optimising the performance of a smart electric car

15
Optimising the performance of a smart electric car Authors: Pia Žnidaršič, Tina Rejc, Mitja Železnik Mentor: Tomaž Kušar

Upload: cain-keith

Post on 02-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Optimising the performance of a smart electric car. A uthors: Pia Žnidaršič, Tina Rejc, Mitja Železnik Mentor: Tomaž Kušar. wireless charging. Charging. solar panels. regenerative braking. Hypothesis. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Optimising the performance of a smart electric car

Optimising the performance of a smart

electric car

Authors: Pia Žnidaršič, Tina Rejc, Mitja ŽeleznikMentor: Tomaž Kušar

Page 2: Optimising the performance of a smart electric car
Page 3: Optimising the performance of a smart electric car

Chargingwireless charging

solar panelsregenerative braking

Page 4: Optimising the performance of a smart electric car

Hypothesis

A good part of the car’s kinetic energy can be converted into electricity with the use of regenerative braking system. In such a way, we can improve the car’s efficiency.

The electric car still needs ordinary brakes alongside the regenerative braking system due to its slow braking ability.

Page 5: Optimising the performance of a smart electric car

The construction of the electric car

Page 6: Optimising the performance of a smart electric car

video clip: our experiment

𝜂 [% ]=𝐴𝑒

𝑊𝑝

ResearchWe tried to find out an answer to the question: how to improve the electric car‘s efficiency?

1. We compared a basic diode and light emitting diode.

2. We also used different capacities of a capacitor.

Page 7: Optimising the performance of a smart electric car

At first we measured the braking distance while the DC motors weren‘t connected to an electric circuit. Total potential energy is converted to the force of friction (braking force).

Measurements

Then we measured the amount of electricity converted from kinetic energy by the DC motors (generators).

𝑊 𝑝=𝑚∙𝑔 ∙ h

𝑊 𝑝=𝐴𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒1

braking distance

𝑥1………𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, while regenerative braking system was used

-

𝑊 𝑝=𝐴𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒2+𝐴𝑒𝑙

𝜂 [% ]=𝐴𝑒

𝑊𝑝

𝐴 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 2=𝑥2𝑥1∙𝑊𝑝

Page 8: Optimising the performance of a smart electric car

Results𝐴𝑒𝑙=𝑊 𝑝−𝐴 𝑓𝑟 . 𝑓𝑜𝑟𝑐𝑒

𝐴𝑒𝑙=5,4 𝐽 −3,37 𝐽=𝟐 ,𝟎𝟑 𝐉

𝐴𝑒𝑙=5,4 𝐽 −3,5 𝐽=𝟏 ,𝟗 𝐉

These results were obtained on the basis of length measurement and calculated potential energy.

Then we measured the amount of electricity we actually got in each case.

Page 9: Optimising the performance of a smart electric car

Results

1 2 3 4 50

1

2

3

4

5

6

7

8

9

10

The voltage on the capacitor in dependence on a diode type

basic diodeLED

No. of measurements

Umax

[V]

Page 10: Optimising the performance of a smart electric car

Results

1 2 3 4 50.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

The capacitor's electricity in dependence on a diode type

basic diodeLED

No. of measurements

W k

on. [

J]

𝑊 𝑒𝑙=12∙𝐶 ∙𝑈 2

Page 11: Optimising the performance of a smart electric car

Results

0.01 0.02 0.03 0.040.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

The voltage on capacitor in dependence on the capacitor‘s capacity

LEDbasic diode

C [F]

Umax

[V]

Page 12: Optimising the performance of a smart electric car

Results

0.01 0.02 0.03 0.040.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

The amount of electricity in dependence on the capacitor's capacity

basic diodeLED

C [F]

W k

onde

nzat

orja

[J]

Page 13: Optimising the performance of a smart electric car

• The results of the circuit by a simple diode are better, because the basic diode consumes less power.

• By increasing the capacitor‘s capacity we can store more electricity. The amount of stored electricity also depends on the braking distance.

Results

Page 14: Optimising the performance of a smart electric car

Literature[1] Tesla motors, available at http://www.teslamotors.com/

[2] List of electric cars currently available, available at http://en.wikipedia.org/wiki/List_of_electric_cars_currently_available

[3] How Does Regenerative Braking Work? Available at http://www.carsdirect.com/green-cars/how-does-regenerative-braking-work

[4] Regenerative brakes, available at http://en.wikipedia.org/wiki/List_of_electric_cars_currently_available

[5] The Kinetic Energy Storage, available at http://www.youtube.com/watch?v=ZHgN1-Qv9LU

[6] Regenerative braking, available at http://www.cyberphysics.co.uk/topics/energy/regenerative_braking.htm

[7] What is the regenerative braking system?, available at http://www.alke.com/brake-energy-recovery.html

Page 15: Optimising the performance of a smart electric car

Thank you for your attention.