optimizing central chilled water systems · • hydronic system design • chiller fundamentals ......

56
1 OPTIMIZING CENTRAL CHILLED WATER SYSTEMS 1 OPTIMIZING CENTRAL CHILLED WATER SYSTEMS Optimizing Central Chilled Water Systems Kent W. Peterson, PE, FASHRAE P2S Engineering, Inc. [email protected]

Upload: others

Post on 02-Sep-2019

21 views

Category:

Documents


3 download

TRANSCRIPT

1 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 1 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Optimizing Central Chilled Water Systems

Kent W. Peterson, PE, FASHRAE P2S Engineering, Inc. [email protected]  

2 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 2 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 2

Learning Objectives

1.  Gain a better understanding of the operational dynamics of various load and equipment components in chilled water systems

2.  Understand opportunities to provide both functional and energy efficient operation of chilled water systems

3.  Develop a logical approach to the performance optimization of chilled water systems

3 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 3 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Presentation Outline

•  Foundation of CHW Plant Operation

•  Hydronic System Design

•  Chiller Fundamentals

•  Optimizing Plant Performance

•  Building Interfaces

3

4 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 4 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Sustainability Opportunities

•  Optimize energy use

•  Protect and conserve water

•  Effective use of natural resources

4

5 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 5 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Foundation of Operation

•  Why look “outside the plant”? -  Understand how distribution system will operate -  Understand how CHW ∆T will be effected by

dynamics of the systems connected

Deliver CHW to all loads under various load conditions as efficiently as possible

5

6 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 6 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Understanding Loads & Their Impact on Design

•  Overall plant capacity is determined by peak design load

•  Cooling load profile describes how the load varies over time is needed to design the plant to stage efficiently

•  Cooling load “diversity”

6

7 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 7 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Chilled Water Plant Efficiency

•  Operating kW/ton achievable in today’s plants (includes chillers, cooling towers and pumps)

•  0.4 - 0.7 Excellent •  0.7 - 0.85 Good •  >1.0 Needs Improvement

•  We should design plants to measure and provide performance metrics

7

8 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 8 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Discussion on Hydronics

8

9 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 9 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Purpose of Pumping Systems

Move enough water through the piping system at the minimum differential pressure

that will satisfy all connected loads

9

10 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 10 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Understanding Hydronics

•  The pumping system will be required to operate under various load conditions

•  Variable flow system differential pressures throughout the system will be dynamic

•  Hydronic systems should be hydraulically modeled to design or troubleshoot complex systems

10

11 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 11 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Caution

•  Excessive pump head can cause systems to not function as designed and waste considerable energy

•  Pump Selection

12 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 12 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

System & Pump Curves

Total Flow

Tota

l Pre

ssur

e

12

0

50

100

150

200

250

300

0 1500 3000 4500 6000 7500 9000 10500 12000

S ystem  Curve Combined  Pump  Curve

13 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 13 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

VFD

Load DP

100 GPM 5 PSID

100 GPM 5 PSID

5 PSID 28 PSID

5 PSID 2 PSID

12 PSID 38 PSID 45 PSID

PUMP CLOSE LOAD REMOTE LOAD

20

60

50

40

30

10

0

70

PRES

SURE

PSI

G

13

Load

14 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 14 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

VFD

DP

100 GPM 5 PSID

0 GPM 0 PSID

5 PSID 28 PSID

38 PSID 0 PSID

BAD SENSOR LOCATION

38 PSID 38 PSID 45 PSID

PUMP CLOSE LOAD REMOTE LOAD

20

60

50

40

30

10

0

70

PRES

SURE

PSI

G

14

Load

Load

15 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 15 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

100 GPM 5 PSID

0 GPM 0 PSID

5 PSID 2 PSID

12 PSID 0 PSID

12 PSID 12 PSID 19 PSID

PUMP CLOSE LOAD REMOTE LOAD

20

60

50

40

30

10

0

70

PRES

SURE

PSI

G

VFD

Load

DP Load

16 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 16 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

CONTROL VALVE ∆P AT VARIOUS LOAD CONDITIONS

Case 1 Full Flow

Case 2 75% Flow

Case 3 50% Flow

Case 4 25% Flow

Case 5 10% Flow

Branch Flow (gpm) 100 75 50 25 10

Branch ∆P 38 38 38 38 38

Coil ∆P 5.0 2.8 1.3 0.3 0.1

Balancing Valve ∆P 28.0 15.8 7.0 1.8 0.3

Control Valve ∆P 5.0 19.4 29.8 35.9 37.7

16

17 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 17 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

Impact of Balancing Valve Control Valve ∆P = 3.0 psig Coil ∆P = 5.0 psig Excess ∆P = 7.4 psig Size BV for Excess ∆P

18 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 18 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Balancing Considerations Variable Flow Systems

•  Too large a balancing valve pressure drop affects the performance and flow characteristic of the control valve. Too small a pressure drop affects its flow measurement accuracy as it is closed to balance the system. -  ASHRAE 2011 Applications Handbook, page 38.8

19 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 19 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Pumping Conclusions

•  Coil heat transfer is easier to control in low head (<50 ft) branches

•  Remote, high head loads can be served more efficiently with variable speed series booster pumping

20 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 20 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

What You Must Know About

CHW ∆T

20

21 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 21 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

CHW Temperature Differential

•  Poor CHW ∆T is the largest contributor to poor CHW plant performance

•  To predict ∆T, you must know: -  Characteristics of connected loads -  Control valve requirements and limitations -  Control valve control algorithms and set points -  Heat exchanger characteristics

22 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 22 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Chilled Water Coil Characteristics Assumes Constant Load on a Given Coil

22

CHWS Temperature °F

CHW

∆T

°F

40 42 44

46 48

50

0

5

10

15

20

25

23 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 23 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Factors that Degrade ∆T Assuming Coils are Selected for Desired ∆T

•  Higher CHWS temperature

•  Lower entering air temperature (economizer)

•  Control valve issues -  3-way control valves -  2-position valves on fan coil units -  Valves exposed to high ∆P and can’t shutoff

•  Controls not controlling -  Setpoint cannot be achieved -  Valves not interlocked to close if unit turns off

24 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 24 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

∆T Conclusions

•  Design, construction and operation errors that cause low ∆T can be avoided

•  Other causes for low ∆T can never be eliminated

•  Therefore, system design must accommodate the level of degradation anticipated

25 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 25 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Chiller Fundamentals

25

26 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 26 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Understanding Compressor Lift

•  Temperature Lift = SCT - SST -  Saturated Condensing Temperature (SCT) is

dependent upon LEAVING condenser water temperature

-  Saturated Suction Temperature (SST) is based off of LEAVING chilled water temperature

27 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 27 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Percent Loaded

KW/t

on

Centrifugal Chiller without VFD 1200T Low Pressure

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

28 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 28 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller with VFD 1200T Low Pressure

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

29 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 29 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Centrifugal Chiller without VFD 1200T High Pressure

Percent Loaded

KW/t

on

30 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 30 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller with VFD 1200T High Pressure

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

31 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 31 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller Comparison

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

0.20.40.60.81.0

25 50 75 100

0.20.40.60.81.0

25 50 75 100

0.20.40.60.81.0

25 50 75 100 Hig

h Pr

essu

re

Low

Pre

ssur

e

Constant Speed Variable Speed

32 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 32 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller with VFD 1000T High Pressure, Multiple Oil-Free Compressors

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

33 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 33 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Optimizing Plant Performance

34 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 34 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Primary-Secondary vs Variable Primary Flow

•  Variable primary flow plants can provide advantages over traditional primary-secondary configurations

•  Less plant space required for VPF

•  VPF is not conducive to CHW Thermal Energy Storage

35 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 35 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Primary-Secondary Variable Flow Part Load Operation - 4500 Ton Plant

Load

58°F

42°F VFD

∆P

6000 GPM 4500 GPM

1500 GPM

42°F

54°F

1500 tons

1500 tons

OFF

Load

Load

Load

Load

36 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 36 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Primary-Secondary Variable Flow Effect of Low CHWR Temperature

Low ∆T Syndrome

44°F

52°F

42°F

6000 GPM 9000 GPM

3000 GPM

Additional chiller will need to be started to maintain the secondary CHWS temperature setpoint if load increases

Loss of CHWS temp control

Load

Load

Load

Load

Load VFD

∆P 1500 tons

1500 tons

OFF 52°F

37 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 37 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Variable Primary Flow Part Load Operation - 4500 Ton Plant

42°F

CLOSED

58°F

4500 GPM FM

Bypass is not needed if minimum flow through chiller is guaranteed

1500 tons

1500 tons

OFF

∆P

Load

Load

Load

Load

Load VFD

38 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 38 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Variable Primary Flow Effect of Low CHWR Temperature

CLOSED

54°F

6000 GPM

42°F

1500 tons

1500 tons

OFF

∆P

Load

Load

Load

Load

Load VFD

FM

39 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 39 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Series Arrangement

•  In applications with high lift, a series evaporator arrangement can improve overall plant performance

40 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 40 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

85°F 95°F

40°F 56°F CH-1

CH-2 40°F 56°F

40°F 56°F

0.60 KW/ton

Parallel-Parallel Arrangement

Series versus Parallel With High Lift Requirement

41 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 41 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

7% KW Reduction on Chillers or

450 KW Reduction on 10,000 ton Plant

30 feet head increase on condenser water would

result in 230 KW increase in pump power

220

Series versus Parallel With High Lift Requirement

CH-1 CH-2

95°F 85°F 90°F

0.52 KW/ton 0.59 KW/ton

0.555 KW/ton

Series-Counterflow Arrangement

40°F 56°F 48°F

42 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 42 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

CH-1 CH-2 40°F 56°F 48°F

0.50 KW/ton 0.61 KW/ton

7% KW Reduction or

450 KW Reduction on 10,000 ton Plant

0.555 KW/ton

Series-Parallel Arrangement

85°F 95°F 85°F 95°F

Series versus Parallel With High Lift Requirement

43 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 43 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Optimize Heat Rejection

•  Oversized cooling towers can decrease approach to lower chiller lift requirements and improve plant KW/ton

•  Approximately 1.5% chiller KW reduction per °F lift reduction

Lowering CWS by from 95°F to 93°F 3% Chiller KW Reduction

or 180 KW Reduction on 10,000 ton Plant

44 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 44 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

CHW ∆T

Option 1 40°F 56°F 16°F

10,000 tons 15,000 gpm

200 feet head 667

38% Pump KW Reduction or

254 KW Reduction on 10,000 ton Plant

Option 2 38°F 58°F 20°F

10,000 tons 12,000 gpm

146 feet head 413

CHWS Temp CHWR Temp CHW ∆T Plant Size CHW Flow Head Pump KW

87

Increased chiller lift would result in 167

KW increase in chiller power

45 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 45 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Thermal Energy Storage

•  Chilled water thermal storage is a viable means of reducing peak electrical demand and increasing plant efficiency

•  Less chiller and cooling tower capacity required

•  You may qualify for a Permanent Load Shift incentive

•  Keep it simple!

46 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 46 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations

47 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 47 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations Energy Transfer Stations Using Heat Exchangers

•  Heat exchangers designed with lower approaches will typically yield higher CHW ∆T

•  Always focus on supplying load with proper CHWS temperature

48 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 48 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations without Heat Exchangers

•  Avoid chilled water tertiary loops -  Remember cooling coil fundamentals

•  A variable speed booster pump should be used to boost differential pressure when needed

49 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 49 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations without Heat Exchangers

Building Load Tertiary Loop

Building Load

VFD

Boosted Secondary

50 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 50 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

A Case for Metering

•  Most efficiently designed systems are horribly inefficient after several years of operation

•  How can we improve operation if we don’t evaluate the efficiency?

•  Calibrate regularly

51 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 51 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

A Case for Commissioning

•  Commissioning is a systematic process of assuring that systems perform in accordance with the design intent and owner’s operational needs

•  Retro-commissioning

52 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 52 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Control Design Issues

•  Control strategies should consider impact on complete system

•  Aim to continually optimize energy efficiency for entire system -  Demand control -  Relational control

•  Aim for reliability and “simplicity”

53 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 53 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Summary

•  Understand parameters that affect chiller plant and overall system performance

•  Optimize operation through equipment selection and control sequences to deliver CHW to all loads as efficiently as possible throughout the year

•  Commission and monitor plant performance

54 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 54 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

If you are not prepared to be wrong, you won’t come up with

anything original

55 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 55 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

For More Information

•  ASHRAE Self Directed Learning Course “Fundamentals of Water System Design”

•  ASHRAE District Cooling Guide, 2013

•  ASHRAE Journal series “Optimizing Chilled Water Plants”

•  Hydronic System Design & Operation by E.G. Hansen

56 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 56 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Thank You