outcomes from asia lcs studies and perspective leapfrog asia

22
Outcomes from Asia LCS Studies and PerspectiveLeapfrog Asia 15 th AIM International Workshop 22 February 2010, Tsukuba Shuzo Nishioka Institute for Global Environmental Strategies (IGES) National Institute for Environmental Studies (NIES)

Upload: others

Post on 01-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Outcomes from Asia LCS Studies and Perspective:Leapfrog Asia

15th AIM International Workshop22 February 2010, Tsukuba Shuzo Nishioka

Institute for Global Environmental Strategies (IGES)National Institute for Environmental Studies (NIES)

Low Carbon Asia:Background

• Growing needs for establishing new global order for reducing GHG emissions

• How to promote developing countries, in particular developing Asia, shift to low carbon society is one of the key challenges in future climate regime.

• Although numerous previous studies on climate change have been conducted from sustainable development perspective, little has been done on exploring potential of integrating LCS concept into developmental paths for Asia.

2

Much of Asia is in a good position to realize

low-carbon development (?)

• Low carbon technologies already available

• International collaboration to live in spaceship “Earth”

• Co-benefit of pollution reduction

• LCS needs leap-frog technologies

• Free from past high-energy technology-system

• Plenty well-educated human resource

• Asian wisdom fit to sustainability

• High energy price trend

• But diversified pathway by countries?

Reduction Potential :Effectiveness of Technology Transfer

Low discount rate case (under 100US$/t-CO2)

China, US, India, Western Europe and Russia are major 5 regions where there are large reduction potentials, and it accounts for 63 % of total reduction potentials in the world. Top 10 regions account for about 80 % of total reduction potentials.

0

500

1000

1500

2000

2500

3000

3500JP

N

CH

N

IND

IDN

KO

R

THA

XS

E

XS

A

XM

E

AU

S

NZL

CA

N

US

A

XE

15

XE

10

RU

S

AR

G

BR

A

XLM XA

F

XR

W

GH

G R

educ

tion

pote

ntia

l (M

t-CO 2

eq)

unde

r 100

US

$/t-C

O 2

50 < X <= 100 US$/t-CO220 < X <= 50 US$/t-CO20 < X <= 20 US$/t-CO2X <= 0 US$/t-CO2

Huge reduction potential if Best Available Technology applied

1. Low carbon technologies already available

Year 2020

Marginal Abatement Cost Curve in 2020

-100

-50

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

GHG reductions (Mt-CO2 eq)

Mar

gina

l aba

tem

ent c

ost

(US

$/t-C

O2 e

q)

Non-Annex I (High DR)Annex I (High DR)Non-Annex I (Low DR)Annex I (Low DR)

Comparison with LOW & HIGH discount rate case

Estimated mitigations under the case of 100 US$/t-CO2 marginal abatement cost in 2020 are 8.7~11.3 GtCO2 eq in Global, 2.6~3.8 GtCO2 eq in Annex I and 6.0~7.5 GtCO2 eq in Non Annex I, respectively.

Reduction amount

Reduction cost

Technologies introduced

Energy saving could reduce air pollutants and improve health impact

BaU

Policy

BaU

Geographical distribution of PM10 emissions across China in 2020 (unit: ton)

Policy

Ambient concentration of PM10in urban areas of China in 2020

BaU

Policy

BaU

Geographical distribution of PM10 emissions across China in 2020 (unit: ton)

Policy

Ambient concentration of PM10in urban areas of China in 2020

Wan Yue/ Yan Hongwei

3. Co-benefit of pollution control

中国

26%

ドイツ

19%

日本

18%

台湾12%

アメリカ

6%

フィリピン3%

レー

シア2%

ノルウェー

2%

スペイン

2%インド

1%その

9%

2008年太陽電池生産量国別シェア

順位 1 2 3 42006 Japan 24.6% China 22.0% Germany 19.8% USA 10.2%

Q セル[独]10.4%

シャープ[日]

9.7%

サンテック[中]

8.8%

2008 China 26% Germany 19% Japan 18%

Q セル[独]

8%

ファーストソーラー

7%

サンテック[中]

7%

シャープ[日]

7%

Production Share of Solar Cell

China

GermanyJapan

Taiwan

Japan

4. LCS needs leap-frog technologies

米国

New Energy competition : distributed energy

Solar Panel Capacity Growth

Germany

Spain

Japan

USA

軽油->Diesel ICEV

軽油->Diesel ICEHEV

ガソリン->Gasoline ICEV

ガソリン->Gasoline ICEHEV

ガソリン->FP. Gas. FCHEV

ガソリン->FP. Gas. FCEV

圧縮水素->FCHEV

圧縮水素->FCEV

液体水素->FCHEV

液体水素->FCEV

合成ディーゼル->Diesel ICEV

合成ディーゼル->Diesel ICEHEV

メタノール->FP. MeOH FCHEV

メタノール->FP. MeOH FCEV

圧縮水素->FCHEV

圧縮水素->FCEV

液体水素->FCHEV

液体水素->FCEV

合成ディーゼル->Diesel ICEV

合成ディーゼル->Diesel ICEHEV

メタノール->FP. MeOH FCHEV

メタノール->FP. MeOH FCEV

圧縮水素->FCHEV

圧縮水素->FCEV

合成ディーゼル->Diesel ICEV

合成ディーゼル->Diesel ICEHEV

メタノール->FP. MeOH FCHEV

メタノール->FP. MeOH FCEV

圧縮水素->FCHEV

圧縮水素->FCEV

液体水素->FCHEV

液体水素->FCEV

石油火力->BEV

LNG火力->BEV

石炭火力->BEV

平均電源構成->BEV

バイオマス発電->BEV

石油火力->圧縮水素->FCHEV

石油火力->圧縮水素->FCEV

LNG火力->圧縮水素->FCHEV

LNG火力->圧縮水素->FCEV

石炭火力->圧縮水素->FCHEV

石炭火力->圧縮水素->FCEV

平均電源構成->圧縮水素->FCHEV

平均電源構成->圧縮水素->FCEV

バイオマス発電->圧縮水素->FCHEV

バイオマス発電->圧縮水素->FCEV

圧縮水素->FCHEV

圧縮水素->FCEV

液体水素->FCHEV

液体水素->FCEV

副生水素電力バイオマス石炭天然ガス原油

Well to Wheel CO2排出原

単位[g-CO2/km]

Technology: Projected Car CO2 Emission/km

ディ

ーゼ

ル車

ディ

ーゼ

ルH

ガソ

リン

ガソ

リン

HV

燃料

電池

車(水

素)

燃料

電池

車(メ

タノー

ル)

燃料

電池

車(水

素)

燃料

電池

車(水

素)

燃料

電池

車(水

素)

電気

自動

最小 最大

副生水素 電力バイオマス 天然ガス原油

Well

to W

heel C

O2排

出原

単位

[g-C

O2/km

]

※HV:ハイブリッド車の省略形       ※電力:日本の平均電源構成※燃料電池車:回生エネルギーを二次電池で回収  ※水素:圧縮水素を仮定

EV

Gasoline

Hy. Aug

FC

Diesel

(ELIICA) 4 PASSENGER SEDAN370km/h MAX.SPEED

Technological leap-fogging starts

nowElectric Car:

Prof. Hiroshi SHIMIZU, Keio Univ.

Experiences in Mobile Phone

PLATFORM by SIM-Drive

No engine but only motors in every wheel

From Toyota to Pansonic?

Body Panels

Body Frame

Chassis

Lighter,wider, and

flexible design,when move

engine away

Let’s design customized

Asian Eco-car

深圳1985 深圳1997 深圳2005

北京1975 北京1984 北京1991 北京1997東京1927 東京1967 東京2001

大阪1967大阪1927 大阪2001

ソウル1920 ソウル1960 ソウル2006

台北1920 台北2003

マニラ2060 マニラ2000

バンコク1950 バンコク2000

Rapidly Expanding Asian Cities

Tokyo & Osaka

Manila

Bangkok

Beijing

Seoul

From Kaneko: 2009

North American Pattern

Most efficient patterndaa

*Tokyo

*Hong Kong

European Pattern

*San Francisco

*Munich

50,000GDP/Capita (USD)

100%

Modal share of motorized private mode

0%

*Rome

*Beijing *Manila

5.Free from past high-energy technology-system

Designing efficient Infrastructure

From IEA: 2008

Scale merit of accumulation: Evolution

Labor shift from rural area

The 1st Industry The 2nd Industry The 3rdIndustry

Transportation

Information Tech.

Backward effect

Forward effect

How LCS can be mainstreamed in city development path ?

Saving energy oin industry

Location of factory

Investment

Retreat of factory

Relocation to abroad

Smart growth

Compact city

Introduction of new energy

Dematerialization

Financial activities

Expand of city area

Infrastructures

Industrialization

Poverty and energy

Lock-in effect

City management

6.Leapfrog Possibility in AsiaCountry Domestic factor External factor

Industrial Structure

India: IT Industry Education/human resource

Soft tec. Globalization

Energy structure

Japan: Low energy intensity

Technology

Rapid growth

Oil Crisis

Energy security

Urban Structure

Singapore: transportation, water, housing,,

Tokyo: Public transportation

Small land strong leadership

Rapid urbanization

Relationship with Malaysia

Before auto-age

Distributed energy

India: renewable energy, Biomass

Brazil :ethanol

Poor power grid Investment, land area

Sugar cane, lack of Oil

Information China: Mobile Rapid economic growth, big land area,

Not enough com-grid

IT technology

New Energy System

? ? Climate Issue

Agricuture Low energy use Self sufficiency Energy price

19

China?India?

Long-term Trends in Energy Intensity (energy/GDP)

Japan’s leap-frog

Possibility of Asian countries’ catch-up

– How can we facilitate technology leap flogging to promote low carbon development?

– What would be mechanisms (international and national, market and non market) that could facilitate those leap-floggings to low carbon technologies?

Asian Opportunity 4: Free from past high-energy-depending technology track

20

GH

G e

mis

sio

ns

per

cap

ita

Time

Low Carbon World

Developed Countries High Energy

Locked-in Type Development

With High Damage on Economy and Natural System

Developing Countries Leapfrog-

development

Modeling Sustainable Low-Carbon Asia

We have just started new research project “Asian Low-Carbon SocietyScenario Development Study” (project leader: Mikiko Kainuma) during

FY2009-2013, funded by Global Environmental Research Program, MOEJ

Asian LCS scenarios study

Outcomes from Asia LCS Studies and Perspective

15th AIM International Workshop22 February 2010, Tsukuba Shuzo Nishioka

Institute for Global Environmental Strategies (IGES)National Institute for Environmental Studies (NIES)

Renewable Energy再生可能エネルギー• Renewable energy

systems can be used as stand alone or mini-grid based on 再生可能エネルギーシステムは、以下に基づいて、単独で、又は小規模グリッドで利用できる。

• Needs assessmentニーズ調査

• Provision of wide technology choice技術の広範な選択オプションの提示

• Facilitation of technical back-up技術的バックアップの確保

• Provision of subsidised financial system補助金等の資金援助の提供

• Support existing cooperatives or promote new ones既存の協力関係の支援、又は新たな関係の促進