

Numerous questions about the evolving Grassland <–> Cropland boundary

37

Cox, C., Rundquist, S., 2013. Going, Going, Gone! Environmental Working Group, Washington, DC.

Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R.C., Gross, K.L., Robertson, G.P., 2013. Sustainable bioenergy production from marginal lands in the US

Midwest. Nature 493, 514–517.

Johnston, C.A., 2014. Agricultural expansion: land use shell game in the U.S. Northern Plains. Landsc. Ecol. 29, 81–95.

Johnston, C.A., 2013. Wetland Losses Due to Row Crop Expansion in the Dakota Prairie Pothole Region. Wetlands 33, 175–182.

Kline, K.L., Singh, N., Dale, V.H., 2013. Cultivated hay and fallow/idle cropland confound analysis of grassland conversion in the Western Corn Belt. Proc. Natl.

Acad. Sci

Laingen, C., 2015. Measuring Cropland Change: A Cautionary Tale. Pap. Appl. Geogr. 1, 65–72.

Lark, T.J., Salmon, J.M., Gibbs, H.K., 2015. Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. 10, 044003.

Li, R., di Virgilio, N., Guan, Q., Feng, S., Richter, G.M., 2013. Reviewing models of land availability and dynamics for biofuel crops in the United States and the

European Union. Biofuels Bioprod. Biorefining 7, 666–684.

Long, J.A., Lawrence, R.L., Miller, P.R., Marshall, L.A., 2014a. Changes in field-level cropping sequences: Indicators of shifting agricultural practices. Agric.

Ecosyst. Environ. 189, 11–20.

Mladenoff, D.J., Sahajpal, R., Johnson, C.P., Rothstein, D.E., 2016. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic

Biomass Potential and Natural Lands. PLOS ONE 11,

Plourde, J.D., Pijanowski, B.C., Pekin, B.K., 2013. Evidence for increased monoculture cropping in the Central United States. Agric. Ecosyst. Environ. 165, 50–

59.

Reitsma, K.D., Clay, D.E., Clay, S.A., Dunn, B.H., Reese, C., 2015. Does the US Cropland Data Layer Provide an Accurate Benchmark for Land-Use Change

Estimates? Agron. J.

Sahajpal, R., Zhang, X., Izaurralde, R.C., Gelfand, I., Hurtt, G.C., 2014. Identifying representative crop rotation patterns and grassland loss in the US Western

Corn Belt. Comput. Electron. Agric. 108, 173–182.

Wright, C.K., Larson, B., Lark, T.J., Gibbs, H.K., 2017. Recent grassland losses are concentrated around U.S. ethanol refineries. Environ. Res. Lett. 12, 044001.

Wright, C.K., Wimberly, M.C., 2013a. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci.

Operational monitoring of US croplands withLandsat 8: Where do we stand?

David M. Johnson, [email protected]

July 12, 2017 w/ Landsat Science Team @ EROS

• Additional spectral information does not seem to add anything in terms of classification accuracy.

• Multiple images through growing season are known to be helpful for classification accuracy.

• Finer spatial resolution makes for nice classification products. However, may not actually help in area estimation work.

• Grasslands/rangeland community underserved.• Crop progress/condition/yield still a challenge.