oreilly energy lieracy webcast - 092302009

119
Two stories : one global, one personal.

Upload: energyliteracy

Post on 18-Jul-2015

1.038 views

Category:

Education


3 download

TRANSCRIPT

Two stories : one global, one personal.

Energy is measured in Joules (J)

Lifting an apple from the ground to the table. ~ 1 Joule

Lifting one apple from the ground to the table each second. ~ 1 Watt.

Power is measured in Watts (W). 1 Watt = 1 Joule / second

40 apples per second from the ground to the table = 40 Watts.

Running this Apple laptop takes 40 Watts.

100 W = You, sitting there, reading.

1000 W 1kW = Domestic kettle 1 kilowatt (kW) = 1000 W

1000000 W 1MW = Diesel locomotive / wind turbine. 1 megawatt (MW) = 1000 kW

1000000000 W 1GW = Hoover dam 1 gigawatt (GW) = 1000 MW

1000000000000 W 1TW = World power consumption, 1890 1 terawatt (TW) = 1000 GW

Power

HOW MUCH POWERDO I USE?

Yearly things + Monthly things + Daily things = your lifestyle in watts.

Why watts ?

Allows you to compare activities on different timescales.

Allows you to consider non-carbon effects of using so much power.

168,207 kilometers

1 year� �

� �

� �

1 year

31,536,000 seconds

1.40 megajoules

1 kilometer� 7,462

Joules

second=

=

7,462 Watts

122 kilowatt ·hours

1 month

1 month

2,952,000 seconds

3.6 megajoules

1 kilowatt · hour170

Joules

second170 Watts

1 energy drink

1 day

1 day

86,400 seconds

7.84 megajoules

1 bottle90

Joulessecond 90 Watts=

If you do something yearly (like fly 105,000 miles), it contributes:

If you do something monthly (like your electricity bill), it contributes:

If you do something daily (like drink 1 Energy drink), it contributes:

A 12,000 Watt lifestyle is 120 x 100 watt light bulbs burning permanently.( Or 920 Compact Fluorescents )

100W

"Watts per always" - your life in light bulbs.

Flight

Saul Griffith in 2007: 112,000 Miles7,992 Watts equivalent. 18.500 kg CO2

1200 Mi/yrToyota Tacoma18 mpg66.67 gallons spent8,066,666,667 J255.62 Watts

Driving10,000 Miles1,500 Watts

San Francisco

Seattle

Chicago New York

Atlanta

Jacksonville

Key West

Tucson

San Diego

1000 Mi/yrDune Buggy (VW)25 mpg40 gallons spent4,840,000,000 J153.37 Watts

Boston

4500 Mi/yrHonda Insight55 mpg81.82 gallons spent9,900,000,000 J313.71 Watts

600 Mi/yrSprinter Diesel20 mpg30 gallons spent4,128,000,000 J130.81 Watts

700 Mi/yrToyota Hilux17 mpg41.18 gallons spent4,982,352,941 J157.88 Watts

2000 Mi/yrother (avg. rental)16 mpg125 gallons spent15,125,000,000 J479.28 Watts

Domestic energy consumption 2 person stand alone house, 2br, Mission District, SF.

0

200

400

600

800

1000

1200

1400

JAN

UA

RY

FEB

RU

ARY

MA

RCH

APR

IL

MAY

JUN

E

JULY

AU

GU

ST

SEP

TEM

BER

OC

TOB

ER

NO

VEM

BER

DEC

EMB

ER

Home Gas and Electric breakdown625W

GAS showerGAS cookingGAS heatELEC fridgeELEC computerELEC toothbrushELEC phone chargersELEC laptop1ELEC laptop2ELEC stereoELEC lights&other

0

250

500

750

1000

1250

Jan feb mar apr may jun jul aug sep oct nov dec

Work Power Consumption... 18,400² Foot Office, 40 People sharing

Gas : 201 WattsElectric : 411 Watts

Milk Cheese: 30 W

Wine: 76 W

Vegetables: 100

Farming: 100 W

Transportation: 120 W

Fertilizer: 125 W

Meat & Fish: 221 W

772 Watts

My 2007 diet.

Society - my 1/300 000 000th share of the US infrastructure...

US Military: 94 W

US Nuclear protection: 50 W

US Government: 18 W

NASA: 1.1 W

USPS: 5 W

* Published fuel and electricity numbers. Does not include embodied energy in battle-ships, tanks, bullets, bridges, buildings & infrastructure...

Book

sheetsofpaper

framed art

CD

jewelcase

boardgame

New

sPapers

monthlym

agazine

quarterlymagazine

projectionscreen

Mobile Phone

Desktop Computer

Laptop

Washing Machine

Refrigerator Oven

Dryer

House

Bicycles

Catam

aran

s

mot

orcy

cleh

elm

et

Gol

fClu

bs infla

tabl

eele

phan

t

Bik

emes

seng

erba

g m

otor

cycl

e su

rfbo

ard

golfb

all

golft

ee

tenn

isba

ll

tenn

isra

cket

Toot

hbru

sh

Sha

mpo

o (m

l) P

aper

cup

toot

hpas

te

cond

ition

er

teacandle detergentw

ashingpowder

toiletpaperroll clingw

rapsaran

aluminum

foil w

axedpaper S

hoes

Watch-C

oach W

oolenHat

t-shirt

pants coatjacket

socks woolhat

uggboots

crocsshoes

leathershoes w

idebrimhat

mensocks

menunderw

ear m

enshorts

shirtmenscollared

cargopants

coverallsoveralls

beltleather

MenW

oolSuit

Table(Wood)

Chair

futonmattress

metalfutonfram

e

woodenfutonfram

e

Bookshelf

woolenfloorrug

pillow

Sofabenchsittingkitchen

diningtable

chairdining sofabed

plantpotlarge

plantpotsmall stepstool

sidetable

KitchenPot

ricecooker

copperfryingpan

coppersaucepan kitchenknife

espressomachine

knifeblock

cuttingboard rollingpin

canopener

bottleopener

kitchenknives

coffeemug

tableknife

tablefork

teaspoon

soupspoons teapot

teakettle

sixcupFrench

butcherblock steelm

ug

ceramicm

ug

waterglass

saladplate bowl

dinnerplate

WineG

lass

cakestand

saladbowl

carvingset

woodenspoon

bamboospoon m

etalspatula rubberspatula

whisk key

paintroller

cellphonecover

powerstrip

deskphone

ToolChest

umbrella

conferencebag

suitcasecarry

artificialchristmastree

naturalchristmastree

aluminum

stepladder

extensioncord

volkswagendunebuggy

toyotapickup

Honda Insight

TRAS

H

PHYSICAL STUFF ~2500 Watts

SFO

TO LH

R 4

10

W

LHR-S

FO 410 W

SFO-ATL 160 W

ATL-SFO 160 W

SFO-ATL-CPH 510 W

HEL-AMS-ATL-SFO 570 W

OAK-OGG-HON-OAK 560 W

SFO-BOS 210 W

BOS-SFO 210 W

OAK-DC 180 W

DC-OAK 180 W

OAK-ORD-MON-QUE 210 WQUE-DTW-SFO 210 WSFO-JFK 200 WJFK-SFO 200 W

OAK-BUR 20 W

BUR-OAK 20 W

SFO-BOS 210 WBOS-ORD 70 W

ORD-SFO 140 WSFO-JFK 200 W

JFK-SFO 200 W

SJC-SJO 230 W

SJO-SJC 230 W

SJC-VIJ 280 W

VIJ-SJC 280 W

SFO-SYD1140 W

SFO-DR 310 W

DR-SFO 3

10 W

SFO-O

AK 280 W

OAK

-SFO

280

W

'SFO TO LHR' 'LHR-SFO' 'SFO-ATL' 'ATL-SFO' 'SFO-ATL-CPH' 'HEL-AMS-ATL-SFO' 'OAK-OGG-HON-OAK' 'SFO-BOS' 'BOS-SFO' 'OAK-DC' 'DC-OAK' 'OAK-ORD-MON-QUE' 'QUE-DTW-SFO' 'SFO-JFK' 'JFK-SFO' 'OAK-BUR' 'BUR-OAK' 'SFO-BOS' 'BOS-ORD' 'ORD-SFO''SFO-JFK' 'JFK-SFO' 'SJC-SJO' 'SJO-SJC' 'SJC-VIJ' 'VIJ-SJC''SFO-SYD' 'SFO-DR' 'DR-SFO' 'SFO-OAK' 'OAK-SFO'

HO

ND

A IN

SIG

HT

310

W

DU

NE

BUG

GY

VW 1

50 W

TOYO

TA H

ILU

X 1

60 W

DO

DG

E S

PRIN

TER

100

WTO

YOTA

TA

CO

MA

240

W

TAX

IOR

REN

TAL

47

0 W

SH

OW

ERS

GA

S 7

0 W

CO

OK

ING

GA

S 3

0 W

HEATIN

G G

AS

400 WFR

IDG

E ELEC 30 W

CO

MPU

TER ELEC

10 WLA

PTOP ELEC

1 W

STER

EO ELEC

1 WLIG

HTS

ELEC 70 W

OTH

ER ELEC

8 W

MEAT & EG

GS 160 W

DAIRY 50 W

FATS AND OILS 30 W

FRUIT, VEG & NUTS 90 W

CEREALS & GRAINS 10 W

SUGAR 20 WBEER & W

INE 60 W

COFFEE 20 W

AG. PESTICIDES 10 W

AG. FERTILIZER 50 W

AG. ELECTRIC 40 W

AG. FO

SSILFUELS 80 W

WO

RKELECTRIC 410 W

WORKHEAT 200 W

CARS 560 W

BOATS 50 W

INTERNET 70 W

COMPUTERS 700 W

ELECTRONICS 250 W

NEWS 180 W

BIKES 6 WWATER 160 W

WASTEDISPOSAL 9 W TRANSPORTTOME 40 W

TEXTILES 90 W

BOOKS 130 W

MISCSTUFF1000 W

HOUSE 260 WRECREATION 110 W

HEALTHCARE 680 WFINANCE 60 WEDUCATION 340 W

WHITEGOODS 8 W

DEFENSE 100 W

ENERGY 4 W

GSA 2 W

HHS 1 W

JUSTICE 4

W

NASA 1 W

POSTAL-SERVIC

E 5 W

VETERANS-AFFAIRS 3 W

OTHER 4 W

STREETLIGHTS 4

W

GOV.VEHICLES 3

W

ROADS 330 W

OTHER 3 W

NON-

ACCO

UNTED

2960

W

My 2007 life:18000 Watts.

11333 7800

16800 6248

11300 12040

8783 12000 10167

2887 8067

17433 23600 11420

18000 25000

Footprint calculators?

www.climatecare.org (34 T CO2)

www.carbonneutral.com (23.4 T CO2)

www.earthday.net (8.4 planets)

www.safeclimate.net (18.7 T CO2)

www.bp.com (34 T CO2)

www.travelmatters.org (36.1 T CO2)

www.climatecrisis.net (26.4 T CO2)

www.conservation.org (36 T CO2)

www.carbonfootprint.com (30.5 T CO2)

www.epa.gov (8.7 T CO2)

green.msn.com (24.2 T CO2)

www.earthlab.com (52.3 T CO2)

www.treeswaterpeople.org (70.8 T CO2)

average - which is remarkably close to US average?

My calculation

My estimate

Me

My wife, my city, and me...

0 10 20 30 40 500

5

10

15

20

25

30

35

40State-level energy consumption per Capita, 2006 (kW)

Kilo

Wat

ts

Ala

ska

Wyo

min

gLo

uisi

ana

Nor

th D

akot

aTe

xas

Kent

ucky

Ala

bam

aW

est V

irgin

iaIn

dian

aM

onta

naO

klah

oma

Mis

siss

ippi

Ark

ansa

sIo

wa

Sou

th C

arol

ina

Kans

asTe

nnes

see

Neb

rask

aM

inne

sota

Del

awar

eN

ew M

exic

oId

aho

Mai

neS

outh

Dak

ota

Ohi

oG

eorg

iaV

irgin

iaM

isso

uri

Wis

cons

inW

ashi

ngto

nPe

nnsy

lvan

iaIll

inoi

sN

evad

aU

tah

Ore

gon

New

Jer

sey

Dis

tric

t of C

olum

bia

Nor

th C

arol

ina

Col

orad

oM

ichi

gan

Verm

ont

Haw

aii

Mar

ylan

dFl

orid

aA

rizon

aC

onne

ctic

utN

ew H

amps

hire

Cal

iforn

iaM

assa

chus

etts

New

Yor

kR

hode

Isla

nd

ENERGYliteracy.com2CC

Average = 11.14kW

0 10 20 30 40 50

5

10

15

20

25

30

1 Qatar2 Iceland3 United Arab Emirates4 Bahrain5 Luxembourg6 Netherlands Antilles7 Kuwait8 Trinidad and Tobago9 Canada10 United States11 Brunei Darussalam12 Finland13 Norway14 Sweden15 Australia

16 Belgium17 Saudi Arabia18 Singapore19 Gibraltar20 Netherlands21 Oman22 France23 Russian Federation24 New Zealand25 Korea, Rep26 Czech Rep27 Germany28 Austria29 Japan30 United Kingdom31 Denmark32 Ireland33 Switzerland34 Estonia35 Turkmenistan36 Slovenia37 Slovakia38 Kazakhstan39 Cyprus40 Spain41 Libyan Arab Jamahiriya42 Israel43 Italy44 Ukraine45 Greece46 Belarus47 Lithuania48 South Africa49 Hungary50 Bulgaria

kilo

wat

tsPer Capita Energy Use 2003

US Average.

Global Average

Per capita power use 2003

0 1000 2000 3000 4000 5000 60000

2000

4000

6000

8000

10000

12000

energy by region [NorAmer-Eur-MiddEast + NorAfr-CenAme & Car+SouAme+Asia(ex MidEst) ]

Ave

rage

Per

Per

son

Pow

er in

Wat

ts

Population in Millions.

Asia (excluding middle east)

1450 Watts

Central America & the Carribean

1800 WattsSouth America

1580 Watts

Middle-east & North Africa

2300 Watts

Europe

5400 Watts

north america

11400 Watts

Energy Use by RegionPower Watts/person

"The Game Plan" slideset release 1.01, March 21 2008 203

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 20000

2000

4000

6000

8000

10000

12000

0

0.5

1

1.5

2

2.5

3

3.5U

S PO

WER

CO

NSU

MPT

ION

PER

CA

PITA

(Wat

ts)

US

POW

ER C

ON

SUM

PTIO

N (

Terr

awat

ts)

"The Game Plan" slideset release 1.01, March 21 2008 205

1965 1970 1975 1980 1985 1990 1995 2000 2005

0

5

10

15

1500

1600

1700

1800

1900

2000

2100

2200

GLO

BA

L P

OW

ER

CO

NS

UM

PT

ION

, TW

PE

R C

AP

ITA

PO

WE

R, W

atts

1970 1980 1990 20000

5

10

15

year

tera

wat

tsWorld Power Consumption by Country, 1965-2005

USACanadaMexicoArgentinaBrazilChileColombiaEcuadorPeruVenezuelaOther S. & Cent. AmericaAustriaAzerbaijanBelarusBelgium & LuxembourgBulgariaCzech RepublicDenmarkFinlandFranceGermanyGreeceHungaryIcelandRepublic of IrelandItalyKazakhstanLithuaniaNetherlandsNorwayPolandPortugalRomaniaRussian FederationSlovakiaSpainSwedenSwitzerlandTurkeyTurkmenistanUkraineUnited KingdomUzbekistanOther Europe & EurasiaIranKuwaitQatarSaudi ArabiaUnited Arab EmiratesOther Middle EastAlgeriaEgyptSouth AfricaOther AfricaAustraliaBangladeshChinaChina Hong Kong SARIndiaIndonesiaJapanMalaysiaNew ZealandPakistanPhilippinesSingaporeSouth KoreaTaiwanThailandOther Asia Pacific

1650 1700 1750 1800 1850 1900 1950 20000

0.5

1

1.5

2

2.5

3

3.5

US

Ene

rgy

Con

sum

ptio

n (T

eraw

atts

)

Isaac Newton

CarnotJames Watt

Henry Ford

Wright Brothers

Albert Einstein

Nikolai TeslaThomas Edison

James Joule

US energy consumption (TeraWatts)

Coal

Natural Gas

Renewables

Petroleum

NuclearHydroelectricBiomass

My Lifestyle

LOCAL STEP 1

1900 1920 1940 1960 1980 20000

0.5

1

1.5

2

2.5

3

3.5

US Power consumption by source, 1900-2005

Year

Tera

Wat

ts

coalnatural gaspetroleumnuclearhydrobiomassRenewables:geo/sol/wind

1950 1960 1970 1980 1990 20000

200

400

600

800

1000

1200

1400Energy source (GW)

Gig

aWat

ts

Year

Historical US electricity production, by generation source.

ENERGYliteracy.com2CC

CoalPetroleumNatural GasOther GasNuclearHydroelectricWoodWasteGeothermalSolar/PVWindOtherNet Imports

1950 1960 1970 1980 1990 20000

200

400

600

800

1000

1200

1400Electricity consumption (GW)

Gig

aWat

ts

Year

Residential retailResidential lostCommerical retailCommerical lostIndustrial retailIndustrial lostTransportation retailTransportation lost

ENERGYliteracy.com2CC

Historical US Electricity consumption (GW), By Sector.Retail is usable energy for end user. Lost is the losses in conversion from primary energy to end user energy during generation and transmission.

US TOTAL Energy Flow, 2008(Gigawatts)

MODIFIED FROM: Energy Information Administration / Annual Energy Review 2008

1 Includes lease condensate.2 Natural gas plant liquids.3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind.4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve.5 Natural gas, coal, coal coke, fuel ethanol, and electricity.6 Adjustments, losses, and unaccounted for.7 Coal, natural gas, coal coke, and electricity.8 Natural gas only; excludes supplemental gaseous fuels.

9 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel.10 Includes 0.04 quadrillion Btu of coal coke net imports.11 Includes 0.11 quadrillion Btu of electricity net imports.12 Primary consumption, electricity retail sales, and electrical system energy losses, which are

allocated to the end-use sectors in proportion to each sector’s share of total electricity retailsales. See Note, “Electrical Systems Energy Losses,” at end of Section 2.

Notes: • Data are preliminary. • Values are derived from source data prior to rounding forpublication. • Totals may not equal sum of components due to independent rounding.

Sources: Tables 1.1, 1.2, 1.3, 1.4, and 2.1a.

COAL798

NATURALGAS 707CRUDE OIL1

352NGPL2 81

NUCLEAR ELECTRIC 283

RENEWABLE3 245

PETROLEUM4

921

OTHER IMPORTS5 177

IMPORTS

1098

FOSSIL FUELS 1937 DOMESTIC

PRODUCTION2464

SUPPLY3562

EXPORTS 236

COAL750

NATURAL GAS8

797

PETROLEUM9

1242

NUCLEAR ELECTRIC POWER 283RENEWABLE ENERGY3 244

STOCK CHANGE AND OTHER6 6

PETROLEUM 126

OTHER EXPORTS7 110

FOSSILFUELS10

2790

CONSUMPTION113321

RESIDENTIA

L12

723

COMMERCIAL12

620

INDUSTRIAL121043

TRANSPORTATION933

ENERGYliteracy.com2CC

MODIFIED FROM : Energy Information Administration / Annual Energy Review 2008

1 Blast furnace gas, propane gas, and other manufactured and waste gases derived fromfossil fuels.

2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies,and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derivedfuels).

3 Data collection frame differences and nonsampling error. Derived for the diagram bysubtracting the “T & D Losses” estimate from “T & D Losses and Unaccounted for” derived fromTable 8.1.

4 Electric energy used in the operation of power plants.5 Transmission and distribution losses (electricity losses that occur between the point of

generation and delivery to the customer) are estimated as 7 percent of gross generation.6 Use of electricity that is 1) self-generated, 2) produced by either the same entity that

consumes the power or an affiliate, and 3) used in direct support of a service or industrialprocess located within the same facility or group of facilities that house the generating equip-ment. Direct use is exclusive of station use.

Notes: • Data are preliminary. • See Note, “Electrical System Energy Losses,” at theend of Section 2. • Values are derived from source data prior to rounding for publication.• Totals may not equal sum of components due to independent rounding.

Sources: Tables 8.1, 8.4a, 8.9, A6 (column 4), and Energy Information Administration,Form EIA-923, "Power Plant Operations Report."

ENERGYliteracy.com2CC

US Electricity Flow, 2008(GW)

COAL 688

NATURAL GAS 235 PETROLEUM 16

OTHER GASES1 3

NUCLEAR ELEC. 283

RENEWABLE 130

OTHER2 3

FOSSIL FUELS942

ENERGY CONSUMED TO GENERATE ELECTRICITY

1360

CONVERSION LOSSES863

GROSS GENERATIONOF ELECTRICTY

497 NET GENERATIONOF ELECTRICTY

469END USE

442

UNACCOUNTED3 4

NET IMPORTS 4

RESIDENTIAL 157

DIRECT USE6 17

TRANSPORTATION 1

INDUSTRIAL 112

COMMERCIAL 154

TRANSM’N & DISTRIB’N LOSSES5 35

PLANT USE4 28

0

200

400

600

800

1000

1200

1400Electricity Grid; Generation by source, Consumption by Sector, 2008

Gig

aWat

ts

Residential retailResidential lostCommerical retailCommerical lostIndustrial retailIndustrial lostTransportation retailTransportation lost

CoalPetroleumNatural GasOther GasNuclearHydroelectricWoodWasteGeothermalSolar/PVWindOtherNet Imports

Lostin

generationtransmission

Usableenduser

energy

Source Sector

Primary EnergyENERGYliteracy.com2CC

0

1

2

3

4

5E

nerg

y (T

W)

2007 Energy Consumption - Primary use by fuel type

Elec

tric

ity G

enTr

ansp

orta

tion

Indu

stry

Cooki

ngAir

Heatin

gIn

dust

rial S

team

Agric

ultu

re &

For

estr

yW

ater

Hea

ting

Ligh

tDis

trib

utio

n

Min

ing

OilCoalNatural GasBioHydroNuclearWindGeothermalSolarTidal

-400000 -300000 -200000 -100000 0150

200

250

300

350

400

year

CO 2 c

once

ntra

tion

(ppm

)Historic Atmospheric CO2 concentration

1000 1200 1400 1600 1800 2000 2200

260

280

300

320

340

360

380

time

CO

2 Lev

el (p

pm)

CO2 concentrations last 1000 years

Ice Core 75 year AverageLaw Dome Antarctica

Ice Core 20 year AverageLaw Dome Antarctica

Mauna Loa Direct MeasurementHawaii

CO

2 Lev

el (p

pm)

Year

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005310

320

330

340

350

360

370

380

year

CO

2 co

ncen

trat

ion

(ppm

)C

O2 L

evel

(ppm

)

Year

Ice Core 20 year AverageLaw Dome Antarctica

Mauna Loa Direct MeasurementHawaii

0 10 20 30 40 50

10

20

30

40

50

60

70

80

90

1 UNITED_STATES_OF_AMERICA2 USSR3 CHINA_MAINLAND4 GERMANY_COMBINE5 JAPAN_COMBINE6 UNITED_KINGDOM7 YUGOSLAVIA_COMBINE8 FRANCE_INCLUDING_MONACO9 INDIA10 CANADA11 POLAND12 RUSSIAN_FEDERATION13 ITALY_INCLUDING_SAN_MARINO14 SOUTH_AFRICA15 MEXICO

16 AUSTRALIA17 CZECHOSLOVAKIA18 BELGIUM19 SPAIN20 BRAZIL21 REPUBLIC_OF_KOREA22 NETHERLANDS23 ISLAMIC_REPUBLIC_OF_IRAN24 SAUDI_ARABIA25 INDONESIA26 ROMANIA27 DEMOCRATIC_PEOPLES_REPUBLIC_OF_KOREA28 ARGENTINA29 VENEZUELA30 TURKEY31 UKRAINE32 TAIWAN33 AUSTRIA34 SWEDEN35 HUNGARY36 THAILAND37 DENMARK38 ALGERIA39 BULGARIA40 EGYPT41 GREECE42 SWITZERLAND43 NIGERIA44 MALAYSIA45 FINLAND46 UNITED_ARAB_EMIRATES47 KAZAKHSTAN48 IRAQ49 COLOMBIA50 PAKISTAN

Cumulative National CO2 Emissions from Fossil-Fuel Burning,Cement Manufacture, and Gas Flaring: 1751-2004

giga

met

ric

tons

of c

arbo

n Cumulative national CO2 emissions from fossil-fuel burning, ce-ment manufacture, and gas flaring: 1751-2004

Out of equilibrium

AccessibleFossil Fuels1600 GtC

Soils3000 GtC

Vegetation700 GtC

Oceans40000 GtC

Atmosphere ~700 GtC +2 / yr

Atmosphere to Ocean 2 GtC/year

Carbon to Atmosphere 8 GtC/year

Temperature Changes around the world in the last quarter of the 20th century

- 1 - 0.8 - 0.6 - 0.4 - 0.2 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1

Trends in °C per decade

-1 -0.8 +0.8-0.6 +0.6-0.4 +0.4-0.2 +0.20 +1

?????

We need to commit to the temperature we want...

What tools do we have to do that ?

Climate models:Physics and chemistry-based computer models of planet.More than a dozen competing models...

Scenarios:Guesses at humanity's reactions: "business as usual vs. change"Typically don't have feedbacks like population...

Impact Studies:Ecosystem, geopolitical, and other impacts, as predicted by climate models and scenarios.Make the most headlines, have the least accuracy...

A1BA1TA1FIA2B1B2IS92a

Scenarios

21002000190018001700

-0.5

0.0

-1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

10% Species Lost

Entire cities and countries lost to sea level

20-50% Species Lost1-4 Billion people face water shortages

15-40% Species Lost

1000ppm

750ppm

650ppm

550ppm

500ppm

450ppm

400ppm

2.0

Climate models:Physics and chemistry-based computer models of planet

Tem

pera

ture

Ris

e, d

egre

es C

elsi

us

Tem

pera

ture

Ris

e, d

egre

es C

elsi

us

15-40% Species Lost

10% Species Lost

1-4 Billion people face water shortages

Entire cities and countries lost to sea level

20-50% Species Lost

450ppm

1000ppm

750ppm

650ppm

550ppm

500ppm

400ppm

Scenarios:Guesses at humanity's reactions: "business as usual vs. change"

A1BA1TA1FIA2B1B2IS92a

Scenarios

21002000190018001700

-0.5

0.0

-1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

1000ppm

750ppm

650ppm

550ppm

500ppm

450ppm

400ppm

A1BA1TA1FIA2B1B2IS92a

Scenarios

21002000190018001700

-0.5

0.0

-1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tem

pera

ture

Ris

e, d

egre

es C

elsi

us

10% Species Lost

Entire cities and countries lost to sea level

20-50% Species Lost1-4 Billion people face water shortages

15-40% Species Lost2.0

Impact Studies:Ecosystem, geopolitical, and other impacts, as predicted by climate models and scenarios.

90% Coral Reefs Lost

Resource warsIRREVERSIBLE FEEDBACKS

Climate Wars:

- China backed Pakistan vs US backed India, over the Indus river glacial melt and catchment area.

- China and Russia over climate refugees crossing over into Siberia (note the severe drought at present in north central China)

- Persian Gulf countries sending in troops to enforce their property rights after land they'd brought in East African countries to feed their own populations gets overun by lo-cals desperate for their own land

- Tidal surges flood the Nile Delta forcing millions to try and cross borders into Lybia, Sudan, and Israel

- Civil War in Nigeria (again) as the densely populated delta turns saline after regular flooding

- Gunboat diplomacy in the Arctic as Russia and Canada try to enforce economic exclusion zones against the US and EU.

"Business As Usual" : 800+ ppmStern Report / EU : 550 ppm

This material : 450 ppmWhere we are today : 385 ppmJames Hansen, NASA : 350 ppm !

Pre - Industrial : 290 ppm

Target Atmospheric CO2: Where Should Humanity Aim?

James Hansen, Makiko Sato, Pushker Kharecha, David Beerling,Valerie Masson-Delmotte, Mark Pagani, Maureen Raymo, Dana Royer, James C. Zachos

Paleoclimate data show that climate sensitivity is ~3°C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6°C for doubled CO2 for the range of cli-mate states between glacial conditions and icefree Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 425±75 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. If the present overshoot of this target CO2 is not brief, there is apossibility of seeding irreversible catastrophic effects.

to preserve a planet similar to that on which civilization developed...

... CO2 will need to be reduced from its current 385 ppm to at most 350 ppm.

Which would be nice but...

The time is now

CO2 emissions peak0 to 100 years

Today 100 years

Ma

gn

itu

de

of

resp

on

se

Time taken to reachequilibrium

CO2 emissions

200 years 300 years

CO2 stabilisation

Unfortunately results won't be seen on the timescale of necessary actions.

C02 emissions peak 0 to 100 years

Today

Magnitude of response

CO2 stabilisation:100 to 300 years

Temperature stabilisation:A few centuries

Sea-level rise from thermal expansion and ice meltCenturies to several millenia

Time taken to reachequilibrium

CO2

Long-term trends and planetary risks

300 years200 years100 year

650

550

450ppm

(year2000) 368

Preindustrial 280

IMAGINE YOU COMMITTED TO THIS SCENARIO :

+2oC

AccessibleFossil Fuels1600 Gt

Soils3000 Gt.

Vegetation700 Gt.

Oceans40000 Gt.

Atmosphere 600 Gt.+0

Carbon to Atmosphere 1-2 GtC/year

Atmosphere to Ocean 1-2 GtC/year

What is implied by a 450ppm CO² target?

This is the naive model offered by "% reduction" analysis....

Effect on CO2 PPM1 Billion Tons Carbon +0.26

1 Terawatt Year (COAL) +0.1981 Terawatt Year (OIL) +0.155

1 Terawatt Year (GAS) +0.112

60 PPM to go (to 450) ...

400 TW years of fossil fuel burning ...

40 years at 10TW, 20 years at 20TW ...

METHODS SUMMARY

To relate emissions of GHGs, tropospheric ozone precursors and aerosols to gas-

cycle and climate system responses, we employ MAGICC 6.016, a reduced com-

plexity coupled climate–carbon cycle model used in past IPCC assessment

reports for emulating AOGCMs. Out of more than 400 parameters, we vary 9

climate response parameters (one of which is climate sensitivity), 33 gas-cycle

and global radiative forcing parameters (not including 18 carbon-cycle para-

meters, which are calibrated separately16 to C4MIP carbon-cycle models8), and

40 scaling factors determining the regional 4 box pattern of key forcings

(Supplementary Table 1). Other parameters are set to default values16.

To constrain the parameters, we use observational data of surface air temper-

ature9 in 4 spatial grid boxes from 1850 to 2006, the linear trend in ocean heat

content changes10 from 1961 to 2003 and year 2005 radiative forcing estimates

Table 1 | Probabilities of exceeding 2 6C

Indicator Emissions Probability of exceeding 2 uC*

Range Illustrative default case{

Cumulative total CO2

emission 2000–49 886 Gt CO2

8–37% 20%1,000 Gt CO

210–42% 25%

1,158 Gt CO2

16–51% 33%1,437 Gt CO

229–70% 50%

Cumulative Kyoto-gas emissions 2000–49 1,356 Gt CO2

equiv. 8–37% 20%1,500 Gt CO

2equiv. 10–43% 26%

1,678 Gt CO2

equiv. 15–51% 33%2,000 Gt CO

2equiv. 29–70% 50%

2050 Kyoto-gas emissions 10 Gt CO2

equiv. yr21

6–32% 16%(Halved 1990) 18 Gt CO

2equiv. yr21

12–45% 29%(Halved 2000) 20 Gt CO

2equiv. yr21

15–49% 32%36 Gt CO

2equiv. yr21

39–82% 64%2020 Kyoto-gas emissions 30 Gt CO

2equiv. yr21 (8–38%){ (21%){

35 Gt CO2

equiv. yr21 (13–46%){ (29%){40 Gt CO

2equiv. yr21 (19–56%){ (37%){

50 Gt CO2

equiv. yr21 (53–87%){ (74%){

*Range across all priors reflecting the various climate sensitivity distributions with the exception of line 12 in Fig. 3a.{Note that 2020 Kyoto-gas emissions are, from a physical perspective, a less robust indicator for maximal twenty-first century warming with a wide scenario-to-scenario spread (Supplementary Fig. 1c).{ Prior chosen to match posterior of ref. 19 with uniform priors on the TCR.

0 500 1,000 1,500 2,000 2,500

Pro

bab

ility

of e

xcee

din

g 2

°C

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pro

bab

ility

of s

tayi

ng b

elow

2 °

C

Very likely

Like

lyU

nlik

ely

Less

like

ly

than

no

tM

ore

like

ly

than

no

t

Very unlikely

Cumulative total CO2 emissions 2000–49 (Gt CO2)

Emitted, available carbon (Gt CO2)

0 500 1,000 1,500 2,000 2,500

a

b

6 Illustrative SRESSRES A1FI

35 SRES7 EMF reference14 EMF reference3 Stern / EQW948 EQWHALVED-BY-2050

Diff. CS priors

Illustrative defaultCMIP3 and C4MIPemulation

8162

Scenarios:

Climate uncertainties:

CO

2 em

issi

ons

2000

to

200

6

d useLanL

Gas

Oil

Coal

Total proven fossil fueel reserves

1

3

15

14

13

12

11

10

1716

19

18

9

87

6

5

4

2

A1B

A1FI

A1T

A2

B1

B2

Figure 3 | The probability of exceeding 2 6C warming versus CO2 emitted inthe first half of the twenty-first century. a, Individual scenarios’probabilities of exceeding 2 uC for our illustrative default (dots; for example,for SRES B1, A2, Stern and other scenarios shown in Fig. 2) and smoothed(local linear regression smoother) probabilities for all climate sensitivitydistributions (numbered lines, see Supplementary Information for datasources). The proportion of CMIP3 AOGCMs26 and C4MIP carbon-cycle8

model emulations exceeding 2 uC is shown as black dashed line. Colouredareas denote the range of probabilities (right) of staying below 2 uC in AR4terminology, with the extreme upper distribution (12) being omitted.b, Total CO2 emissions already emitted3 between 2000 and 2006 (grey area)and those that could arise from burning available fossil fuel reserves, andfrom land use activities between 2006 and 2049 (median and 80% ranges,Methods).

NATURE | Vol 458 | 30 April 2009 LETTERS

1161 Macmillan Publishers Limited. All rights reserved©2009

LETTERS

Warming caused by cumulative carbon emissionstowards the trillionth tonneMyles R. Allen1, David J. Frame1,2, Chris Huntingford3, Chris D. Jones4, Jason A. Lowe5, Malte Meinshausen6

& Nicolai Meinshausen7

Global efforts to mitigate climate change are guided by projectionsof future temperatures1. But the eventual equilibrium global meantemperature associated with a given stabilization level of atmo-spheric greenhouse gas concentrations remains uncertain1–3,complicating the setting of stabilization targets to avoid poten-tially dangerous levels of global warming4–8. Similar problemsapply to the carbon cycle: observations currently provide only aweak constraint on the response to future emissions9–11. Here weuse ensemble simulations of simple climate-carbon-cycle modelsconstrained by observations and projections from more compre-hensive models to simulate the temperature response to a broadrange of carbon dioxide emission pathways. We find that the peakwarming caused by a given cumulative carbon dioxide emission isbetter constrained than the warming response to a stabilizationscenario. Furthermore, the relationship between cumulativeemissions and peak warming is remarkably insensitive to the emis-sion pathway (timing of emissions or peak emission rate). Hencepolicy targets based on limiting cumulative emissions of carbondioxide are likely to be more robust to scientific uncertaintythan emission-rate or concentration targets. Total anthropogenic

emissions of one trillion tonnes of carbon (3.67 trillion tonnes ofCO2), about half of which has already been emitted since indus-trialization began, results in a most likely peak carbon-dioxide-induced warming of 2 6C above pre-industrial temperatures, witha 5–95% confidence interval of 1.3–3.9 6C.

Under conventional climate stabilization scenarios, greenhouse gasemissions are reduced until atmospheric composition approaches astabilization level consistent with a desired equilibrium warming andare then adjusted to hold concentrations stable thereafter5. If climatesystem and carbon cycle properties were known, this would bestraightforward: we could reliably map emissions to temperaturesand vice versa. For example, if the climate system were to follow theresponse of a simple model with most likely values of key parameters(see Methods Summary and Supplementary Information), the emis-sions scenario highlighted by the solid red line in Fig. 1a would bringatmospheric carbon dioxide (CO2) concentrations towards 490 p.p.m.(parts per million) by the end of the twenty-first century (solid red linein Fig. 1b). Under the ‘490 p.p.m. stabilization scenario’ shown by thedotted red lines, rapid reductions cease after 2070, with smaller sub-sequent adjustments causing concentrations to converge to 490 p.p.m.

1Department of Physics, University of Oxford, OX1 3PU, UK. 2Smith School of Enterprise and the Environment, University of Oxford, OX1 2BQ, UK. 3Centre for Ecology and Hydrology,Wallingford, OX10 8BB, UK. 4Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK. 5Met Office Hadley Centre (Reading Unit), Department of Meteorology, University ofReading, RG6 6BB, Reading, UK. 6Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany. 7Department of Statistics, University of Oxford, OX1 3TG, UK.

25

800

6

5

4

3

2

1

0

CO

2 co

ncen

trat

ion

(p.p

.m.)

Like

lihoo

d

CO

2-in

duc

ed w

arm

ing

(°C

)

700

600

500

400

300

Gig

aton

nes

of c

arb

on p

er y

ear

Year Year Year

20

15

10

5

02000 2020 2040 2060 2080 2100 1900 2000 2100 2200 2300 2400 2500 1900 2000 2100 2200 2300 2400 2500

a Idealized CO2 emission profiles b Composition response to benchmark c Temperature response to benchmark

Figure 1 | Idealized carbon dioxide emission scenarios and response tobenchmark scenario. a, Emissions, including zero emissions after 2000(dotted black line). Solid red and orange lines show scenarios withcumulative emissions 1750–2500 within 1% of 1 Tt C. Solid red line showsbenchmark case and dotted red line shows the ‘490 p.p.m. stabilization’scenario. b, CO2 concentration response to benchmark scenario with best-fitcombination of simple climate model parameters (solid red line) and withrandom parameter combinations shaded by likelihood (grey plume). Thevertical scale bar shows the corresponding likelihood profile for a normally

distributed quantity, with black line showing 5–95% (horizontal tickmarks:17–83%) confidence interval. The dotted red line shows best-fit response tostabilization scenario. c, Temperature response to benchmark scenario fromsimple model: best fit in red and likelihood profile in grey. Bar on right showslikelihood profile for peak warming response to ‘490 p.p.m. stabilization’emissions scenario: in cases where temperatures are still rising in 2500,equilibrium warming response to 2500 CO2 concentration is plotted.Diamonds in b and c show observed CO2 concentrations and temperatures(relative to 1900–1920), respectively.

Vol 458 | 30 April 2009 | doi:10.1038/nature08019

1163 Macmillan Publishers Limited. All rights reserved©2009

CO2ppmfuture = CO2ppmcurrent + 0.55 * (0.36*TWyrcoal + 0.28*TWyroil + 0.204*TWyrgas)

+ GTCdeforestation

We need to stop the talk about "% reductions". It implies if we only use some % of today's fossil fuel use that we will stabilise the climate. That's wrong. There's a known and reasonably predictable amount of carbon left to burn:

1 TWyr = 1 Terawatt Year = 3.16 x 1019 Joules.

Units shown in Terawatts (TW)

Energy production

Plants: 5.2

Tidal: 0.0005

Solar: 0.016

Wind: 0.06

Gas: 3.2 Coal: 3.6

Geothermal: 0.03

Nuclear: 0.37

Hydro: 0.36

Oil:5

18 TWHumanity

Global Exergy ConsumptionUnits shown in Terawatts

Other 2.5 Chemicals Metabolism Lighting Refrigeration

Electricity 1.7

Manufacturing & Industrial 3

Road & Rail 2.1

Heating & Cooking 2.3

Forestry 3

Global Energy Consumption

Agriculture 3.8

Units shown in Terawatts (TW) 18 TWHumanity

Solar 162 000 TWGravity 3.7 TWHeat 32 TWNuclear 1¹º ZJ

Known Sources of Energy 18 TW

Nuclear fusion radiated to earth.

e Renewable Until sun burns out (~5bn years)

Solar162,000 TW

18 TW

Movement of celestial bodies creates tides.

Ocean tides : 3.5 TWSolid earth tides : 0.2 TW

e Renewable

Gravity3.7 TW

18 TW

Nuclear materials decaying inearth's core+Original heat from gravitationalcollapse of early earth+Tidal forces.

e Renewable

Heat ‘geothermal’32 TW

18 TW

Nuclear1¹º ZJEarthbound fissionable and fusionable materials.Leftover from formation of universe.

e Non-renewableUranium = 10³ yearsThorium = 10² yearsDeuterium = 10¹º yearsLithium = 10⁴ years

18 TW

Solar Flux

38 000 TWLand & Water Heating

41 000 TWEvaporation

5 000 TWSurface Reflection

31 000 TWAtmospheric Absorbtion

5 000 TWScattering

42 000 TWAtmospheric Reflection

162 000 TWIncident Solar Radiation

18 TW

Sources of renewable energy.

31 000 TW Atmospheric Absorption

85 000 TW Surface Solar

62 TW Ocean surface waves

90 TW Photosynthesis

65 TW Land3 TW Coastal waves

7.2 TW Hydro Rivers

300 TW Hydro Clouds

25 TW Hydro Land

3600 TW Wind

41 000 TW Evaporation

38 000 TW Land & Water heating

3.5 TW Tidal

32 TW Geo thermal

25 TW Ocean

100 TW Ocean thermal gradient

18 TWGlobal consumption

Current Demand:

16 TW (IEA)

Fossil Fuel:

2-3 TW

Existing non-carbon:

1.5 TW

New Clean Energy:

16-(3+1.5) = > 11.5 TW

What is the challenge?

2TW Fossil Fuels

1TW Existing Nuclear

0.5TW Existing Hydro / Renewables

2TW New Photo-Voltaic Solar

2TW New Solar Thermal

2TW New Wind

2TW New Geothermal

3TW New Nuclear

0.5TW New Other

Units shown in Terawatts (TW)2033 Energy Mix

Solar Thermal: 2

Fossil Fuels: 2

(carbon-free) Biofuels: 0.5

Existing Nuclear: 1

Existing Hydro / Renewables: 0.5

Wind:2

Nuclear: 3 Geothermal 2

Photo Voltaic Solar 2

16 TW

2 TW New Photo Voltaic

100m²

100m²100m²

100m²100m²100m²100m²100m²

100m²

100m²

100m

²

100

100

10

0m

²

10

0m

²

10

0m

²

10

0m

²1

00

100

100

100m

²100m

²100m

²

100m²

100m²

100m²

100m²

100m²

100m²

100m²

100m²

100m²100m²

100m²100m² 100m² 100m² 100m²

100m²

100m²

100m²

100

100

10

0m

²

10

0m

²

10

0m

²

10

0m

²1

00

100

100

100m²

100m²

100m²

100m²

100m²

100m²

100m²

100m²

100m²

100m²

100 m² of solar cells

every second for the next

25 years. 15% efficiency,

well sited.

1 sec.

Photo Voltaic

2 TW New Solar Thermal

50m²

50m²50m²

50m²50m²50m²50m²50m²50m

²50m²

50m²

50m

²

50

50

50

50

50

50

50m

²50m

²50m

²50m

²

50m²

50m²

50m²

50m²

50m²

50m²

50m²

50m²

50m²50m²

50m²50m² 50m² 50m² 50m² 50m

² 50m²

50m²

50m

²

50

50

50

50

50

50

50

50m

²50m

²50m

²50m

²

50m²

50m²

50m²

50m²

50m²

50m²

50m²

50

25 years50 m² of solar thermal

mirrors every second for

the next 25 years. 30%

efficiency, well sited.

1 sec.

Solar Thermal

100m Diameter

100m Diameter100

m D

iam

eter

100

m D

iam

eter

100m Diameter

100m Diameter

100m Diameter

100

m D

iameter

100

m D

iameter

100m Diameter

12 3MW wind turbines in

great locations every hour.

Or one 100m diameter

turbine every 5 minutes …

6 min.

2 TW New Wind Wind

SUN MON TUE WED THU FRI

1

8765432

1615141312109

23222120191817

30292827262524

31

SAT

March

3 TW New Nuclear

1x 3GW Nuclear plant

every week for the next

25 years.

Nuclear

2 TW Geothermal

SUN MON TUE WED THU FRI

1

8765432

1615141312109

23222120191817

30292827262524

31

SAT

March

3x 100MW

steam turbines

every day for

next 25 years.

Geothermal

0.5 TW carbon (net zero) biofuels?

1250m²

1250m²1250m²

1250m²1250m²1250m²1250m²1250m²

1250m²

1250m²

1250m²

1250

12

50

12

50

12

50

12

50

12

50

12

50

12

50

1250

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²1250m²

1250m² 1250m² 1250m² 1250m²1250m²

1250m²

1250m²

1250m²

1250m

²

12

50

12

50

12

50

12

50

12

50

12

50

12

50

1250m

²1250m

²1250m

²1250m

²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250m²

1250 m² or 1 olympic

swimming pool of algae

every second for the next

25 years.

1 sec.

Biofuel

110 bn cans / year...= 200 GW solar thermal / year.

9 Nokia phones every second.Nokia + INTEL + AMD + + for solar PV?

GM = 1 car every 2 minutes.GM + FORD = 1 wind turbine every 5 minutes?

Retooling for WWII.

More than 300 000 aircraft were built in the US between 1939 and 1945.

1965 1970 1975 1980 1985 1990 1995 2000 2005

0

5

10

15G

LOB

AL

PO

WE

R C

ON

SU

MP

TIO

N, T

W

10 TWin last40 years!

Renewable Power Density Maps

PhotosynthesisPrecipitation (ultimately hydro-electric)

Solar radiationSolar radiation

80 240 400 560 720 W/m^2

Photosynthesis

Solar Radiation

Precipitation (ultimately hydro electic)

Wind - 50m

80 240 400 560 720 W/m^2

80 240 400 560 720 W/m^280 240 400 560 720 W/m^2

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

80 240 400 560 720 W/m^2 80 240 400 560 720 W/m^2

80 240 400 560 720 W/m^2

80 240 400 560 720 W/m^2

Photosynthesis Precipitation (ultimately hydro electic)

Renewable Power Density Maps (compared to wind)

Solar Radiation Wind - 50m

PV : 50% CST : 25%

ATMOSPHERIC LOSSES.

DAY / NIGHT LOSSES.

CLOUD / WEATHER LOSSES.

SOLAR CONSTANT = 1366 Watts / m2.

GEOGRAPHY (LATITUDE).

LAND AREA COVERAGE

INSOLATION =90-300 Watts / m2.

TECHNOLOGY EFFICIENCY10 - 40%.

ACTUAL SOLAR PHOTONS TO ELECTRONS = 10-20 Watts / m2.

100m diameter = 3MW rated.33% capacity factor = 0.33 x 3 = 1MWSpacing = 10 diameters apart.Actual power density by land area = 1MW / 1km2

1-2W/m2 of land.

Hydroelectricity:Lake Mead : 639km2

Hoover Dam : 1860MW1860000000 / 639 000 000 = 2.9 W/m2

Bio-fuelsLake Mead : 639km2

Algae, 3% efficient photo-conversion.2-3 W/m2

Land area by country represented as scaled stripes

2TW Wind

2TW Solar Thermal

2TW PV

1TW Hydro

1TW Bio

biofuels

Chile1TW

hydro

Montana1TW

photo voltaics

1TW 1TWItaly

solar thermal

1TW 1TWNew Zealand

wind

South Africa1TW 1TW

1 Joule of fossil energy used produces 4.9x10-21 ppm increase.

How many ppm to replace every gasoline car in the world (1bN) with a 1000kg electric vehicle? = 0.49 ppm

How many ppm for 250 million new green homes? = 8.9 ppm

How many ppm for installing :

5TW solar = 6.1 ppm3TW wind = 0.55 ppm2TW geothermal = 0.49 ppm

So there is + 19 ppm right there. Scary.

Might be good to ask questions of form:

How many ppm for 6 bN new laptops? = 0.05 ppm6 bN cellphones? = 0.03 ppm6 bN 100 Watt lightbulbs burning for 1 year? = 0.2ppm

Put yourself back into the picture :

6 650 000 000 People

16 000 000 000 000 Watts= 2 400 Watts per person.

SFO

TO LH

R 4

10

W

LHR-S

FO 410 W

SFO-ATL 160 W

ATL-SFO 160 W

SFO-ATL-CPH 510 W

HEL-AMS-ATL-SFO 570 W

OAK-OGG-HON-OAK 560 W

SFO-BOS 210 W

BOS-SFO 210 W

OAK-DC 180 W

DC-OAK 180 W

OAK-ORD-MON-QUE 210 WQUE-DTW-SFO 210 WSFO-JFK 200 WJFK-SFO 200 W

OAK-BUR 20 W

BUR-OAK 20 W

SFO-BOS 210 WBOS-ORD 70 W

ORD-SFO 140 WSFO-JFK 200 W

JFK-SFO 200 W

SJC-SJO 230 W

SJO-SJC 230 W

SJC-VIJ 280 W

VIJ-SJC 280 W

SFO-SYD1140 W

SFO-DR 310 W

DR-SFO 3

10 W

SFO-O

AK 280 W

OAK

-SFO

280

W

'SFO TO LHR' 'LHR-SFO' 'SFO-ATL' 'ATL-SFO' 'SFO-ATL-CPH' 'HEL-AMS-ATL-SFO' 'OAK-OGG-HON-OAK' 'SFO-BOS' 'BOS-SFO' 'OAK-DC' 'DC-OAK' 'OAK-ORD-MON-QUE' 'QUE-DTW-SFO' 'SFO-JFK' 'JFK-SFO' 'OAK-BUR' 'BUR-OAK' 'SFO-BOS' 'BOS-ORD' 'ORD-SFO''SFO-JFK' 'JFK-SFO' 'SJC-SJO' 'SJO-SJC' 'SJC-VIJ' 'VIJ-SJC''SFO-SYD' 'SFO-DR' 'DR-SFO' 'SFO-OAK' 'OAK-SFO'

HO

ND

A IN

SIG

HT

310

W

DU

NE

BUG

GY

VW 1

50 W

TOYO

TA H

ILU

X 1

60 W

DO

DG

E S

PRIN

TER

100

WTO

YOTA

TA

CO

MA

240

W

TAX

IOR

REN

TAL

47

0 W

SH

OW

ERS

GA

S 7

0 W

CO

OK

ING

GA

S 3

0 W

HEATIN

G G

AS

400 WFR

IDG

E ELEC 30 W

CO

MPU

TER ELEC

10 WLA

PTOP ELEC

1 W

STER

EO ELEC

1 WLIG

HTS

ELEC 70 W

OTH

ER ELEC

8 W

MEAT & EG

GS 160 W

DAIRY 50 W

FATS AND OILS 30 W

FRUIT, VEG & NUTS 90 W

CEREALS & GRAINS 10 W

SUGAR 20 WBEER & W

INE 60 W

COFFEE 20 W

AG. PESTICIDES 10 W

AG. FERTILIZER 50 W

AG. ELECTRIC 40 W

AG. FO

SSILFUELS 80 W

WO

RKELECTRIC 410 W

WORKHEAT 200 W

CARS 560 W

BOATS 50 W

INTERNET 70 W

COMPUTERS 700 W

ELECTRONICS 250 W

NEWS 180 W

BIKES 6 WWATER 160 W

WASTEDISPOSAL 9 W TRANSPORTTOME 40 W

TEXTILES 90 W

BOOKS 130 W

MISCSTUFF1000 W

HOUSE 260 WRECREATION 110 W

HEALTHCARE 680 WFINANCE 60 WEDUCATION 340 W

WHITEGOODS 8 W

DEFENSE 100 W

ENERGY 4 W

GSA 2 W

HHS 1 W

JUSTICE 4

W

NASA 1 W

POSTAL-SERVIC

E 5 W

VETERANS-AFFAIRS 3 W

OTHER 4 W

STREETLIGHTS 4

W

GOV.VEHICLES 3

W

ROADS 330 W

OTHER 3 W

NON-

ACCO

UNTED

2960

W

My New Life

2291 Wattsair travel: 983

car: 258

food: 376

stuff: 254

bike ferry: 158

home heating: 25

home electric: 90

work heat: 25

work electric: 100

society: 22

My New Life

LOCAL STEP 4

Saul Griffith. 2010 : 13,777 Miles. 983 Watts equivalent. 2,000 kg CO2

Saul Griffith. 2010: 13,777 Mi. 2,000 kg CO2 My New Life

LOCAL STEP 4Previous Air Travel983 Watts

1 Trips / Month Mountain ViewDiesel Sprinter

18 MPG

6 Trips / year in-Laws, SebastopolHybrid Honda

55 MPG

2 Trips / year Waddell Creek, SurfingDune Buggy

25 MPG

Saul's new driving habits

2 Trips / Month AlamedaHybrid Honda

55 MPG

My New Life

LOCAL STEP 4Previous Driving258 Watts

Milk Cheese: 15 W376 Watts

Wine: 38 W

Vegetables: 150 W

Farming: 50 W

Transportation: 60 W

Fertilizer: 31 W

Meat & Fish: 32 W

Saul’s new lifeMy New Life

LOCAL STEP 4Previous Food

772 Watts

rest of life 11369

Saul's stuff, old life vs. new life

1/10th as much stuff lasting 10 times as long.

New stuff: 250 W Old stuff: 2500 W

My New Life

LOCAL STEP 4

What about products?

Also contains per bottle

Plasticizers 43mg†Estrogen 0.12mg†Carcinogenic Dye 0.19mg†

† Safe daily values not yet established.

Consumption FactsContainer Mass 1.58oz (44.9g)Components per container 3

Embodied Energy Per ContainerTotal 4,609,420 JoulesPETE 38.81g 3,962,400 JoulesHDPE 4.83g 497,500 JoulesCellulosic 1.34g 149,520 Joules

Recycle rate 23%Landfill rate 43%Energy recovery rate 16%Lost to environmental waste 18%

Personal Energy Footprint % Daily Value*Total 4.54%Transport (avg.estimated) 0.69%Manufacture 0.46%Embodied Energy 2.67%Refrigeration (avg.estimated) 0.71%

* Personal Energy Footprint is based on a recommended 2000 Watt lifestyle. The average US consumer has a 11400 Watt lifestyle.! Consuming this product daily is equivalent to increasing your energy footprint by 90 Watts.

Item and material 1960 1965 1970 1975 1980 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

MILLIONS OF TONNESWaste generated 87.8 103.4 121.9 128 151.5 164.4 170.7 178.1 184.2 191.4 205.2 204.6 208.9 211.8 214.2 211.4 209.2 216.4 220.2 Per person per day (lb.). 2.7 3 3.3 3.3 3.7 3.8 3.9 4 4.1 4.2 4.5 4.4 4.5 4.5 4.5 4.4 4.3 4.4 4.5Materials recovered 5.9 6.8 8.6 9.9 14.5 16.4 18.3 20.1 23.5 29.9 33.6 37 40.6 43.8 50.8 54.9 57.3 59.4 62.2 Per person per day (lb.). 0.18 0.19 0.23 0.25 0.35 0.38 0.42 0.45 0.52 0.7 0.7 0.8 0.9 0.9 1.1 1.1 1.2 1.2 1.3 Combustion for energy recovery (NA) 0.2 0.4 0.7 2.7 7.6 9.6 16 24.5 27.1 29.7 30.1 30.5 30.9 31.2 34.5 36.1 36.7 37 Per person per day (lb.). (NA) 0.01 0.02 0.02 0.06 0.17 0.22 0.36 0.59 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8Combustion without energy recovery. 27 26.8 24.7 17.8 11 4.1 3 2 1 2 2.2 2.2 2.2 1.6 1.3 1 -1 -1 -1 Per person per day (lb.). 0.82 0.75 0.66 0.45 0.27 0.1 0.07 0.05 0.02 0.04 0.05 0.05 0.05 0.03 0.03 0.02 -1 -1 -1Landfilled, other disposal. 54.9 69.6 88.2 99.7 123.3 136.4 139.8 140 135.1 132.4 139.7 135.3 135.7 135.5 130.9 120.9 115.8 120.4 121.1 Per person per day (lb.). 1.7 2.1 2.4 2.5 3 3.13 3.18 3.15 3.02 2.9 3.1 2.9 2.9 2.9 2.8 2.5 2.4 2.5 2.5 PERCENT CHANGE FROM PRIOR YEAR Waste generated (NA) 15.1 15.2 4.8 15.5 7.8 3.7 4.2 3.3 3.8 6.4 -0.3 2.1 1.4 1.1 -1.3 -1 3.5 1.8 Per person per day . (NA) 11.3 8.3 -0.3 10.7 3.2 2.8 3.2 2.7 2.8 8.1 -1.4 1 0.3 0.2 -2.2 -1.9 2.5 0.8Materials recovered (NA) 13.2 20.9 13.1 31.7 11.6 10.4 9 14.5 21.4 8.3 10.3 9.5 8 15.9 8.2 4.4 3.6 4.7 Per person per day . (NA) 5.3 17.4 8 28.6 7.9 9.5 6.7 13.5 21.2 2.8 9.1 8.3 6.9 14.8 7.2 3.4 2.6 3.7 Combustion for energy recovery (NA) (NA) 50 42.9 74.1 64.5 20.8 40 34.7 9.6 2.8 1.5 1.4 1.1 1.1 10.7 4.5 1.7 0.8 Per person per day . (NA) (NA) 50 0 66.7 64.7 22.7 38.9 39 1.7 6 0.4 0.3 0 0.1 9.7 3.5 0.7 -0.1Combustion without energy recovery. (NA) -0.7 -8.5 -38.8 -61.8 -168 -36.7 -50 -100 50 10.1 -1.8 -1.8 -24.5 -20.2 -23.1 -1 -1 -1 Per person per day . (NA) -9.3 -13.6 -46.7 -66.7 -170 -42.9 -40 -150 50 17.1 -2.9 -2.9 -25.3 -21 -23.8 -1 -1 -1Landfilled, other disposal. (NA) 21.1 21.1 11.5 19.1 9.6 2.4 0.1 -3.6 -2 3 -3.2 0.3 -0.2 -3.4 -7.6 -4.2 3.9 0.6 Per person per day . (NA) 18.5 13.5 6.7 14.5 5.1 1.6 -1 -4.3 -3.1 4.6 -4.2 -0.8 -1.2 -4.3 -8.5 -5.1 2.9 -0.4 Percent distribution of generation: Paper and paperboard.. 34.1 36.8 36.3 33.6 36.1 37.4 38.4 39.1 38.9 37.6 35.4 34.7 35.5 36.6 37.7 38.6 38.1 38.5 38.2 Glass.. 7.6 8.4 10.4 10.5 9.9 8 7.6 6.9 6.8 6.7 6.4 6.2 6.3 6.4 6.2 6.1 5.9 5.5 5.7 Metals. 12 10.7 11.6 11.2 9.6 8.6 8.5 8.3 8.3 8.2 8.1 8.1 7.7 7.5 7.6 7.5 7.7 7.7 7.6 Plastics.. 0.5 1.4 2.5 3.5 5.2 7.1 7.2 7.5 7.8 8 8.3 8.7 8.8 9 9 8.9 9.4 9.9 10.2 Rubber and leather.. 2.3 2.5 2.6 3 2.8 2.3 2.5 2.5 2.5 2.4 2.8 2.9 2.8 2.7 2.9 2.9 3 3 3.1 Textiles 1.9 1.8 1.6 1.7 1.7 1.7 1.6 2.1 2.1 2.9 2.8 3 3.2 3.2 3.4 3.5 3.7 3.8 3.9 Wood. 3.4 3.4 3.3 3.4 4.4 5 5.3 5.5 6.1 6.1 6 6.2 5.9 5.8 5.3 4.9 5.2 5.3 5.4 Food wastes.. 13.9 12.3 10.5 10.5 8.7 8 7.7 7.4 7.2 6.9 10.1 10.2 10.1 10 10 10.3 10.4 10.1 10 Yard wastes.. 22.8 20.9 19 19.7 18.2 18.2 17.7 17.4 17.2 18.1 17.1 17.1 16.8 15.7 14.7 14 13.3 12.8 12.6 Other wastes 1.6 1.8 2.2 2.9 3.4 3.6 3.4 3.3 3.1 3.1 3 3.1 2.9 3 3.2 3.3 3.3 3.4 3.3

Item and material 1960 1965 1970 1975 1980 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

MILLIONS OF TONNES Waste generated, total. 87.8 103.4 121.9 128.1 151.5 164.4 170.7 178.1 184.2 191.4 205.2 204.6 208.9 211.8 214.2 211.4 209.2 216.4 220.2Paper and paperboard . 29.9 38 44.2 43 54.7 61.5 65.6 69.6 71.7 71.9 72.7 71 74.3 77.4 80.8 81.7 79.7 83.3 84.1Ferrous metals . 9.9 10.1 12.6 12.3 11.6 10.9 11.1 11.3 11.6 12 12.6 12.7 12.1 11.9 11.8 11.6 11.8 12.3 12.4Aluminum . 0.4 0.5 0.8 1.1 1.8 2.3 2.4 2.4 2.5 2.5 2.8 2.8 2.9 2.9 3 3 3 3 3.1Other nonferrous metals. 0.2 0.5 0.7 0.9 1.1 1 1 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.4 1.3 1.3 1.3 1.4Glass . 6.7 8.7 12.7 13.5 15 13.2 13 12.3 12.5 12.9 13.1 12.6 13.1 13.6 13.4 12.8 12.3 12 12.5Plastics . 0.4 1.4 3.1 4.5 7.9 11.6 12.2 13.4 14.4 15.4 17.1 17.7 18.4 19 19.3 18.9 19.8 21.5 22.4Yard waste. 20 21.6 23.2 25.2 27.5 30 30.2 31 31.6 34.7 35 35 35 33.3 31.5 29.7 27.9 27.7 27.7Other wastes. 20.3 22.6 24.6 27.6 31.9 33.9 35.2 37 38.8 40.8 50.7 51.7 52.1 52.5 53.1 52.4 53.5 55.3 56.7

PERCENT CHANGE FROM PRIOR YEAR Waste generated, total. (NA) 15.1 15.2 4.8 15.4 7.8 3.7 4.2 3.3 3.8 6.7 -0.3 2.1 1.3 1.1 -1.3 -1 3.3 1.7Paper and paperboard . (NA) 21.3 14 -2.8 21.4 11.1 6.2 5.7 2.9 0.3 1.1 -2.5 4.4 4.1 4.2 1 -2.5 4.3 1Ferrous metals . (NA) 2 19.8 -2.4 -6 -6.4 1.8 1.8 2.6 3.3 5.1 0.1 -4.8 -1.4 -1.2 -1.2 1.6 4.1 0.3Aluminum . (NA) 20 37.5 27.3 38.9 21.7 4.2 0 4 0 11 1.2 0.9 2.1 3.5 -2.7 -0.3 2 2.3Other nonferrous metals. (NA) 60 28.6 22.2 18.2 -10 0 9.1 0 8.3 -9.1 2.6 -0.8 -0.9 17.8 -7.1 0 0.8 8Glass . (NA) 23 31.5 5.9 10 -13.6 -1.5 -5.7 1.6 3.1 1.6 -4.1 4.1 3.6 -2 -4.1 -4.4 -2.3 3.5Plastics . (NA) 71.4 54.8 31.1 43 31.9 4.9 9 6.9 6.5 10.1 3.3 3.8 3 1.5 -1.9 4.4 8 4Yard waste. (NA) 7.4 6.9 7.9 8.4 8.3 0.7 2.6 1.9 8.9 0.9 0 0 -5.3 -5.6 -6.1 -6.3 -0.7 0Other wastes. (NA) 10.2 8.1 10.9 13.5 5.9 3.7 4.9 4.6 4.9 19.5 2 0.6 0.9 1 -1.2 2.1 3.3 2.5 Materials recovered, total . 5.9 6.8 8.6 9.9 14.5 16.4 18.3 20.1 23.5 29.9 33.6 37 40.6 43.8 50.8 54.9 57.3 59.4 62.2Paper and paperboard . 5.4 5.7 7.4 8.2 11.9 13.1 14.8 16.3 18.4 19.1 20.2 22.5 24.5 25.5 29.5 32.7 33.2 33.6 35Ferrous metals . 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.4 0.7 1.5 2.6 3.1 3.4 3.9 4 4.1 4.4 4.7 4.3Aluminum . 0 0 0 0.1 0.3 0.6 0.6 0.7 0.8 0.9 1 1 1.1 1 1.2 0.9 0.9 1 0.9Other nonferrous metals. 0 0.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.7 0.7 0.7 0.7 1 0.8 0.8 0.8 0.9Glass . 0.1 0.1 0.2 0.4 0.8 1 1.1 1.3 1.5 2.5 2.6 2.6 2.9 3 3.1 3.1 3.2 2.9 3.2Plastics . 0 0 0 0 0 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1 1.1 1.1 1.2Yard waste. 0 0 0 0 0 0 0 0 0.5 3.5 4.2 4.8 5.4 6.9 8 9 10.4 11.5 12.6Other wastes. 0.3 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 1.3 1.8 1.9 2 2.1 3.1 3.2 3.3 3.8 4.1

Percent of generation recovered, total. 6.7 6.6 7.1 7.7 9.6 10 10.7 11.2 12.8 15.6 16.4 18.1 19.4 20.7 23.7 26 27.4 27.4 28.2Paper and paperboard . 18.1 15 16.7 19.1 21.8 21.3 22.6 23.4 25.6 26.6 27.8 31.7 33 32.9 36.5 40 41.6 40.3 41.6Ferrous metals . 1 1 0.8 1.6 3.4 3.7 3.6 3.5 5.8 12.6 20.4 24.1 27.7 32.8 33.9 35.5 37.2 38.4 35.1Aluminum . 0 0 0 9.1 16.7 26.1 25 29.2 31.7 35.5 35.9 35.5 38.7 35.7 37.8 31.4 31.5 31.6 27.9Other nonferrous metals. 0 60 42.9 44.4 45.5 50 60 54.5 65.1 68.3 66.4 65.5 63.4 63.1 73.3 64.3 66.7 65.4 67.4Glass . 1.5 1.1 1.6 3 5.3 7.6 8.5 10.6 12 19.5 20 20.3 22 22.1 23.3 24.5 25.8 24.3 25.5Plastics . 0 0 0 0 0 0.9 0.8 0.7 1.1 1.7 2.2 2.5 3.3 3.5 4.9 5.2 5.4 5.2 5.4Yard waste. 0 0 0 0 0 0 0 0 1.6 10 12 13.7 15.4 20.8 25.4 30.3 37.2 41.4 45.3Other wastes. 1.5 2.7 2.4 2.2 1.9 2.1 2 1.9 1.8 3.2 3.6 3.7 3.9 4 5.9 6.1 6.2 6.8 7.3

If the average American were to leave home each morning with a backpack full of the fuel they need-ed for their day:

Oil = 31 kg, 67 lb.Coal = 29 kg, 64 lb.Gas = 6 kg, 12 lb.

Barrel Of Oil42 Gallons.

US Oil Use Per Day : 20 730 000 barrels = 870 660 000 Gallons / Day

443 000 000 + 441 000 000 = 884 000 000 Gallons in Twin Towers.

We burn this much oil every day.

What if I wanted to generate my own power?

$40 000 ?

0 20 40 60 80 100 120 140 1600

20

40

60

80

100

120

140

160

equal land area per person globally represented as square

sauls square of land required for his watts generated by solarAverage US citizen square of land required for watts generated by solar

global average persons square of land to generate their energy with renewables

meters

met

ers

Land area per person in USA

Land area per person globally

Land area required to produce my power consumption with solar.

Land area for average US citizen by solar.

Land area for average global citizen by solar.

1800 1850 1900 1950 2000

0

2000

4000

6000

8000

10000

12000

USA Per Capita Power consumption vs. Year

Year

Wat

ts

100 mpg ?20 Miles per day.

500Watts.

2400 Watt thinking:

55mph

100kph

20 25 30 35 40 45 50 55 60 65 70 75

10

9080706050403020

Honda InsightMPG

MPH

85mph

75mph

65mph

55mph

45mph

35mph

25mph

TRAVEL IN A VACUUM.

MAKE IT FISH SHAPED.

MAKE IT SMALL.

MAKE IT SLOW.

MAKE IT INSULATE.

MAKE THICK WALLS.MAKE IT SMALL.

MAKE IT COLD.

"The Game Plan" slideset release 1.01, March 21 2008 67

1910 1920 1930 1940 1950 1960 1970 1980 1990 20000

0.5

1

1.5

2

2.5

3

3.5

Dep

ress

ion.

Oil

Cris

es.

Rece

ssio

n.

Sep.

11.2

001.

US energy consumption (TeraWatts)

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 20400

0.5

1

1.5

2

2.5

3

3.5

Dep

ress

ion.

Oil

Cris

es.

Rece

ssio

n.

Sep.

11.2

001.

Coal.

Nuclear.

Oil.

Gas.

Renewables.

3 important questions:

How much energy should the US use? The world use?

What should be the mix of that energy?Carbon vs. non-carbon.

How do you keep a working economy (or any economy), or a high quality of life while doing that?

?