overview of lightning research at university of new hampshire

20
Overview of Lightning Research at University of New Hampshire Ningyu Liu and Joseph Dwyer Department of Physics & Space Science Center (EOS) University of New Hampshire Northeast Radio Observatory Corporation (NEROC) Symposium: Radio Science And Related Topics MIT Haystack Observatory, 4 November 2016

Upload: others

Post on 29-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Overview of Lightning Research at University of New Hampshire

Ningyu Liu and Joseph DwyerDepartment of Physics &

Space Science Center (EOS)University of New Hampshire

Northeast Radio Observatory Corporation (NEROC) Symposium: Radio Science And Related TopicsMIT Haystack Observatory, 4 November 2016

Outline

• Optical Observations of Lightning and Transient Luminous Events

• Modeling Ionospheric Impact of Thunderstorms and Lightning

• Energetic Radiation from Thunderstorms and Lightning

Outline

• Optical Observations of Lightning and Transient Luminous Events

• Modeling Ionospheric Impact of Thunderstorms and Lightning

• Energetic Radiation from Thunderstorms and Lightning

Lightning and Transient Luminous EventsA

ltitu

de (km

)

100

50

0

Ionosphere

StratosphereBlue jet

Elve

Halo

Sprite

Cloud-to-ground lightning

002001

Gigantic jet

Distance (km)

Pasko (2003), Electric jets, Nature, 423, 927–929.

Lightning Propagation: Complex Dynamics and Spatial Structures

Two lightning flashes observed on May 20th, 2016

Fractal Modeling and Detailed Lightning Channel Structure

10

y (km)

Lightning discharge after 971 step(s)

5010

5

x (km)

0

10

0

9

8

7

6

5

4

3

2

1

z (k

m)

ln(R)5 6 7 8

ln(N

)

-2

-1

0

1

2

3

4

5

6Fractal dimension D = 2.6119

Fractal modeling results obtained by Prof. Jeremy Riousset at ERAU High-resolution Image of lightning channel [Bazelyan and Raizer, 2000].

Simulating Streamer Initiation and Propagation to Study Lightning Initiation

HydrometeorElectron Density

Charge Density

Electric Field

Longitudinal Current Density

Radial Current Density

• The current carried by the streamer exponentially increases with a timescale of a few nanoseconds, which can lead to strong HF/VHF radiation [Shi et al., 2016].

• Recent RF measurements suggest that the most powerful VHF source in nature, known as Narrow Bipolar Events or Compact Intracloud Discharges, consists of many streamers [Rison et al., 2016].

Videos of Jets and Gigantic Jets (Standard Rate)

Field 180(km)

70

60

50

40

30

20 17.1 km

Field 6 Field 12 Field 18 Field 19 Field 21 Field 24 Field 2580

(km)

70

60

50

40

30

20

Field 1

70(km)

60

50

40

30

20 19.9 km

Field 6 Field 7 Field 15 Field 26 Field 27 Field 34 Field 53

70(km)

60

50

40

30

20

Event 180

(km)

70

60

50

4042 km

30

20

Event 2

70

(km)

60

50

40

30

20

Event 380

(km)

70

60

50

40

30

20

Event 480

(km)

70

60

50

40

30

20

Event 580

(km)

70

60

50

40

30

20

Event 680

(km)

70

60

50

40

30

20

Event 7

70

(km)

60

50

40

30

20

39 km47 km

48 km

Liu et al. (2015a), Upward electrical discharges observed above Tropical Depression Dorian, Nat. Commun., 6, 5995, doi:10.1038/ncomms6995.

High-Speed Imaging of Jets and Gigantic Jets

• Neither high-speed images nor spatially-resolved spectra have been reported.

• For gigantic jets, does the upward discharge propagate all the way up to the ionosphere? Or are electrical discharges triggered in the lower ionosphere, which then propagate downward?

• Are they as hot as lightning channels?

Field 1

70

(km)

60

50

40

30

20

Field 6 Field 7

50mm or 85mm focal lens

VS4-1845HS-Gen III Intensifier

VPH grism with 0.2-0.3 nm resolution

Light from jet

GPS receiver

Phantom V411 CMOS Camera

Outline

• Optical Observations of Lightning and Transient Luminous Events

• Modeling Ionospheric Impact of Thunderstorms and Lightning

• Energetic Radiation from Thunderstorms and Lightning

Steady State Lower Ionosphere Conductivity Model

Electron Density

Electric Field

JTotal = σEz︸︷︷︸

Conduction

+ ε0∂Ez/∂t︸ ︷︷ ︸

Displacement

JTotal = JCharging − JLightningJTotal ∼ 10

−8A/m2

[Riousset et al., 2010]

Maxwellian relaxtion time ~ 10s ms

at ~70 km altitude [Liu et al., 2015]

ε0∂Ez/∂t ∼ 0, JTotal ∼ σEz

80 km

40 km

70 km

60 km

50 km

90 km

JTotal

JTotal

JTotal

• Thunderstorms can establish an electrostatic field and steady current in the upper atmosphere.

• The electric field is sufficient to modify electron mobility and electron attachment coefficient [Salem et al., 2015, 2016].

E =J

�,

dni

dt= 0 = Si � Li,

X

i

n+i =

X

i

n�i ,

� =X

i

eniµi

Salem, M. A., N. Liu, and H. K. Rassoul (2015), Geophys. Res. Lett., 42, doi:10.1002/2015GL063268.Salem, M. A., N. Liu, and H. K. Rassoul (2016), Geophys. Res. Lett., 43, doi:10.1002/2015GL066933.

Hourly Variation of Ionospheric Density Above Thunderstorms

• The hourly variation of the lower ionospheric density correlates with underlying lightning activity [e.g., Shao et al., Nat. Geosci., 2013].

• Modeling investigation of the effects of thunderstorms [Salem et al.., Geophys. Res. Lett., 2015, 2016].

Shao et al. (2013), Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm, Nat. Geosci., 6, 29–33, doi:10.1038/ngeo1668.

UT (h)

Altit

ude

(km

)

Ionospheric Impact of Lightning: Halos and Sprites

• A plasma fluid discharge model is typically used — Poisson’s equation and transport equations of electrons and ions.

• The model accounts for ionization, attachment, detachment, electron drift, electron diffusion, etc.

Liu, N. Y. (2012), Multiple ion species fluid modeling of sprite halos and the role of electron detachment of O− in their dynamics, J. Geophys. Res., 117, A03308, doi:10.1029/2011JA017062.

Electron Density

Electric Field

Significant Ionospheric Impact of Impulsive Lightning

A fast propagating streamer head

~107 m/s

• Conducted for an impulsive lightning stroke detected in Florida in 2014.

• Electron density is increased in a significant volume of the lower ionosphere.

• Peak electron density reaches 3x109 m-3, more than 4 orders of magnitude higher than the ambient.

Electron Density

Electric Field

104105

106107

108

109

104105

106107

108

109

104105

106107

108

109

104105

106107

108

109

104105

106107

108

109

104105

106107

108

109

Electron Density

t = 1.17 ms

(km)-60 -40 -20 0 20 40 60

(km

)

40

50

60

70

80

90

1041051061071081091010

(m-3)

Electron Density (m-3)103 105 107 109

h (k

m)

40

50

60

70

1.2 ms1.0 ms

80

90

0.6 ms

0-0.4 ms

0.8 ms

E/Ek

0 0.5 1 1.5 2h

(km

)40

50

60

70

80

90

1.2 ms1.0 ms

0.4 ms

0.8 ms

0.6 ms

Liu, N., L. D. Boggs, and S. A. Cummer (2016), Observation-constrained modeling of the ionospheric impact of negative sprites, Geophys. Res. Lett., 43, doi:10.1002/2016GL068256.

Streamer Initiation from Mesospheric Structures

105

107

109

1011t = 23.4 ms

104

106

108

1PN2 (R)

(km

)

t = 23 ms

71

72

73

74

(km)

(km

)

−5 0 571

72

73

74

Electron Density (m-3)10 km Scale Structure

(km)

(km

)

t = 50 ms

−6 −4 −2 0 2 4 6

72

7414 km Scale Structure: Electron Density (m-3)

1051071091011

Liu et al. (2015b), Sprite streamer initiation from natural mesospheric structures, Nat. Commun., 6, 7540, doi:10.1038/ncomms8540.

Outline

• Optical Observations of Lightning and Transient Luminous Events

• Modeling Ionospheric Impact of Thunderstorms and Lightning

• Energetic Radiation from Thunderstorms and Lightning

Energetic Radiation Produced by Thunderstorms

http://www.nasa.gov/mission_pages/GLAST/news/fermi-thunderstorms.html

Physical Mechanism of Terrestrial Gamma Ray Flashes

5 10 15 20 25 30 35 40t (ms)

0

20

40

60

coun

ts

BATSE TGF 3925

5 10 15 20 25 30 35 40t (ms)

0

20

40

60

coun

ts

BATSE TGF 2185

5 10 15 20 25 30 35 40t (ms)

0

20

40

60

80

coun

ts

BATSE TGF 3813

5 10 15 20 25 30 35 40t (ms)

0

20

40

60

coun

ts

BATSE TGF 6185

5 10 15 20 25 30 35 40t (ms)

0

20

40

60

coun

ts

BATSE TGF 8006

5 10 15 20 25 30 35 400

0.5

1

1.5

2 x 1019

t (ms)

Phot

ons/

s

(b)

(km)

(km

)

t = 21 ms

−2 0 28

9

10

11

12

13

14

15

16(V/m)

0

4x105

8x105

12x105

(km)

t = 21 ms

−2 0 2

(m−3)

104

105

106

107

(km)

t = 21 ms

−2 0 2

(m−3)

1

10

102

103

E/n Runaway Electron Density Runaway Positron Density

Liu, N. Y., and J. R. Dwyer (2013), Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges, J. Geophys. Res., doi:10.1002/jgra.50232.

Summary

• The UNH lightning team works on nearly all aspects of lightning-related research. We conduct observational, modeling, and theoretical research to understand various forms of electrical discharges in earth’s atmosphere and their impact.

• We welcome collaborative projects.

Contact info:

Ningyu Liu ([email protected])

Joseph Dwyer ([email protected])